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Abstract

We study a ¢ = —2 conformal field theory coupled to two-dimensional quantum gravity by means of dynamical triangu-
lations. We define the geodesic distance r on the triangulated surface with N triangles, and show that dim[r"] = dim[N],
where the fractal dimension dy = 3.58 & 0.04. This result lends support to the conjecture dy = —2a,/a—_,, where a_, is
the gravitational dressing exponent of a spin-less primary field of conformal weight (n + 1,7 + 1), and it disfavors the
alternative prediction dy = —2/¥s. On the other hand, we find dim[{] = dim[rz] with good accuracy, where [ is the length
of one of the boundaries of a circle with (geodesic) radius r, i.e. the length / has an anomalous dimension relative to the
area of the surface. It is further shown that the spectral dimension d; = 1.980 &+ 0.014 for the ensemble of (triangulated)
manifolds used. The results are derived using finite size scaling and a very efficient recursive sampling technique known
previously to work well for ¢ = —2. (©) 1997 Elsevier Science B.V.

1. Introduction

Liouville theory and matrix models have been suc-
cessful in explaining a number of features of confor-
mal field theories coupled to two-dimensional quan-
tum gravity. However, our primary interest in a theory
of quantum gravity concerns geometry: which con-
cepts of geometry survive the quantum average, and
how is the geometry changed by this average. These
questions have not been clarified by Liouville field
theory or matrix model techniques. In the last couple
of years significant progress has been made in this di-
rection, starting with the introduction of the so-called
transfer matrix [1]. It was shown that a reparametriza-
tion invariant formulation of the two-point function

in quantum gravity has a simple geometric interpre-
tation [2] and that a generalization of the two-point
function to include matter fields allows a geometric
interpretation of the KPZ-exponents [3], an interpre-
tation first conjectured in [4]. In addition it was real-
ized that finite size scaling analysis of the two-point
functions were very efficient tools for extracting crit-
ical exponents [5.4]. In this article we will take ad-
vantage of this new technology and combine it with
the efficient recursive sampling algorithm developed
earlier for ¢ = —2 conformal field theory coupled to
two-dimensional quantum gravity used in [6] where
the fractal nature of quantum gravity in two dimen-
sions was first numerically confirmed.
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2. The model

The ¢ = —2 model coupled to quantum gravity cor-
responds to a non-unitary (1,2) conformal field the-
ory coupled to quantum gravity, known as a topolog-
ical quantum gravity. There exists an explicit realiza-
tion of the model within the framework of dynamical
triangulations. In this framework the partition func-
tion for ¢ Gaussian fields coupled to two-dimensional
quantum gravity is

ZN = Z (det CTN)_C/Z . (1)

Tn

In (1) the summation is over all triangulations 7y
with fixed topology ( which we will always assume to
be spherical in this paper) built from N triangles, and
C, is the so-called adjacency matrix of the graph cor-
responding to the triangulation 7y. Notice that the tri-
angulations of the spherical surface are in one-to-one
correspondence with the ¢ connected planar graphs
with no external legs, and thus it is possible to gener-
ate any triangulation 7y if we generate and connect ¢°
trees and rainbow diagrams with the correct weight. If
¢ = —2, the weight for generating ¢° trees and rain-
bow diagrams is 1, i.e. Eq. (1) can be written [7]

1
ZN:N——f—Z Z 1 Z 1

tree diagrams rainbow diagrams
with N + 2 legs with (N + 2)/2 lines

for ¢ = -2, (2)

where the first summation is over all rooted ¢ tree
diagrams with N 42 external legs and the second sum-
mation is over all rainbow diagrams with (N +2)/2
lines. 1/(N +2) is the symmetry factor which comes
from connecting the tree diagram and the rainbow di-
agram. Using a recursive algorithm for generating ¢*
trees and the rainbow diagrams in (2), it is possible
to create a large number of independent triangulations
Tn with the weight det Cr,,. We refer to [6,8] for de-
tails. Supplementary to the first studied in [6] we will
in this work study the finite size aspects of the ob-
servables associated with Zy, the main motivation be-
ing that finite size scaling by far is the most reliable
method for extracting continuum physics in critical
systems and we now understand that this is true also
for these systems coupled to quantum gravity.

One very important point in the above setup is that
we have the concept of distance, even if we usually
associate the ¢ = —2 model with a topological gravity.
To a triangulation 7y we can unambiguously associate
a piecewise linear manifold with a metric dictated by
the length assignment & to each link. From a practical
point of view we use instead a graph-theoretical dis-
tance between vertices, links or triangles. In the limit
of very large triangulations we expect that the differ-
ent distances when used in ensemble averages will be
proportional to each other. To be specific we will in
the following operate with a “link distance™ and a “tri-
angle distance”. The link distance between two ver-
tices is defined as the shortest link path between the
two vertices, while the triangle distance between two
triangles is defined as the shortest path along neigh-
boring triangles between the two triangles. In this way
the triangle distance becomes the link distance in the
dual ¢* graph.

In the following we will report on the measure-
ment of two quantities related to the fractal structure
of quantum space-time: The total length (/) (and the
higher moments (/")) of boundaries of spherical balls
of (geodesic) distance r, and the measurement of so-
called spectral quantities, originating from the study
of random walks on the manifolds.

Let us define the observables on the triangulation 7y
more precisely. We consider a spherical ball of radius »
and its shell for a given triangulation 7y. The spherical
ball consists of all vertices with link distance r’ < r
and the spherical shell consists of all vertices with
link distance r, where the distance is measured from
a given vertex vp which is considered as the center of
the spherical ball. In the same way we can define the
spherical shell in terms of triangle distance. We will
use both definitions in the following. The spherical
shell will in general consists of a number of connected
components. If we take the average over all positions
of vy and all triangulations 7y, we get a distribution
pn(l,r) of the length  (measured in link units) of
the connected components of the spherical shells of
radius r, i.e.

("= Pow(lir). (3)

=1

In particular we introduce the special notationny(r) =
(1(r))y and expect the fractal dimension to be related
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to ny(r) by

ny(r) ~rf=l L« r < NV (4)

According to general scaling arguments [2,5,4] we
expect the following behavior for ny(r):

_ r
ny(r) ~ N'7VaE (x), x=ma (5)

and we expect F)(x) to fall off rapidly when x > 1.

The spectral properties are derived from the study
of random walks on the triangulated surfaces via the
diffusion equation

l /
dt+1)=—% 0.0, (6)

Yo

where 1 is the diffusion time and the summation is over
the n, neighboring vertices ! v’ to v. We here consider
the initial condition of ¢(v, 1),

|
¢(U’O) = ;_5l',('03 (7)

where vg is a fixed vertex. Eqgs. (6) and (7) are dis-
cretizations of the diffusion equation on a continuum
manifold. We will be interested in observables associ-
ated with the diffusion process obtained by averaging
over the chosen vertex vy as well as different triangu-
lations 7y. In the following discussion we will always
assume that this average has been performed. Let us
denote the probability of diffusion out to a link dis-
tance r in time ¢ by ky(r, t). By definition we have

oo

> nn(rykn(r,n = 1. (8)

r=0

From scaling arguments [9,4,10] we expect the fol-
lowing scaling:

1
kN(rs t) = Ep(x$ y)a
_ r
T NVaw®

t
N (9)

X
y:

I Also in this case we have the possibility to formulate a diffusion
in terms of triangles and triangle distances, rather than vertices
and link distances. However, the finite size effects are larger for
triangles and we will in the following only use link distances when
we discuss diffusion.

where the new exponent A is defined such that y will
be finite in the scaling limit. The spectral dimension
is defined from the return probability by

Ay /21

kn(0,t) ~ s

fort ~ 0, (10)

while the average geodesic distance travelled by dif-
fusion at time ¢ is

o0

<r(f)>N = ZrnN(r)kN(r,z) ~ Nl/dn—Aoyo
r=0
for t ~ 0. (1)

If a kind of “smooth” fractal is expected here again,
kn(0,1) and (r(t))y exist and are different from zero
in the limit N — oo. This implies the scaling relations

g=— (12)

3. Numerical results
3.1. The simulations

The simulations are performed by generating a num-
ber of statistically independent configurations using
the algorithm mentioned in the introduction (see {6,8]
for details). We use the high quality random number
generator RANLUX [16,17] whose excellent statisti-
cal properties are due to its close relation to the Kol-
mogorov K-system originally proposed by Savvidy et
al. [14,15] in 1986%. We report results on system
sizes ranging from 2000-256 000 triangles. The num-
ber of configurations obtained depends on the lattice
size and on the observable that we measure. We choose
20 random vertices on each configuration in order to
perform correlation function measurements. We need
to collect more statistics to test Eq. (5), where we
have between 4.2 x 10° and 1.6 x 10° configurations.
For the 128K and 256K lattices we have 6 x 10° and
2 x 10’ configurations, respectively. In order to mea-
sure the moments ("), and their scaling properties
we need a factor of 107 less configurations: We have

2 The history of the seminal paper by Savvidy et al. is interesting:
The paper was rejected by 4 computer journals, including Comput.
Phys. Commun. where M. Liischer finally published a related
paper and F. James the FORTRAN code of RANLUX in 1994,
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Fig. 1. The functions R, v (d) for N = 2K, 4K, 8K, ..., 256K and
for the optimal @ = 0.130 determined by minimizing Eq. (19).
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Fig. 2. ¥*(«), defined by Eq. (19) for two sets of N;’s: N; = 2K,
4K, ..., 256K (solid curve) and N; = 16K, 32K, ..., 256K
i dashed curve).

approximately 50000 configurations for each lattice
size. Unfortunately, the computer effort for making
the measurements is comparable to the one needed to
test Eq. (5) with enough accuracy. For the diffusion
equation we collect 2500 configurations on which we
perform 5 measurements. For the three largest lattices
we have 620, 600 and 400 configurations respectively.

3.2. The fractal dimension

We have measured the fractal dimension in a num-
ber of independent ways *, and various measurements

*The details of these measurements will be reported else-
where [8].

agree. Here we limit ourself to report on one partic-
ular method, based on the distribution ny (7). From
(5) we have

o

(riy = %ZMN(’) ~ N, (13)
r=0

Obviously, (13) could itself serve as a natural defini-
tion of dy. By measuring ny (r) we can record (r)y
as a function of N and hence determine dy. Strictly
speaking, we expect this relation to be valid in the limit
of infinite N, while finite N effects will be present in
(13). The finite N effects should be dictated by the
“the number of points™ L corresponding to the linear
size of the system, i.e. we expect

(rny const.  const.

= const. +

N]/d" L +T+ (14)

If we use the fact that N'/# is a typical measure for
the linear extension of the manifold, Eq. (14) can be
written,

1
(r+a>N~N'/d"+O<W>, (15)

by identifying L = N'/41_ The parameter a, which is
considered the shift in r, incorporates the next order
correction. We will discuss possible physical interpre-
tations of the shift a in detail in [ 8]. Now, let us define

(r+a)n
N1/d
We determine the value of a and dy in the following
way: first we measure (r)y, for a certain number of
different volumes N; of the universes, ranging from
N =2K to N = 256K. For a given a we choose, for

each couple N;, N; of N’s, the dyj such that

Run(d) = (16)

Run,(d}}) = Ry, (d}}). (17)

For this choice of N;, N; we bin the data and estimate
an error 8d}j. Then we determine the average

- 1 -
dy = dy. 18
™4 pairs Z H (18)

i#+j

and compute

R (dj — dn)?
()= B+ (19)
X (a ; (Sd;_’,)z
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Fig. 3. The scaling functions Fy,(x) defined by Eq. (22) (left figure) and the scaling functions I-',.(x) defined by Eq. (21), for n =2 and

N =8K, 16K, ..., 256K.

The preferred pair (a,duy(a)) is determined by the
minimum of y*(a). This method works quite impres-
sively. In Fig. 1 we have shown the intersection of
the curves R, x(d) as a function of d for the optimal
choice of a. The important point is that there exists a
value of a where the curves intersect with high preci-
sion and that the range of a where x*(a) is accept-
ably small, i.e. O(1), is quite small and hence dy will
be determined with high precision. In Fig. 2 we show
x2ta). In this way we get

ay = 0.139 % 0.005,
dn' ay) = 3.574 + 0.003. (20)

In { 20) we have estimated the error as follows. Define
an interval of acceptance { dmin, dmax ] of a by demand-
ing that y*(a) < 2x* where y* = max{l, y*(an)}
and find the variation of d(a) in this interval. After
this we repeat the whole procedure by making var-
ious cuts in the pairs of #;’s included in (18) and
(19), discarding successively the smallest N;’s. The
value of dy in Eq. (20) agrees with the original value
dy = 3.5£0.2 [6]. The strength of finite-size scaling
is that one can obtain higher precision results with the
use of much smaller lattices. The original simulation
needed 5000K size lattices.

3.3. The boundary

We now turn to the measurements of (/”), y. These
observables are constructed from py (!, r), which can
readily be measured in the simulations. If dim[N] =
dim[/?], then from scaling arguments, we expect

r

n ~ ni2 =
<l >V,N N Fn(x)s X Nl/d“.

(21)
However, our measurements are consistent with the
following scaling relation:

(" ~ NIOE (x) forn > 2, (22)

which implies that dim[/] = dim[ r?]. Eq. (22) indi-
cates that we have

(I"yn ~ " forl K r < N n>2.  (23)

Again, relations like (22) are expected to be valid up
to finite size effects, as in Eq. (14). As a first phe-
nomenological correction we use a shift » — r+a as
in (15) to find the best scaling function F,(x) for a
suitable range of N,’s. In Fig. 3 we have shown F,(x)
for n = 2 for the values of a which provide the best
scaling function. Similar pictures exist for n = 3 and
n =4. This is to be compared to the scaling given in
Eq. (21). We see that it is not possible to find a scaling
function f,,(x) if we used the ansatz (21). Assuming
the scaling (22) we get an independent determination
of dy = 3.63 £+ 0.04. This result is remarkably con-
sistent with the value of dy determined by the other
methods we used, considering the systematic errors
due to finite size effects. One, however, should con-
sider the possibility of a dimensional relation of the
form:

dim[!] = dim[2 9], (24)

In this case, for given dy, one can use the relation
(I, n = N?"(1=€/dnF (x) in order to determine the
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Fig. 4. A plot of In kx (0, ¢) versus Int for N = 2K, 4K, ..., 256K.

value of €. Using the lowest value we obtained for dy
using other methods, we obtain € < 0.03. Details will
be published elsewhere [8].

3.4. The spectral dimension

Let us finally turn to the spectral dimension d,, as
defined by (10). For a given triangulation ky (0, 1) can
be calculated by means of (6) and (7), and the quan-
tum average is then obtained by performing the aver-
age over different triangulations, since these are gen-
erated with the correct weight by the recursive sam-
pling. In Fig. 4 we have shown a plot of Inky (0, 1)
versus Inz. When ¢ is too small, discretization effects
interfere with the form (10), as discussed in details
in [4]. For larger values of ¢ it is possible to perform
a very good fit to (10), as is clear from Fig. 4. For
the 256K lattice the value of d, is

d; =1.980 £ 0.014. (25)

Due to finite size effects, the value of d; depends on
the lattice size, but it clearly approaches 2 as N be-
comes large. Exploiting the N dependence of ky(r, )
it is possible to determine the exponents A and o intro-
duced in Egs. (10) and (11). We find good agreement
with the scaling prediction (12). A detailed analysis
of the diffusion equation and the numerical verifica-
tion of (12) will be published elsewhere.

4. Discussion

The fractal structure of quantum gravity coupled to
matter has provided us with somewhat of a puzzle.
The first analytic result suggested that [11]

2
dy=——,
Vst

Y=g (e =1~ V@B =a(T-0). (26)

This formula has later been obtained in a number of
different ways using the string-field approach devel-
oped in [12]. There are several problems with the
“proofs”. For instance, the string-field proof is based
on the identification of proper time with geodesic
distance. However, only in the case of pure two-
dimensional gravity one can clearly identify the proper
time used in string-field theory with the geodesic
distance. Further, the formula (26) predicts that
dy — oc forc — 1 and dy — 0 for ¢ — —oc. The
latter result is clearly undesirable since one expects
that dg — 2 in the semi-classical limit ¢ — —o0. In
fact (26) predicts dy = 2 in the case considered here,
¢ = -2 (ys«r = —1), and a very recent constructive
proof, using an explicitly constructed transfer matrix
for ¢ = —2, confirms this prediction [13]. The pre-
diction is clearly in disagreement with the computer
measurements reported in this article. In a similar
way the prediction (26) for ¢ > 0 has been in contra-
diction with the Monte Carlo simulations performed
for the Ising model (¢ = 1, yg = —1) and the three-
states Potts model (¢ = ;—‘, YVsr = — é ). In these cases
one could argue that since the fractal dimension pre-
dicted is so large, the systems used in the computer
simulations have been too small to observe the correct
fractal dimensions. Although it is hard to understand
how one can get all predicted KPZ-exponents correct
in the numerical simulations, but not being able to
measure the fractal dimension, one could not rule out
entirely this criticism. The important point is that the
criticism is not valid for the present numerical inves-
tigation, since the predicted dy is small (namely 2),
and we are able to deal with very large systems.
The alternative prediction [9] for dy is

dH=—2i— V25 —c+/49 —¢

= . 2
a_| VvV25—-c++v1—-c¢ (2D
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The origin of this equation is to be found in the analysis
of the diffusion equation in Liouville theory [9] and
is based on the observation that (8)-(12) imply that

dim[ (2(1))n] = dim[ N¥/4n], (28)

This follows from the assumed scaling, independent
of the specific model of dynamical triangulations. On
the other hand, in Liouville theory one can use the
De Witt short-distance expansion of the heat kernel in
terms of geodesic distance to deduce [9] that

dim[{r2(1))y] = dim[ N~ (e-1/a ] (29)

provided r, N and ¢ are viewed as continuum geodesic
distance, continuum area and continuum diffusion
time in Liouville theory. In (29) «_, denotes the
gravitational dressing of a (n 4+ 1,n 4 1) conformal
field, i.e.

/ 0% /31 (g) — / 06 /54,1 (2).

for g, (£) =e®© 8, (&),

where g, (£) is the background metric. The require-
ment that e*—%®,,,(2) is a (1,1) conformal field
fixes

_ 2n

1+ (25-c—24n)/(25-¢)

For ¢ = O one obtains dy = 4 (in agreement with
the transfer matrix prediction), while for ¢ = —2 the
prediction is

(30)

a,

du(c=-2)=3+V17)/2=3.561.... (31)

It agrees with the numerical results reported in this
paper.

However, clearly this is not the complete story since
we have also obtained

dim[!"] =dim[r*"] forn > 1. (32)

The same result is valid for ¢ = 0 and from numerical
simulations for 0 < ¢ < 1 it seems to be valid in this
region, too { 18]. The reason such a result can appear
is apparent from the transfer matrix calculations for
¢ = 0. In this case we have

Cy
pn(r, D) = 720(1/#)

+ e Q2 - 18- V3e), (33)

where ¢ is a cut-off (the lattice spacing) and

G(z) = (2‘5/2 +1z7 4 ‘_%‘z'”) e’
for N — oo. (34)

For low moments, # = 0 and 1, the terms in (33) which
are singular for / — 0 will dominate the evaluation of

(") = / A1l py(r 1), (35)

&€

while for n > 2 these terms become integrable and the
cut-off dependence vanishes. It seems that the situation
is the same at least for ¢ € [—2,1). The exists a
regular part, pxeg)(r,l), of pn(r,1) such that

dip™® (r,1) = d(1/r*)G(1/r") (36)

is a function only of //r?, and which dominates the
integral (35) for n > 2, while a part, singular for / —
0, dominates (35) forn =0 and 1.

In order to fully understand the concept of fractal
dimension we still have to provide an explanation of
an expression like (33) for ¢ # 0.
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