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The type IIB matrix model, also known as the IKKT matrix model, is a promising candidate for
a nonperturbative formulation of superstring theory. In this talk we study the Euclidean version of
the IKKT matrix model, which has a “sign problem” due to the Pfaffian coming from integrating
out the fermionic degrees of freedom. To study the spontaneous breaking of the SO(10) rotational
symmetry, we apply the Complex Langevin Method (CLM) to the Euclidean IKKT matrix model.
We conclude that the SO(10) symmetry is broken to SO(3), in agreement with the previous studies
by the Gaussian Expansion Method (GEM). We also apply the GEM to the deformed model and find
consistency with the CLM result. These are proceedings of Takehiro Azuma’s talk at Asia-Pacific
Symposium for Lattice Field Theory (APLAT 2020) on August 4-7, 2020, based on the paper [1].

I. INTRODUCTION

Large-N reduced models have been proposed as the
non-perturbative definition of superstring theory. In par-
ticular, the type IIB matrix model, also known as the
IKKT matrix model [2], is regarded as one of the most
promising approaches. The theory is formally defined by
the dimensional reduction of the ten-dimensional N = 1
super-Yang-Mills theory to zero dimensions. We inter-
pret the eigenvalues of the bosonic matrices as the space-
time coordinate, and the spacetime is dynamically gener-
ated from the matrices’ degrees of freedom. Superstring
theory is well-defined in the ten-dimensional spacetime,
and it is an important question how our four-dimensional
spacetime emerges dynamically.
The Euclidean version of the IKKTmatrix model is ob-

tained after a Wick rotation of the temporal direction. It
has a manifest SO(10) rotational symmetry, whose spon-
taneous breaking implies the dynamical generation of the
lower-dimensional spacetime. In the Euclidean version,
it has been known that the spontaneous symmetry break-
ing (SSB) of SO(10) is not realized in the phase-quenched
model, and that the complex phase of the Pfaffian that
comes from integrating out the fermionic degrees of free-
dom plays an important role in the SSB of SO(10) [3–8].
On the other hand, it is difficult to numerically study the
systems with complex phase, due to the so-called “com-
plex action problem”, or “sign system”. If we are to

∗ konstant@mail.ntua.gr
† azuma@mpg.setsunan.ac.jp
‡ y-itou@tokuyama.ac.jp
§ jnishi@post.kek.jp
¶ tokubo@meijo-u.ac.jp

∗∗ sp10018@central.ntua.gr

study the SSB of SO(10), we need to overcome the “sign
problem”.
Various approaches to the “sign problem” have been

so far proposed. One of the promising approaches to
the “sign problem” is the “Complex Langevin Method”
(CLM) [9, 10], which attempts to define a stochastic pro-
cess for the complexified variables. Recently, the CLM
has gained enormous attention because the condition for
the equivalence to the original path integral has been
clarified [11–17]. The CLM has been previously applied
to the toy models to capture the rotational symmetry
breaking in the Euclidean IKKT matrix model [18, 19].
In [19], five of the authors (K.N.A., T.A., Y.I., J.N.
and S.K.P.) have investigated the six-dimensional ver-
sion of the Euclidean IKKT matrix model. Similarly to
the IKKT matrix model, the six-dimensional version also
has a “sign problem” from the determinant which is ob-
tained by integrating out the fermion. Using the CLM,
it has been shown that the SO(6) rotational symmetry
is broken to SO(3), as suggested by Gaussian Expansion
Method (GEM) [20, 21].
In this talk, we apply the CLM to the Euclidean IKKT

matrix model, extending the study of the six-dimensional
version [19]. This is numerically much more involved
than the six-dimensional version, since the size of the
gamma matrices after Weyl projection increases from 4
to 16. Also, the finite-N effects become severer, which
requires simulations at large N to make sensible large-
N extrapolations. This makes the extrapolation with
respect to the deformation parameters, which were used
for the CLM of the toy models [18, 19], more difficult.
This leads us to study the model with a mass deformation
of the fermion using the GEM, which is compared with
the CLM result.
These proceedings are organized as follows. In Sec. II,

we introduce the Euclidean version of the IKKT matrix
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model, which we focus on. In Sec. III, we apply the CLM
to the IKKT matrix model. In Sec. IV, we present the
result of the GEM applied to the deformed model, which
is well compared with the CLM result. Sec. V is devoted
to a summary and discussions.

II. EUCLIDEAN VERSION OF THE IKKT

MATRIX MODEL

The action S of the IKKT matrix model [2] is given by

S = Sb + Sf, where (1)

Sb = −N
4
tr[Aµ, Aν ][A

µ, Aν ], (2)

Sf = −N
2
tr
(

ψ̄α(Γ
µ)αβ [Aµ, ψβ ]

)

. (3)

The bosons Aµ (µ = 1, 2, · · · , 10) are N × N traceless
Hermitian matrices, and the Majorana-Weyl spinors ψα

(α = 1, 2, · · · , 16) are N × N traceless matrices with
Grassmann entries. Γµ are the 16 × 16 gamma matri-
ces after Weyl projection. ψ̄ = ψC, with C being the
16× 16 charge conjugation matrix. In the Euclidean ver-
sion, the indices are contracted by δµν = (1, 1, 1, · · · , 1),
and the partition function is

Z =

∫

dAdψe−S =

∫

dAe−SbPf M =

∫

dAe−Seff . (4)

The effective action Seff is defined as

Seff = Sb − log Pf M. (5)

M is a 16(N2 − 1)× 16(N2 − 1) anti-symmetric matrix,
which represents a linear transformation

ψα → (Mψ)α = (CΓµ)αβ [Aµ, ψβ ], (6)

acting on the linear space of traceless complex N×N ma-
trices ψα. In the Euclidean version, the partition function
is finite without any cutoff [22, 23]. However, the Pfaf-
fian Pf M is complex in general and we face a severe sign
problem. We define its phase Γ as Pf M = |Pf M|eiΓ.
It has been shown that in the phase-quenched model,
in which Pf M is replaced with |Pf M|, the SSB of the
SO(10) rotational symmetry does not occur [4, 6–8].
The SSB of the SO(10) symmetry has been studied via

the GEM, and it has turned out that SO(10) is sponta-
neously broken to SO(3) [20, 21]. We consider the 10×10
“moment of inertia tensor”

Tµν =
1

N
tr(AµAν). (7)

We define its 10 eigenvalues as λµ with the ordering
λ1 > λ2 > · · · > λ10. In the SO(d) vacuum, the V.E.V.’s
〈λ1〉, · · · , 〈λd〉 grow and the V.E.V.’s 〈λd+1〉, · · · , 〈λ10〉
shrink in the large-N limit. The results of the studies of
the SO(d) symmetric vacua for 2 ≤ d ≤ 7 are summa-
rized as follows:
1. The extent of the shrunken directions r =

limN→∞

√
λn (n = d + 1, · · · , 10) is r2 ≃ 0.155, which

does not depend on d (universal compactification scale).
2. The ten-dimensional volume of the Euclidean space-
time does not depend on d, except for d = 2 (constant
volume property). For the extent of the extended direc-
tions R = limN→∞

√
λn (n = 1, 2, · · · , d), the volume is

V = Rdr10−d = l10, with l2 ≃ 0.383.
3. The free energy takes the minimum value at d =
3, which suggests the dynamical emergence of three-
dimensional spacetime.
The Euclidean version has been studied by Monte Carlo
simulation using the factorization method [7, 8]. These
works provided strong numerical evidence for the real-
ization of SSB of the SO(10) rotational symmetry, but
they were not able to determine the precise SSB pattern
accurately enough.

III. COMPLEX LANGEVIN STUDIES OF THE

IKKT MATRIX MODEL

In this section, we apply the CLM to the effective ac-
tion of the IKKT matrix model Seff defined by (5). In
the CLM, we extend the degrees of freedom of Aµ from
the Hermitian traceless matrices to the general complex
traceless matrices. The CLM consists of solving the fol-
lowing Langevin equation

dAµ(t)ij
dt

= − ∂Seff

∂Aµ(t)ji
+ ηµ(t)ij , where (8)

∂Seff

∂Aµ(t)ji
=

∂Sb

∂Aµ(t)ji
− 1

2
Tr

(

∂M
∂Aµ(t)ji

M−1

)

. (9)

Tr is the trace with respect to the 16(N2−1)×16(N2−1)
matrix. We call (9) the “drift term”. t is a fictitious time,
which should not be confused with the real time. ηµ(t)ij
is the Hermitian white noise that follows the probability
distribution ∝ exp

(

− 1
4

∫

trη2(t)dt
)

. This is independent
for different times t, t′. The white noise is rendered trace-
less as η(t)ii → η(t)ii − 1

N
trη(t). The expectation value

of an observable is evaluated as

〈O[Aµ]〉 =
1

T

∫ t0+T

t0

O[Aµ(t)]dt. (10)

t0 is the thermalization time, and T is sufficiently large to
obtain good statistics. The holomorphy of the observable
O is important for the proof of the validity of (10) [11,
12, 17]. The Langevin equation (8) is put on a computer
by the discretization

(Aµ)(t+∆t)ij = (Aµ)(t)ij − (∆t)
∂Seff

∂Aµ(t)ji
+

√

(∆t)ηµ(t)ij .

(11)

The term
√

(∆t) stems from the normalization of
ηµ(t), so that it follows the probability distribution ∝
exp

(

− 1
4

∑

t trη
2(t)

)

.
We cannot extract a reliable result equivalent to the

path integral from the CLM when we encounter the fol-
lowing two problems: One is the “excursion problem”,
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which occurs when Aµ is too far from Hermitian. The
other is the “singular drift problem”, which occurs when
the drift term (9) becomes large due to the accumulation
of some of the eigenvalues of M close to zero. In order
to justify the CLM, the probability distribution of the
“drift norm”

u =

√

√

√

√

1

10N3

10
∑

µ=1

N
∑

i,j=1

∣

∣

∣

∣

∂Seff

∂(Aµ)ji

∣

∣

∣

∣

2

, (12)

which is measured during the complex Langevin simula-
tion, should fall off exponentially or faster. If we look at
the “drift term”, we get the drift of the CLM [17].
In order to avoid the “excursion problem”, we use

the technique named “gauge cooling” [13, 16], to keep
Aµ closer to Hermitian matrices. This consists of
minimizing the “Hermiticity norm” defined by NH =
− 1

10N

∑10

µ=1 tr{(Aµ − A†
µ)

2} at each step in solving the

discretized Langevin equation (11).
In applying the CLM to the IKKT matrix model, we

add the following two mass terms to the action S as de-
fined in (1) [18, 19]:

∆Sb =
N

2
ε

10
∑

µ=1

mµtr(Aµ)
2, (13)

∆Sf = −imf

N

2
tr(ψα(CΓ8Γ

†
9Γ10)αβψβ). (14)

In order to probe the SSB, we break the SO(10) sym-
metry explicitly by adding the bosonic mass term (13).
Here, mµ satisfies 0 < m1 ≤ · · · ≤ m10. We consider the
following order parameter for the SSB of SO(10):

λµ =
1

N
tr(Aµ)

2, (µ = 1, 2, · · · , 10). (15)

Here, there is no summation of µ. We consider (15) in-
stead of the eigenvalues of Tµν defined by (7), to avoid
the subtleties in the holomorphy of the observables. We
take the ε→ 0 limit after taking the large-N limit.
The mass term (14) is added to avoid the singular drift

problem coming from the near-zero eigenvalues of M, by
shifting the eigenvalue distribution of M on the com-
plex plane away from the origin. The mass term (14)
breaks the SO(10) symmetry to SO(7) × SO(3). We
study whether SO(7) is broken to smaller subgroups as
we vary mf, and discuss what happens in the mf → 0
limit. The mf → +∞ limit is the bosonic model, since
the fermionic degrees of freedom decouple. It is known
that there is no SSB of SO(10) in the bosonic model [3].
In our simulations, we choose the range of the parameters
(mf, ε) for each N , so that the probability distribution of
the “drift norm” (12) falls off exponentially or faster.
We apply the CLM to the action, with the original

model (1) deformed by (13) and (14):

S′ = S +∆Sb +∆Sf. (16)

The effective action (5) is modified accordingly. To make
the ε→ 0 limit sensible, we need to choose mµ carefully.

Here, we take mµ as

mµ = (0.5, 0.5, 0.5, 1, 2, 4, 8, 8, 8, 8) (mf = 3.0), (17)

mµ = (0.5, 0.5, 1, 2, 4, 8, 8, 8, 8, 8) (mf ≤ 1.4), (18)

so that we can distinguish the SO(d) vacua with d =
3, 4, 5, 6, 7 at mf = 3.0, and d = 2, 3, 4, 7 at mf ≤ 1.4,
respectively. First, we compute the ratio for finite N :

ρµ(mf, ε,N) =
〈λµ〉mf,ε,N

∑10

ν=1〈λν〉mf,ε,N

, (19)

where 〈λµ〉mf,ε,N is the V.E.V. of the observable (15) with
respect to the deformed action (16) at finite N . Then,
we make a large-N extrapolation

ρµ(mf, ε) = lim
N→+∞

ρµ(mf, ε,N). (20)

An example of this procedure is shown in FIG. 1. The
Euclidean IKKT matrix model suffers so severe finite-N
effects that it requires a quadratic fit with respect to 1

N
.

After taking the large-N limit, we plot ρµ(mf, ε)
against ε in FIG. 1. Some of the small-ε points are ex-
cluded from the fitting, due to the difficulty in overcom-
ing the finite-N effects. As we read off the ε → 0 limit
from the fitting, we see that at mf = 3.0 the SO(7) sym-
metry is unbroken. As we gradually lowermf, we observe
the SSB of SO(7) to SO(4) at mf = 1.4, and to SO(3)
at mf = 0.7, 0.9, 1.0, respectively. This is consistent with
the GEM result for the undeformed model (1), in which
the SO(3) vacuum has the smallest free energy [21].

IV. COMPARISON WITH THE GEM RESULT

In this section, we present the result of the GEM for
the action S′′ = S + ∆Sf, with the original model (1)
deformed only by (14). The basic idea of the GEM is to
rewrite the action S′′ as

S′′ = S0 + (S′′ − S0), where (21)

S0 =
N

2

10
∑

µ=1

Mµtr(Aµ)
2 +

N

2

16
∑

α,β=1

Aαβtr(ψαψβ), (22)

Aαβ = −imf(CΓ8Γ
†
9Γ10)αβ +

10
∑

µ,ν,ρ=1

i

3!
mµνρ(CΓµΓ

†
νΓρ)αβ .

S0 and (S′′ − S0) are regarded as the “classical ac-
tion” and the “one-loop counter term”, respectively. We
choose the ordering of the parameter Mµ as 0 < M1 ≤
· · · ≤ M10. The other parameter mµνρ is a totally anti-
symmetric 3-form. We focus on the two cases, in which
we impose SO(d) × Z3 with d = 6 and d = 7, where Z3

represents the group of cyclic permutation of the 8th, 9th
and 10th directions. In the following, we call this “the
SO(d) ansatz”.
In FIG. 2 (Left) we plot the free energy calculated up

to the three loops for the solutions found with the SO(7)
and SO(6) ansatze against mf. As we decrease mf, we
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FIG. 1. (Top Left) The large-N extrapolation of ρµ(mf, ε,N) for mf = 1.0, ε = 0.2, with mµ given by (18). The ρµ(mf, ε,N)
are averaged for µ = 1, 2, µ = 6, 7 and µ = 8, 9, 10 in order to increase statistics. We make a quadratic fit with respect to 1

N
.

(The Rest) ρµ(mf, ε) after taking the large-N limit are plotted against ε for mf = 3.0 (Top Right), mf = 1.4 (Middle Left),
mf = 1.0 (Middle Right), mf = 0.9 (Bottom Left) and mf = 0.7 (Bottom Right). Quartic and Quadratic fits are performed
at mf = 3.0 and mf ≤ 1.4, respectively. The curves from top to bottom are 1

3
(ρ1 + ρ2 + ρ3), ρ4, ρ5, ρ6, ρ7,

1

3
(ρ8 + ρ9 + ρ10) for

mf = 3.0, and 1

2
(ρ1 + ρ2), ρ3, ρ4, ρ5,

1

2
(ρ6 + ρ7),

1

3
(ρ8 + ρ9 + ρ10) for mf ≤ 1.4, respectively.

see a clear tendency that the SO(6) symmetric vacuum
is favored. And the free energy for SO(7) and SO(6) is
degenerate for large mf. Also in FIG. 2 (Right) we plot
the extent of space λµ against mf for the SO(7) ansatz.
At mf = 3.0, we have λ1 = · · ·λ7 = 0.333, λ8 = λ9 =
λ10 = 0.184, which amounts to

(GEM): ρ1 = · · · = ρ7 = 0.116, ρ8 = ρ9 = ρ10 = 0.064,

where ρµ =
λµ∑

10

ν=1
λν

. This is in impressive agreement

with the CLM result

(CLM): ρ1 = · · · = ρ7 = 0.115,
ρ8 + ρ9 + ρ10

3
= 0.065,

which is read off from FIG. 1 (Top-Right).

V. CONCLUSION AND OUTLOOK

In this talk, we have studied the Euclidean version
of the IKKT matrix model via the CLM, to elucidate

how the spacetime is dynamically generated in super-
string theory. Similarly to the previous work on the six-
dimensional version [19], we have used the deformation
technique to overcome the singular-drift problem. We
have found that as we decreasemf, the lower-dimensional
spacetime is chosen. At mf ≤ 1.0, the SO(10) symme-
try is spontaneously broken to SO(3). Although it is
difficult to make a quantitatively sensible mf → 0 ex-
trapolation of the ratio ρµ, we conclude that the SO(3)
vacuum is chosen in the undeformed model (mf = 0).
Also, we have studied the mass deformed model using
the GEM, and compared the free energy for the SO(7)
and SO(6) ansatze. Here again, as we decrease mf, the
ansatze for lower-dimensional spacetime are energetically
favored. At mf = 3.0, where the SO(7) vacuum is real-
ized, we have seen a quantitative agreement between the
CLM and GEM results of the spacetime extent.

The CLM can be applied to many interesting systems
with the sign problem. In [24], an attempt has been made
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to apply the CLM to the Lorentzian version of the IKKT
matrix model, where the complex phase comes from eiSb .
It was found that for a certain deformed bosonic model
the emergent three-dimensional expanding space has a
clear departure from the fuzzy-sphere-like Pauli-matrix
structure. We hope to pursue this direction and eluci-
date the structure of the expanding space as suggested
by superstring theory. Also, to study the nature of the
expansion of the universe, we need to simulate the model
at larger N . The impact on the fermionic degrees of

freedom should be studied. We hope to report on more
analysis in future publications [25].
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