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The IIB matrix model has been proposed as a non-perturbative definition of su-
perstring theory since 1996. We study a simplified model that describes the late
time behavior of the IIB matrix model non-perturbatively using Monte Carlo
methods, and we use the complex Langevin method to overcome the sign prob-
lem. We investigate a scenario where the space–time signature changes dynam-
ically from Euclidean at early times to Lorentzia at late times.We discuss the
possibility of the emergence of the (3+1)D expanding universe.

Keywords: Type IIB matrix model; Emergent space–time; Complex Langevin
simulation

http://arxiv.org/abs/2201.13200v1


February 1, 2022 2:7 WSPC Proceedings - 9in x 6in EAJS page 2

2

1. Introduction

Superstring theory is the most promising candidate for a unified theory of all

interactions, including quantum gravity. The theory is consistently defined

in ten-dimensional space-time, leading to the compacting of the extra dimen-

sions into small compact internal spaces. These scenarios have been investi-

gated perturbatively on D-brane backgrounds and result in a vast number of

vacua, leading to the so-called string landscape. It is, therefore, interesting

to see what happens when one includes non-perturbative effects and whether

these play an essential role in determining the true vacuum of the theory.

The type IIB matrix model [1] has been proposed as a non-perturbative def-

inition of superstring theory and provides a promising context to study such

problems.

The type IIB matrix model is formally obtained by the dimensional reduc-

tion of ten-dimensional N = 1 Super Yang–Mills (SYM) to zero dimensions.

The theory has maximal N = 2 supersymmetry (SUSY), where translations

are realized by the shifts Aµ → Aµ + αµ1, µ = 0, . . . , 9. The eigenvalues

of the bosonic matrices Aµ can therefore be interpreted as coordinates of

space–time. Thus, in this model, space–time appears dynamically from the

degrees of freedom of matrices. In the Euclidean version of the model, the

Spontaneous Symmetry Breaking (SSB) of the SO(10) rotational symmetry

down to SO(3) occurs, which implies the emergence of a three-dimensional

space [2–8].

By Monte Carlo simulation [9], it was found that a continuous time

emerges dynamically, and a three-dimensional space expands. In Refs. [10,

11], it turned out that the expanding behavior of the space obeys the ex-

ponential law at early times and the power-law at late times. In Ref. [12],

however, it was shown that SSB comes from singular configurations associ-

ated with the Pauli matrices, in which only two eigenvalues are large. This

problem has been attributed to an approximation used to avoid the sign

problem, which turned out later to be unjustifiable.

In Refs. [13–15], the Complex Langevin Method (CLM) [16, 17] was used

to overcome the sign problem without the above mentioned approximation.

When one applies this method, one should apply the criterion for correct

convergence of the CLM [18–24]. In Ref. [15], we found a new phase in which

the structure of space is continuous by applying the CLM to the Lorentzian

type IIB matrix model. See also Refs. [25–27] for other related works.

In this work, we study the bosonic version of the type IIB matrix model

by using the CLM. We show the equivalence between the Lorentzian and

Euclidean models, which implies that the space–time in the Lorentzian model

is Euclidean. To realize the possibility of the dynamical change of signature
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from Euclidean to Lorentzian, we introduce a Lorentz-invariant mass term

in the action that breaks the equivalence. We find some evidence that the

signature of space–time changes from Euclidean at early times to Lorentzian

at later times.

2. The type IIB matrix model

2.1. Definition

The action of the type IIB matrix model is given as follows: S = Sb + Sf ,

Sb = −
1

4g2
Tr ([Aµ, Aν ][Aµ, Aν ]) , Sf = −

1

2g2
Tr

(

Ψ̄(CΓµ)[Aµ,Ψ]
)

, (1)

where Aµ (µ = 0, . . . , 9) and Ψ are N ×N Hermitian matrices, and Γµ and

C are 10-dimensional gamma matrices and the charge conjugation matrix,

respectively, which are obtained after the Weyl projection. The Aµ and Ψ

transform as vectors and Majorana-Weyl spinors under SO(9,1) transforma-

tions. In this study, we omit Sf to reduce the computational cost.

The partition function is given by Z =
∫

dAeiSb . Due to the phase factor

eiSb , the model is not well-defined as it is, and in this work, we define it by

deforming the integration contour. When we rewrite the partition function

as Z =
∫

dAe−S̃ , the action of the Lorentzian model is given as

S̃ = −
i

4
N
[

−2Tr(F0i)
2 +Tr(Fij)

2
]

, (2)

where g2 = 1/N and Fµν = i[Aµ, Aν ]. According to Cauchy’s theorem, one

can rotate the Lorentzian matrices Aµ to the Euclidean ones Ãµ since the

integration contour of Aµ can be deformed keeping the real part of S̃ positive.

The relationship between Aµ and Ãµ is

A0 = e−i 3π
8 Ã0 , Ai = ei

π

8 Ãi . (3)

Then, the Euclidean action is given by

S̃ =
1

4
N
[

2Tr(F̃0i)
2 +Tr(F̃ij)

2
]

, (4)

which is positive-definite. Here we have defined F̃µν = i[Ãµ, Ãν ].

2.2. Equivalence between the Euclidean and Lorentzian

models

By using Eq. (3), one can derive the relationship between the expectation

values of TrA2
0 and TrA2

i in the two models:
〈

1

N
TrA2

0

〉

L

= e−i 3π
4

〈

1

N
TrÃ2

0

〉

E

,

〈

1

N
TrA2

i

〉

L

= ei
π

4

〈

1

N
TrÃ2

i

〉

E

,

(5)
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Fig. 1. We plot the expectation values of 1
N

TrA2
0 (Left) and 1

N
TrA2

i
(Right). Those

of the Euclidean and Lorentzian models are represented by the triangles and the squares,
respectively. The angles between the Lorentzian and Euclidean models of 〈 1

N
TrÃ2

0〉 and

〈 1
N
TrÃ2

i
〉 are −3π/4 and π/4, which agree with Eq. (5).

where 〈 · 〉L and 〈 · 〉E denote the expectation values in the Lorentzian and

Euclidean models, respectively. In Fig. 1 (Left), 〈 1
N
TrA2

0〉 is shown, and

the angle between 〈 1
N
TrÃ2

0〉E and 〈 1
N
TrA2

0〉L is −3π/4. In Fig. 1 (Right),

〈 1
N
TrA2

i 〉 is shown, and the angle between 〈 1
N
TrÃ2

i 〉E and 〈 1
N
TrA2

i 〉L is π/4.

These angles are in agreement with Eq. (5).

These results are consistent with the fact that the Lorentzian and the

Euclidean models are equivalent. Expectation values in the Lorentzian model

can be obtained by simply rotating the phase of those in the Euclidean model.

In particular, 〈 1
N
TrA2

0〉L and 〈 1
N
TrA2

i 〉L are complex and the emergent space–

time should be interpreted as Euclidean.

2.3. Lorentz-invariant mass term

To realize real time and space, we introduce a Lorentz-invariant mass term

in the action. For the Lorentzian model, the action is

S̃ = −
i

4
N
[

−2Tr(F0i)
2
+Tr(Fij)

2
]

−
i

2
Nγ

[

Tr(A0)
2 − Tr(Ai)

2
]

(6)

with γ > 0. Using Eq. (3), we find that the action for the corresponding

Euclidean model becomes

S̃ =
1

4
N
[

2Tr(F̃0i)
2 +Tr(F̃ij)

2
]

+
1

2
Nγ ei

3π

4

[

Tr(Ã0)
2 +Tr(Ãi)

2
]

, (7)

where the real part of the mass term is negative. If γ < 0, the real part

of the mass term in the Euclidean model becomes positive, and then the

matrices can be rotated from the Lorentzian to the Euclidean, which implies

the equivalence between the two models.
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The same mass term was used to study classical solutions of the Lorentzian

type IIB matrix model [28]:

[Aν , [Aν , Aµ]]− γAµ = 0 . (8)

For γ > 0, one can obtain classical solutions with smooth space and expand-

ing behavior. Classical solutions with Hermitian Aµ make the time and space

real. For γ = 0, the classical solutions are given by simultaneously diagonal-

izable Aµ, which do not necessarily have an expanding behavior. For γ < 0,

there do not exist classical solutions with expanding behavior.

2.4. The time evolution

As mentioned in Sec. 1, time does not exist a priori, and we define it as

follows. We choose a basis in which A0 is diagonal and its eigenvalues are

in the ascending order: A0 = diag(α1, α2, . . . , αN ) , α1 ≤ α2 ≤ · · · ≤ αN .

Then, we define ᾱk as ᾱk = 1
n

∑n

i=1 αk+i, and the time tρ as

tρ =

ρ
∑

k=1

|ᾱk+1 − ᾱk| . (9)

Here, we introduce the n×nmatrices Āi(t) as
(

Āi

)

ab
(t) = (Ai)k+a,k+b, which

represent the space at the time t.

3. Complex Langevin method

The complex Langevin method (CLM) [16, 17] can be applied successfully to

many systems with a complex action problem. One writes down stochastic

differential equations for the complexified degrees of freedom, which can be

used to compute expectation values under certain conditions. Consider a

model given by the partition function Z =
∫

dxw(x), where x ∈ R
n and

w(x) is a complex-valued function. In the CLM, we complexify the variables

x ∈ Rn −→ z ∈ Cn, and solve the complex Langevin equation with the

Langevin time σ:

dzk
dσ

=
1

w(z)

∂w(z)

∂zk
+ ηk(σ) . (10)

The first term of the right-hand side of Eq. (10) is the drift term, and the

second one is the real Gaussian noise with the probability distribution

P(ηk(σ)) ∝ e−
1

4

∫
dσ

∑
k
[ηk(σ)]

2

. (11)

To confirm that the CLM gives correct solutions, we use the criterion that the

probability distribution of the drift term should be exponentially suppressed

for large values [23].



February 1, 2022 2:7 WSPC Proceedings - 9in x 6in EAJS page 6

6

3.1. Application of the CLM to the type IIB matrix model

To apply the CLM to the type IIB matrix model, we make a change of

variables [13]: α1 = 0 , αi =
∑i−1

k=1 e
τk for 2 ≤ i ≤ N , where we introduce

new real variables τk. In this way, the ordering of αi is automatically realized.

Initially, αi are real, and Ai are Hermitian matrices. To apply the CLM, we

complexify τk and take Ai to be SL(N,C) matrices. The complex Langevin

equations are given by

dτk
dσ

= −
∂Seff

∂τk
+ ηk(σ) ,

d(Ai)kl
dσ

= −
∂Seff

∂(Ai)lk
+ (ηi)kl(σ) , (12)

where Seff is obtained from S̃ in Eq. (6) by adding a term associated with the

gauge fixing and the Jacobian term associated with the change of variables.

4. Results

In the following, we introduce a parameter ε in the mass term:

S̃ = −
i

4
N
[

−2Tr(F0i)
2 +Tr(Fij)

2
]

−
i

2
Nγ

[

eiε Tr(A0)
2 − e−iε Tr(Ai)

2
]

(13)

to shift coefficients of Tr(A0)
2
and Tr(Ai)

2
slightly from pure imaginary, and

set ε = π/10.

4.1. Expectation value of the time coordinate

Fig. 2. Expectation values of the eigenvalues αi of A0 for N = 32, γ = 3 are plotted. The
solid line corresponds to the Euclidean model, where the complex phase of the expectation
values 〈αi〉L is exp(−i3π/8). From this plot, θt tends to become 0 at late times (at both
ends of the distribution).

When γ = 0, Eq. (3) holds, and we expect that 〈αi〉L = e−i 3π
8 〈α̃i〉E. This

is true because of the equivalence between the Euclidean and Lorentzian
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models, and time is regarded as the Euclidean one. We measure the time

differences (∆αi)L = (αi+1)L − (αi)L ∝ eiθt . The emergent time is real if

θt = 0.

In Fig. 2, we plot the expectation values of the time coordinates 〈αi〉L
on the complex plane for N = 32, γ = 3. The solid line corresponds to the

Euclidean model, where the complex phase of 〈αi〉L is exp(−i3π/8). From

the plot, θt tends to become 0 at late times (at both ends of the distribution).

4.2. Time evolution of space

Fig. 3. (Left) θs(t) is plotted against t for γ = 3. All values of θs(t) are about 0.2 and
below the θs(t) = π/8 line, which corresponds to the Euclidean space. (Right) |R2(t)| is
plotted against t for γ = 3. We can see that the space is expanding slightly with the time
t.

The time evolution of the extent of space is given by R2(t) =
〈

1
n
tr
(

Āi(t)
)2
〉

= e2iθs(t)
∣

∣R2(t)
∣

∣. Since the matrices Āi are complex, R2(t)

is also complex. The time t is defined in Eq. (9). From Eq. (5), we obtain

the Euclidean space when θs(t) ∼ π/8, and the real space in the Lorentzian

model when θs(t) ∼ 0. Therefore, the signature of space–time can change

dynamically in this model.

In Fig. 3 (Left) and (Right), θs(t) and |R2(t)| are plotted against t for

N = 32, γ = 3, respectively. All values of θs(t) are about 0.2 and below the

θs(t) = π/8 line, which corresponds to the Euclidean space. We can see that

the space is expanding slightly with the time t from the plot of |R2(t)|.

5. Conclusions

In this work, the CLM was applied to the bosonic type IIB matrix model in

order to overcome the sign problem. We showed that the Lorentzian and Eu-

clidean models are equivalent and that expectation values in the two models

are related to each other by some complex phase rotation. The expectation

values (5) in the Lorentzian model are complex, and space–time is Euclidean.
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We introduced the model with a Lorentz-invariant mass term, which is a

promising way to realize real time and expanding space. Then, the Euclidean

and Lorentzian models are not equivalent anymore for γ > 0. We found that

the time, which is extracted from the expectation values of the eigenvalues

of A0 in the Lorentzian model, may be real at late times although they are

complex near the origin. We also studied the evolution of the extent of space

with time. We have seen some tendency that the space becomes closer to

real than the original model.

To obtain a three-dimensional expanding space, we expect that super-

symmetry will play an essential role. We are currently investigating its effect,

which we will report in the near future.
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