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The emergence of expanding space-time in the Lorentzian type IIB matrix model Mitsuaki Hirasawa

1. Introduction

Superstring theory is considered to be a promising candidate for quantum gravity. One of the
remarkable features of this theory is that the dimensionality of the space-time in which the theory is
defined is not arbitrary but is determined by the consistency of the theory. Specifically, the theory
is consistently defined only in 10D space-time. Therefore, it is important to clarify the relationship
between the 10D space-time and our (3+1)D space-time.

One mechanism to explain (3+1)D space-time, in the theory, is the compactification, in which
the physics in (3+1)D space-time is determined by the structure of the compactified extra dimension.
At the perturbative level, one needs to fix the dimensionality of the extra dimensions to 6 by hand,
and one also has huge ambiguity in the structure of the extra dimension. However, it is difficult
to construct the extra dimensions explicitly by requiring that the physics in (3+1)D space-time is
consistent with the Standard Model at the low-energy scale. Even if this is feasible, it is not clear
whether one can choose one of the many possibilities at the perturbative level. Therefore, it is
important to study the non-perturbative aspects of superstring theory.

The type IIB matrix model, also called IKKT matrix model, was proposed in Ref. [1], and it
is one of the promising candidates for a non-perturbative formulation of superstring theory. The
model is defined by the partition function

𝑍 =

∫
𝑑𝐴𝑑Ψ𝑑Ψ̄ 𝑒𝑖 (𝑆b+𝑆f ) ,

𝑆b = −𝑁

4
Tr

{
−2[𝐴0, 𝐴𝑖]2 + [𝐴𝑖 , 𝐴 𝑗]2} ,

𝑆f = −𝑁

2
Tr

{
Ψ̄𝛼 (Γ𝜇)𝛼𝛽 [𝐴𝜇,Ψ𝛽]

}
,

(1)

where 𝐴𝜇 (𝜇 = 0, 1, ..., 9) and Ψ𝛼 (𝛼 = 1, 2, ..., 16) are 𝑁 × 𝑁 Hermitian matrices, and Γ𝜇

are the 10D Gamma matrices after the Weyl projection. This model has N = 2 supersymmetry
(SUSY), which is the maximal SUSY in 10D space-time. As a consequence, the model includes
the gravitational interaction. From the action, one can see that there are no space-time coordinates
a priori, and that they emerge from the degrees of freedom of this model. According to the SUSY
algebra, a homogeneous shift of the diagonal elements of 𝐴𝜇 corresponds to the translation in the
𝜇 direction in this model. As a result, we can interpret the eigenvalues of 𝐴𝜇 as the space-time
coordinates.

The Euclidean version of this model has SO(10) rotational symmetry, which is spontaneously
broken to SO(3). This was shown for the first time using the Gaussian expansion method (GEM)
in Refs. [2–5], and non-perturbative Monte Carlo simulations in Refs. [6, 7] produced consistent
results. The relation between the SO(3) symmetric Euclidean space and our (3+1)D space-time is,
however, not clear. Therefore, it is crucial to investigate the Lorentzian version of the model.

Since the action in the Lorentzian model is complex, the usual Monte Carlo methods are not
applicable. This is the sign problem1, and it is necessary to deal with it properly to obtain correct

1The Euclidean model also has the same problem, but in that case it is due to the fermionic action. When the phase of
the Pfaffian that arises from the integration of the fermionic degrees of freedom is quenched, there is no SSB [8–10]. In
order to consider the effect of the dynamics of the fermionic degrees of freedom, the authors in [6, 7] used the complex
Langevin method. We employ the same method in this work.
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results. The first-principle calculations of the Lorentzian model were done in Refs. [11–15], where
an approximation was used to avoid the sign problem. Then, the expanding (3+1)D space-time
was observed. However, it was found in Ref. [16] that the structure of the expanding space is
essentially caused by two points, which implies that the space is not continuous. The emergence of
this singular structure is due to the approximation used to avoid the sign problem. It was found that
this approximation amounts to replacing the Boltzmann weight 𝑒𝑖𝑆 by 𝑒−𝛽𝑆 , where 𝛽 is a positive
constant. See Ref. [17–21] for other recent studies on the type IIB matrix model, in which possible
applications to cosmology are discussed.

Recently, we have been studying the Lorentzian model without the approximation by using the
Complex Langevin Method (CLM) to overcome the sign problem [22–26]. In this talk, we report
on the current status of our work.

The rest of this paper is organized as follows. In Sec. 2, we discuss the relationship between
the Lorentzian and the Euclidean models. In Sec. 3, we introduce a regulator in the Lorentzian
model to make it well-defined. This regulator was also used in the classical analysis in [27]. In
Sec. 4, we explain the CLM and its application to the type IIB matrix model. The results obtained
by the complex Langevin simulations are presented in Sec. 5. Sec. 6 is devoted to a summary and
discussions.

2. Relationship between the Lorentzian and Euclidean models

In this section, we explain the relationship between the Lorentzian and the Euclidean models.
For simplicity, here we consider the bosonic model, in which the fermionic contribution is omitted.
The partition function of the model is given by

𝑍 =

∫
𝑑𝐴 𝑒𝑖𝑆b ,

𝑆b = −𝑁

4
Tr

{
−2[𝐴0, 𝐴𝑖]2 + [𝐴𝑖 , 𝐴 𝑗]2} . (2)

Here, we consider a Wick rotation as

𝑆b = −𝑁

4
𝑒𝑖

𝜋
2 𝑢Tr

{
−2𝑒−𝑖 𝜋𝑢 [ 𝐴̃0, 𝐴̃𝑖]2 + [ 𝐴̃𝑖 , 𝐴̃ 𝑗]2} . (3)

We rotate both on the world sheet and in the target space at the same time using one parameter 𝑢.
Here, 𝑢 = 0 corresponds to the Lorentzian model, while 𝑢 = 1 corresponds to the Euclidean model.
This Wick rotation is equivalent to the contour deformation

𝐴̃0 = 𝑒𝑖
𝜋
2 𝑢𝑒−𝑖

𝜋
8 𝑢𝐴0 = 𝑒𝑖

3𝜋
8 𝑢𝐴0 ,

𝐴̃𝑖 = 𝑒−𝑖
𝜋
8 𝑢𝐴𝑖 .

(4)

Note that 𝑒−𝑖 𝜋8 𝑢 and 𝑒𝑖
𝜋
2 𝑢 are the phases of the Wick rotations on the world sheet and in the target

space, respectively.
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Figure 1: The equivalence between the Euclidean and Lorentzian models. The Left and Right panels
represent Tr(𝐴0)2 and Tr(𝐴𝑖)2 in the complex plane. The data points with “L" and “E" represent the
expectation values obtained by simulations of the Lorentzian and Euclidean models, respectively.

Cauchy’s theorem says that the expectation value of any observable ⟨O(𝑒−𝑖 3𝜋
8 𝑢 𝐴̃0, 𝑒

𝑖 𝜋8 𝑢 𝐴̃𝑖)⟩𝑢
is independent of 𝑢 under the contour deformation. Therefore, the following relations hold:〈

1
𝑁

Tr(𝐴0)2
〉

L
= 𝑒−𝑖

3𝜋
4

〈
1
𝑁

Tr( 𝐴̃0)2
〉

E
,〈

1
𝑁

Tr(𝐴𝑖)2
〉

L
= 𝑒𝑖

𝜋
4

〈
1
𝑁

Tr( 𝐴̃𝑖)2
〉

E
,

(5)

where ⟨·⟩L and ⟨·⟩E are the expectation values in the Lorentzian and Euclidean models, respectively.
In other words, the Lorentzian and Euclidean models are equivalent to each other under the contour
deformation. We have confirmed this relation by simulations (see. Fig 1).

3. Regularization of the Lorentzian model

Since the partition function of the Lorentzian model is not absolutely convergent as it is, we
need to introduce a regularization. Here, we use the following mass term as an IR regulator

𝑆𝛾 =
1
2
𝑁𝛾

{
Tr(𝐴0)2 − Tr(𝐴𝑖)2} , (6)

where 𝛾 is a mass parameter. This mass term is invariant under a Lorentz transformation in the
target space-time.

The model with this mass term has been studied at the classical and perturbative levels in
Refs. [27–40]. In Ref. [27], it was found that the typical classical solutions of the model with this
mass term have an expanding space at 𝛾 > 0, although the dimensionality is not determined by the
classical analysis. This result motivates us to perform a first-principle calculation of the model with
this mass term.
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4. Complex Langevin simulations

In order to study the time evolution in Sec. 5, we choose an SU(𝑁) basis, where the temporal
matrix 𝐴0 is diagonalized as

𝐴0 = diag (𝛼1, 𝛼2, ..., 𝛼𝑁 ) , 𝛼1 ≤ 𝛼2 ≤ ... ≤ 𝛼𝑁 . (7)

The following change of variables, first introduced in Ref. [41], make the ordering in Eq. (7)
explicit:

𝛼1 = 0, 𝛼2 = 𝑒𝜏1 , 𝛼3 = 𝑒𝜏1 + 𝑒𝜏2 , ..., 𝛼𝑁 =

𝑁−1∑︁
𝑎=1

𝑒𝜏𝑎 . (8)

The choice 𝛼1 = 0 is made by using the shift symmetry 𝐴0 → 𝐴0 + 𝑐1.
In this work, we use the complex Langevin method (CLM) [42, 43] to overcome the sign

problem. In this method, the number of degrees of freedom is doubled by “complexifying" the
dynamical variables as

𝜏𝑎 ∈ R→ 𝜏𝑎 ∈ C,
𝐴𝑖 : Hermitian matrices → 𝐴𝑖 : general complex matrices.

(9)

We generate configurations by using the complex Langevin equations

𝑑𝜏𝑎

𝑑𝑡L
= − 𝜕𝑆

𝜕𝜏𝑎
+ 𝜂𝑎 (𝑡L),

𝑑 (𝐴𝑖)𝑎𝑏
𝑑𝑡L

= − 𝜕𝑆

𝜕 (𝐴𝑖)𝑏𝑎
+ (𝜂𝑖)𝑎𝑏 (𝑡L),

(10)

where 𝑡L is the so-called Langevin time, and 𝜂𝑎 (𝑡L) and (𝜂𝑖)𝑎𝑏 (𝑡L) are the Gaussian noise with the
probability distribution

𝑃 (𝜂𝑎 (𝑡L)) ∝ exp

(
−1

4

∫
𝑑𝑡

∑︁
𝑎

(𝜂𝑎 (𝑡L))2

)
,

𝑃 ((𝜂𝑖)𝑎𝑏 (𝑡L)) ∝ exp
(
−1

4

∫
𝑑𝑡 Tr (𝜂𝑖 (𝑡L))2

)
.

(11)

Note that the Langevin equation must be extended to the complexified dynamical variables in a
holomorphic way.

It is known that the CLM sometimes converges to wrong solutions. This is called the wrong
convergence problem. Fortunately, a practical criterion for the correct convergence was found
recently in Ref. [44]. The criterion says that the results are correct when the probability distribution
of the drift term decays exponentially or faster.

When we consider the fermionic contribution, the inverse of the Dirac operator appears in the
drift force. If the Dirac operator has near zero eigenvalues, we have the singular drift problem,
and the CLM suffers from the wrong convergence problem. We avoid this problem by adding a
SUSY-breaking fermionic mass term

𝑆𝑚f = 𝑖𝑁𝑚fTr
[
Ψ̄𝛼 (Γ7Γ

†
8Γ9)𝛼𝛽Ψ𝛽

]
, (12)
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used in the studies of the Euclidean model [6, 7]. The original model is obtained after an 𝑚f → 0
extrapolation.

For some values of 𝛾 the CLM can become unstable, and to stabilize the simulation, we perform
the redefinition

𝐴𝑖 →
𝐴𝑖 + 𝜖 𝐴

†
𝑖

1 + 𝜖
(13)

after each Langevin step. This procedure is similar to the dynamical stabilization used in lattice
QCD simulations [45], and its effect is expected to be small when the 𝐴𝑖 are near Hermitian.

5. Results

All of the results presented in this paper are obtained through simulations in which the criterion
for correct convergence is satisfied. We fix the matrix size to 𝑁 = 64, and use 𝜖 = 0.01 for the
dynamical stabilization (13).

In order to see whether the emergent time is real, we compute the eigenvalues 𝛼𝑎 of 𝐴0. In
Fig. 2 (Left), we plot the eigenvalues 𝛼𝑎 in the complex plane. When 2.6 ≤ 𝛾 ≤ 4.0, the model is in
the real-time phase, where 𝛼𝑎+1 − 𝛼𝑎 is almost real at late times. At smaller 𝛾, the 𝛼𝑎-distribution
becomes wider in the real direction.

We define the matrix

A𝑝𝑞 =
1
9

9∑︁
𝑖=1

��(𝐴𝑖)𝑝𝑞
��2 . (14)

In Fig. 2 (Right), we plot A𝑝𝑞 against 𝑝 and 𝑞. A𝑝𝑞 is large for small |𝑝− 𝑞 |, and drops fast to very
small values with increasing |𝑝 − 𝑞 |, showing that the matrices 𝐴𝑖 have a band diagonal structure.
We define the band width 𝑛 such that A𝑝𝑞 ≈ 0 when |𝑝 − 𝑞 | > 𝑛. In this work, we choose 𝑛 = 12.

The appearance of the band diagonal structure motivates us to define the time and the block
matrices that describe the state of the universe at that time as follows: Time is defined using the
average of 𝑛 diagonal elements

𝑡𝑎 =

𝑎∑︁
𝑖=1

|𝛼̄𝑖 − 𝛼̄𝑖−1 | , 𝑎 = 1, 2, . . . , 𝑁 − 𝑛 , (15)

where 𝛼̄𝑖 is an average of the 𝛼’s in the 𝑖-th block:

𝛼̄𝑖 =
1
𝑛

𝑛∑︁
𝜈=1

𝛼𝑖+𝜈 , 𝑖 = 0, 1, . . . , 𝑁 − 𝑛 . (16)

We define the 𝑛 × 𝑛 block matrices within the spatial matrices as(
𝐴̄𝑖

)
𝑘𝑙
(𝑡𝑎) = (𝐴𝑖) (𝑘+𝑎−1) (𝑙+𝑎−1) , 𝑘, 𝑙 = 1, 2, . . . , 𝑛 . (17)

We interpret these block matrices to represent the state of the universe at 𝑡𝑎. In the following, we
omit the index of 𝑡𝑎 and use 𝑡 for simplicity.

In order to check whether the space is real or complex, we define the phase 𝜃s(𝑡) as

tr
(
𝐴̄𝑖 (𝑡)

)2
= 𝑒2𝑖 𝜃s (𝑡 )

���tr (
𝐴̄𝑖 (𝑡)

)2
��� . (18)
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Figure 2: (Left) The 𝛼-distribution in the complex plane. If the equivalence (5) holds, the 𝛼’s distribute
on the solid line. We plot the results obtained by simulations for three different values of 𝛾, while 𝑁 = 64,
𝑚f = 10 and 𝜖 = 0.01 are kept fixed. 𝛼𝑖 become almost real at 𝛾 ≥ 2.6. (Right) The 3D plot of A𝑝𝑞 at
𝛾 = 4, where the 𝑥 and 𝑦 axes represent 𝑝 and 𝑞, respectively. A𝑝𝑞 is large when |𝑝 − 𝑞 | is small, while
A𝑝𝑞 is small when |𝑝 − 𝑞 | is large.

Figure 3: The 𝜃s (𝑡) is plotted against time at 𝑚f = 10 for 𝛾 = 2.6 and 4. When the equivalence (5) holds,
the data points lie on the horizontal solid line 𝜃s = 𝜋/8. We see that 𝜃s (𝑡) approaches 0 at late times.

We plot 𝜃s(𝑡) against 𝑡 at 𝛾 = 2.6 in Fig. 3. At 𝛾 = 2.6, the 𝛼’s are almost real, and the phase 𝜃𝑠 (𝑡)
approaches 0 at late times. Therefore, at late times, we obtain real space-time.

For the purpose of studying the SSB of the spatial SO(9) symmetry, we define the “moment of
inertia tensor" as

𝑇𝑖 𝑗 (𝑡) = tr
(
𝑋𝑖 (𝑡)𝑋 𝑗 (𝑡)

)
, (19)

where 𝑋𝑖 (𝑡) are the Hermitian matrices

𝑋𝑖 (𝑡) =
𝐴̄𝑖 (𝑡) + 𝐴̄

†
𝑖
(𝑡)

2
. (20)

As 𝜃s(𝑡) is near zero, particularly at late times, the block matrices are near Hermitian. Therefore,
the procedure (20) is justified, even though the CLM only allows the calculation of holomorphic
observables.
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Figure 4: The eigenvalues 𝜆𝑖 (𝑡) of 𝑇𝑖 𝑗 (𝑡) are plotted against time at 𝑚f = 5. The Left and Right panels
show results for 𝛾 = 2.6 and 𝛾 = 4.0, respectively. The dotted lines are obtained by exponential fittings. In
both cases, one out of nine eigenvalues grows exponentially with time. The extent of time becomes larger at
smaller 𝛾.

Figure 5: The eigenvalues 𝜆𝑖 (𝑡) of 𝑇𝑖 𝑗 (𝑡) are plotted against time at 𝛾 = 2.6. The Left and Right panels
show results for 𝑚f = 10 and 𝑚f = 5, respectively. The dotted lines represent fits to the exponential behavior.
The expansion of space gets more pronounced at smaller 𝑚f .

In Fig. 4, we plot the eigenvalues of 𝑇𝑖 𝑗 (𝑡) as a function of time at 𝛾 = 2.6 and 4. As we can
see, the eigenvalues are almost degenerate around 𝑡 = 0.2 At some point in time, one out of nine
eigenvalues starts to grow exponentially. Thus, a 1-dimensional space expands exponentially. The
extent of time is larger at smaller 𝛾.

In order to see the 𝑚f dependence, we compare the results at 𝑚f = 10 and 5 in Fig. 5. The
expansion of space becomes more pronounced as 𝑚f decreases. The reason for this is that the SUSY
effects weaken the attractive force between space-time eigenvalues.

6. Summary and discussions

We have conducted an investigation into the emergence of space-time in the type IIB matrix
model. We primarily focused on the Lorentzian version of the model as the Euclidean version of

2Due to the finite-𝑁 effects, the 9 eigenvalues are not exactly degenerate.
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the model revealed the SSB of the SO(10) to SO(3), and the connection between the emerging 3D
space and our (3+1)D universe was not clear [3–10].

We have used a Lorentz invariant mass term as a regulator, which breaks the equivalence
between the Lorentzian and the Euclidean models. This was motivated by the results in Ref. [27],
where the typical classical solutions with positive mass term (𝛾 > 0) represent an expanding space,
whose dimensionality is not fixed at the classical level.

We employed the CLM to overcome the sign problem, and found that real space-time appears
for 2.6 ≤ 𝛾 ≤ 4. The SO(9) rotational symmetry of space breaks spontaneously, and one spatial
dimension expands exponentially with time. This expansion becomes stronger as the fermionic
mass 𝑚f decreases.

The reason why the 1-dimensional expanding space appears may be explained as follows. If
we ignore the fermionic contribution, the configurations that minimize −Tr[𝐴𝑖 , 𝐴 𝑗]2 are dominant.
Therefore, configurations in which the expanding space has small dimensionality are favored.
Particularly, when only one out of the nine matrices is large and the remaining nine are almost zero,
−Tr[𝐴𝑖 , 𝐴 𝑗]2 acquires the minimum value (−Tr[𝐴𝑖 , 𝐴 𝑗]2 = 0). In Refs. [46, 47], the effect of the
Pfaffian of the Dirac matrix was studied, and it was found that the Pfaffian becomes 0 when only 2
out of 10 matrices are nonzero. Then, the appearance of less than 2-dimensional expanding space
must be highly suppressed. Therefore, we conclude that 𝑚f = 5 is not small enough to make this
effect dominant, and we expect that the emergence of the expanding 3-dimensional space will occur
by further decreasing 𝑚f .
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