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Abstract: The IKKT matrix model is a promising candidate for a nonperturbative for-

mulation of superstring theory. In this model, spacetime is conjectured to emerge dynam-

ically from the microscopic matrix degrees of freedom in the large-N limit. Indeed in the

Lorentzian version, Monte Carlo studies suggested the emergence of (3+1)-dimensional

expanding spacetime. Here we study the Euclidean version instead, and investigate an al-

ternative scenario for dynamical compactification of extra dimensions via the spontaneous

symmetry breaking (SSB) of 10D rotational symmetry. We perform numerical simulations

based on the complex Langevin method (CLM) in order to avoid a severe sign problem.

Furthermore, in order to avoid the singular-drift problem in the CLM, we deform the

model and determine the SSB pattern as we vary the deformation parameter. From these

results, we conclude that the original model has an SO(3) symmetric vacuum, which is

consistent with previous results obtained by the Gaussian expansion method (GEM). We

also apply the GEM to the deformed matrix model and find consistency with the results

obtained by the CLM.
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1 Introduction

Superstring theory has been studied intensively as a unified theory that includes quantum

gravity. The theory is defined in ten spacetime dimensions and the connection to the real

world, where only four dimensions are macroscopic, is realized via compactification of the

extra dimensions. How this can actually occur has been investigated perturbatively by

using D-brane configurations as a background, leading to tremendously many vacua giving

rise to the so-called string landscape. Clearly, it is important to see if this picture remains

valid when the issue is addressed in a fully nonperturbative manner.

The IKKT matrix model [1], also known as the type IIB matrix model, was proposed as

a nonperturbative formulation of superstring theory. Formally, the action of the model can

be obtained by dimensionally reducing the action of 10D N = 1 SU(N) super Yang-Mills

(SYM) theory to 0D. In this model, spacetime emerges dynamically from the eigenvalues of

the ten bosonic matrices in the large-N limit [2], which enables the scenario for dynamical

compactification as a purely nonperturbative effect.

Evidence supporting such a scenario has been provided by simulating the Lorentzian

version of the IKKT matrix model [3–11]. In these simulations, continuous time emerges

dynamically and three-dimensional space undergoes expansion after a critical time, with
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the six extra dimensions remaining small. This is highly nontrivial since time is given by the

ordered eigenvalues of the temporal matrix A0, and in the SU(N) basis used to diagonalize

A0, the dominant configurations of the spatial matrices Ai have a band diagonal structure,

from which one can read off the time evolution of space. By taking the large-N limit, the

eigenvalue distribution of A0 extends in physical units and a sensible continuum limit can

be defined, a fact that emerges also from the dynamics of the model. The results in ref. [5]

suggest that the expansion is exponential at early times, which turns into a power law

at later times [6], providing evidence that a realistic cosmological scenario may also arise

dynamically from this model.

Monte Carlo simulations of the Lorentzian model are hindered by a severe sign problem

coming from the phase factor eiSb , where Sb is the bosonic part of the action. In the

early work [3–10], this problem was avoided by first integrating out the scale factor of the

bosonic matrices, yielding a function of Sb which is sharply peaked near the origin. Then,

by approximating this function by a sharply peaked Gaussian function, the sign problem

was avoided. This, however, leads to singular spatial configurations, showing that it is

highly nontrivial to obtain 3D expanding space with a smooth structure [10]. Recent work,

which avoids this approximation but confronts the sign problem, provided evidence that

the 3D expanding space can have a smooth structure in the large-N limit [11]. This work

also shows that the complex Langevin method (CLM) [12, 13] can be used successfully in

circumventing the sign problem in this model.

The Euclidean version of the IKKT matrix model and related models, on the other

hand, have been studied numerically [14–21] since long time before numerical studies of the

Lorentzian version were started. This is because it can be thought of as being the direct

analog of lattice QCD for superstring theory, and moreover it was shown [22, 23] to have a

finite partition function without introducing infrared cutoffs unlike the Lorentzian version.

However, the simulations are hindered by a severe sign problem here as well because the

Pfaffian obtained after integrating out the fermionic matrices is complex in general.

In the Euclidean model, the scenario for dynamical compactification of extra dimen-

sions is expected to be realized via spontaneous symmetry breaking (SSB) of the SO(10)

rotational symmetry due to the wild fluctuations of the phase of the Pfaffian for SO(d)

symmetric configurations with larger d [24, 25]. A strong evidence for the SSB has been

provided by studying the model using the Gaussian expansion method (GEM). This method

was applied to the Euclidean IKKT model and related matrix models [26–30] realizing SSB

to lower dimensional spaces. In particular, it was shown [30] in the IKKT matrix model

that the SO(3) symmetric vacuum has the lowest free energy, which implies SSB to SO(3).

The ratio between the three extended directions and the seven shrunken directions was

also calculated and it was found to be finite. This SSB can be naturally attributed to

the effect of the phase of the Pfaffian since the phase-quenched simulations of the model

showed no SSB [16]. A direct confirmation of this scenario by numerical simulation, how-

ever, requires some new ideas to overcome the sign problem. In a series of work [18–20],

the Euclidean version of the IKKT matrix model was studied by using a density of states

based method [18, 31–34], which was successful in that it made it possible to obtain the

extent of space in each direction for a given pattern of SSB although it was not powerful

enough to determine the SSB pattern itself.
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In fact, the sign problem occurs in Monte Carlo simulation of various interesting sys-

tems such as finite density QCD, supersymmetric theories, strongly correlated electron

systems and real-time quantum field theories. If one uses the reweighting method to sim-

ulate the system, the computational cost increases exponentially with the system size. In

recent years there has been major progress in evading the sign problem by complexifying

the dynamical degrees of freedom of the system under study. One of such methods is the

generalized Lefschetz-thimble method [35–40], which amounts to deforming the integration

contour in such a way that the sign problem becomes mild enough to be handled by the

reweighting method. Another approach is the CLM [12, 13], which extends the idea of

stochastic quantization [41] and defines a stochastic process for the complexified variables

so that the expectation values with respect to this process are equal to the expectation

values defined in the original system. The use of the CLM allows one to study large sys-

tems, but it has the problem of not always yielding correct results. (See, for instance,

refs. [42, 43] for early work.) Recently, the conditions for the correct convergence were

clarified [44–49] and various new techniques have been proposed to meet these conditions

for a large space of parameters [50–55]. Thanks to these developments, the CLM has been

applied successfully to many systems in lattice quantum field theory [49, 56–71] and matrix

models [11, 21, 49, 53, 72–76] with complex actions. (For a recent review on the CLM and

related methods, see ref. [77].)

In ref. [21], we applied the CLM to the 6D version of the Euclidean IKKT matrix

model, and obtained results consistent with the ones obtained by the GEM [29], i.e., SSB

to SO(3). We used a technique [53] to avoid the singular-drift problem [46] caused by the

eigenvalues of the Dirac operator that accumulate near zero [72]. The model is deformed

by introducing a parameter mf , which corresponds to adding a mass-like term in the Dirac

operator. Thus the condition [47] that ensures the correctness of the CLM can be met,

and one can make an extrapolation mf → 0 to obtain the results for the original model.

In this paper we apply the same method to the original Euclidean IKKT matrix model.

The simulations are more challenging than those of the 6D version because the number of

the fermionic matrices increases by a factor of four. We find that SSB to lower dimensional

space occurs as the deformation parameter mf is reduced and that our data are consistent

with an SO(3) symmetric vacuum appearing at mf = 0 as predicted by the GEM for

the undeformed model [30]. These results are in sharp contrast to the ones obtained in

ref. [20] using the density of states based method, where calculations had to be performed

for each vacuum with SO(d) symmetry. We also find at larger N that the singular-drift

problem becomes milder, which enables the use of a smaller deformation parameter in the

simulations. This gives us a hope that a more complete understanding of the Euclidean

IKKT matrix model may be possible by extending this work to larger N .

Our calculations may still suffer from finite-N effects and the results can be sensitive

to systematic errors introduced by extrapolations including that for large N . We there-

fore perform a consistency check by applying the GEM to the deformed IKKT matrix

model. We calculate the free energy up to three loops and obtain physical solutions for

the self-consistency equations with the SO(d) (d = 6, 7) ansatzes. We find that the SO(6)

symmetric vacuum has smaller free energy as mf is decreased. We also calculate the extent

of space and find consistency with the results obtained by the CLM.
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The rest of this paper is organized as follows. In section 2, we give a brief review of

the Lorentzian and Euclidean versions of the IKKT matrix model. In section 3, we apply

the CLM to the Euclidean IKKT matrix model with a mass deformation of the fermionic

action and present our results. In section 4, we apply the GEM to the deformed Euclidean

IKKT matrix model and compare the results with those of the CLM. Section 5 is devoted

to a summary and discussions. In appendix A, we show some results suggesting that the

singular-drift problem vanishes at large N .

2 Brief review of the IKKT matrix model

The action of the IKKT matrix model [1] is given by

S = Sb + Sf , where (2.1)

Sb = −1

4
N tr[Aµ, Aν ][Aµ, Aν ] , (2.2)

Sf = −1

2
N tr (ψα(CΓµ)αβ [Aµ, ψβ ]) . (2.3)

The vectors Aµ (µ = 0, 1, 2, . . . , 9) are N × N traceless Hermitian matrices, and the

Majorana-Weyl spinors ψα (α = 1, 2, . . . , 16) are N×N traceless matrices with Grassmann

entries. The 16× 16 matrices Γµ and C are the gamma matrices after Weyl projection and

the charge conjugation matrix, respectively, in ten dimensions.

2.1 The Lorentzian version

In this section we review the Lorentzian version of the IKKT matrix model, in which the

indices are contracted using the Minkowski metric ηµν = diag(−1, 1, 1, . . . , 1). The model

is invariant under SO(9, 1) Lorentz transformations, which act on the vectors Aµ and the

Majorana-Weyl spinors ψα. The model also possesses the SU(N) symmetry

Aµ → U †AµU , ψα → U †ψαU , (2.4)

which is inherited from the gauge invariance of the 10D N = 1 SYM action after reduction

to 0D. The supersymmetry of the SYM theory, on the other hand, enhances to an N = 2

supersymmetry in the IKKT matrix model [1]. This allows us to interpret the eigenvalues

of the matrices Aµ as the N points in the target spacetime [2], which are expected to

represent the continuum spacetime in the large-N limit.1

The partition function is given by [3]

Z =

∫
dAdψ eiS =

∫
dA eiSb Pf M , (2.5)

where the Pfaffian Pf M comes from integrating out the fermionic matrices ψα. The

16(N2 − 1)× 16(N2 − 1) anti-symmetric matrix M is defined by its action

ψα → (Mψ)α = (CΓµ)αβ [Aµ, ψβ ] (2.6)

1The matrices Aµ cannot in general be diagonalized simultaneously, so this can lead to a “fuzzy” space-

time. Whether classical spacetime emerges or not is a dynamical question.
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on the linear space of traceless complex N × N matrices. In fact, it turns out that the

Pfaffian Pf M is real2 in the present Lorentzian model. The bosonic action Sb can be

written as

Sb =
1

4
N tr (FµνF

µν) =
1

4
N
{
−2 tr

(
F 2

0i

)
+ tr

(
F 2
ij

)}
, (2.7)

where Fµν = i [Aµ, Aν ] are Hermitian matrices and i, j = 1, . . . , 9 are spatial indices. Since

the partition function (2.5) is divergent as it is, one has to introduce cutoffs in the temporal

and spatial directions [3].

Using eq. (2.4), it is possible to choose a gauge that diagonalizes A0 as

A0 = diag(α1, α2, . . . , αN ) , where α1 < α2 < . . . < αN . (2.8)

In this gauge, the spatial matrices Ai turn out to have a band-diagonal structure and for

an appropriate integer n, the n× n submatrices Āi

(Āi)IJ(tν) = (Ai)ν+I,ν+J , where I, J = 1, . . . , n , (2.9)

can effectively represent space at time tν defined by

tν =
1

n

n∑
I=1

αν+I , (2.10)

where ν = 0, . . . , N − n [3–9]. Time emerges dynamically and it is a nontrivial dynamical

question whether this leads to a continuum time in the large-N limit. In ref. [5], it was

shown to be possible to take a continuum limit in the large-N limit such that the “volume”

∆ and the lattice spacing ε in time can be tuned to go to ∞ and 0, respectively, keeping

the product ε∆ fixed.

Using this definition of time, it was found [3–9] that there exists a critical time tc,

after which three spatial directions undergo rapid expansion, whereas the other directions

remain small. This happens due to spontaneous breaking of the SO(9) rotational symmetry

down to SO(3). In order to see this, we define the “moment of inertia tensor”

Tij(t) =
1

n
tr(Āi(t)Āj(t)) , (2.11)

where the trace here is over the I, J indices in (2.9), and obtain its nine eigenvalues λi(t)

with the ordering λ1(t) > λ2(t) > . . . > λ9(t). When the expectation values 〈λi(t)〉 for

i = 1, 2, 3 are equal but larger than 〈λi(t)〉 for i = 4, . . . , 9 in the large-N limit, we conclude

that SSB to SO(3) occurs. Using simplified models that describe the qualitative behavior

of the IKKT model at early and late times respectively, it was shown that at early times

the large eigenvalues grow exponentially 〈λi〉 ∼ eΛt with t [5], whereas at late times the

expansion turns into a power law 〈λi〉 ∼ t1/2 [6]. This gives us a hope that the IKKT

model has the dynamics that contain a realistic cosmology with an early time inflationary

expansion and a late time FRW expansion in the radiation dominated era.

2Although Pf M can take negative values, it does not cause the sign problem in the numerical simulations

of refs. [3–9] since configurations with Pf M < 0 are very rare and one can simulate the system by considering

only |Pf M|.
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The structure of space was examined recently in ref. [10], and it was found to be

dominated by rather singular spatial configurations, whose (3+1)D expanding behavior is

due to submatrices that are close to the Pauli matrices. Namely, the radial distribution of

spacetime points is such that two points are located very far, whereas the rest accumulate

near the origin. The reason for the domination of such configurations was attributed to an

approximation used in order to avoid the sign problem in the simulation. As a result of

this approximation, one effectively simulates a model (2.5) with eiSb replaced by eSb .

Having the factor eSb in the partition function makes configurations with the Pauli-

matrix structure dominant. This can be understood by looking at eq. (2.7). Note that the

first term favors configurations such that the Ai commute with the A0, whereas the second

term favors configurations such that the Ai are maximally noncommuting. The balance of

these two terms gives the band-diagonal structure important in defining (2.9). In ref. [10] it

was shown that configurations with the Pauli-matrix structure maximize the second term,

subject to the constraint 1
N tr (Ai)

2 = 1 coming from the spatial cutoff introduced in the

model to make the partition function finite [3].

The approximation, however, may miss the important contribution of the configura-

tions that extremize Sb instead of maximizing it. This is suggested indeed in ref. [11], where

the D = 6 bosonic IKKT matrix model was studied numerically using the CLM in order

to avoid the sign problem without approximations. The model was generalized by two pa-

rameters s and k, which correspond to Wick rotations on the worldsheet and on the target

space, respectively. The Lorentzian model corresponds to (s, k) = (0, 0) and the Euclidean

model studied in this paper corresponds to (s, k) = (1, 1). The results for (s, k) = (−1, 0),

which correspond to replacing eiSb by eSb , are consistent with the results obtained by the

previous simulations [3–9] of the Lorentzian model using the approximation, and show that

the dominant configurations are singular in that the 3D expanding space has the Pauli-

matrix structure. The generalized model was also studied in the vicinity of s = 0 and it was

shown for a range of parameters (s, k) that it exhibits a (3+1)D expanding behavior, while

the dominant configurations depart from the Pauli-matrix structure and the spacetime

points are distributed more smoothly than for (s, k) = (−1, 0).

Since an infinite number of (3+1)D expanding classical solutions without the Pauli-

matrix structure are known to exist [78–81], it is possible to imagine that the spacetime

structure becomes smooth without loosing the (3+1)D expanding behavior if one can ap-

proach (s, k) = (0, 0) in the large-N limit. Furthermore, the simulation supported a spec-

ulation that some classical solution dominates at late times due to the expansion of space.

This is important because it shows the possibility to understand the late-time behavior of

the model by finding classical solutions that contain a realistic cosmology [82–92]. It is

also expected that the solution that dominates at late times can accommodate Standard

Model particles as excitations around them. Early attempts to find such solutions used

slightly modified models by orbifolding [93, 94] or by toroidal compactification with a mag-

netic flux [95, 96]. In refs. [97–102], it was shown that the original model can be used to

realize intersecting D-branes and refs. [103–105] proposed matrix configurations that may

correspond to phenomenologically viable low-energy effective theories. For related work,

see also refs. [106, 107].
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2.2 The Euclidean version

The Euclidean version of the IKKT matrix model, which we focus on in this paper, is

obtained from the Lorentzian version by the Wick rotation

A0 = iA10 , Γ0 = −iΓ10 . (2.12)

The action is given by eq. (2.1), where the contractions are now made with the metric δµν
(µ, ν = 1, . . . , 10), and the partition function is defined by

Z =

∫
dAdψ e−S =

∫
dA e−Sb Pf M , (2.13)

where the 16(N2 − 1)× 16(N2 − 1) anti-symmetric matrix M is defined by (2.6) with the

replacement (2.12). The Lorentz symmetry of the model becomes an SO(10) rotational

symmetry acting on Aµ and ψα. Dynamical compactification of extra dimensions can be

realized via the SSB of SO(10) symmetry to SO(d) with d < 10.

The partition function (2.13) is finite [22, 23] despite the flat directions in the bosonic

action Sb. However, the Pfaffian Pf M = |Pf M|eiΓ is complex in general, which causes

a severe sign problem in numerical simulations. The phase Γ fluctuates wildly for large

matrices and plays a central role in the realization of the SSB of SO(10). In refs. [24, 25]

it was shown that configurations with lower dimensions result in milder fluctuations of Γ,

which points to the mechanism for favoring configurations less symmetric than SO(10).

Monte Carlo simulations of the Euclidean IKKT and related matrix models have a

long history. Simplified versions can be defined by considering the reduction of the D-

dimensional SYM theory to zero dimensions, which is possible for D = 3, 4, 6 and 10. The

D = 3 model is ill-defined because the partition function is divergent [22, 23]. The D = 4

model has a real non-negative fermion determinant in the effective action and Monte Carlo

simulations showed that the SO(4) symmetry is not broken [15, 17]. The D = 6 model has

a complex fermion determinant and simulations are plagued by a severe sign problem as

in the D = 10 case. Omitting the fermionic matrices [14] by simulating the bosonic model

or omitting Γ [16, 19, 20] by simulating phase-quenched models, one finds no SSB.

Monte Carlo simulations including the complex phase were performed for the first time

in refs. [18–20, 33, 34]. These calculations used a reweighting-based method [18, 33, 34].

As an order parameter of the SSB, the eigenvalues λµ of the “moment of inertia tensor”

Tµν =
1

N
tr(AµAν) (2.14)

are defined with the ordering

λ1 > λ2 > . . . > λ10 . (2.15)

When the SSB of SO(D) to SO(d) with d < D is realized, the expectation values 〈λ1〉 =

〈λ2〉 = . . . = 〈λd〉 are larger than the other 〈λµ〉 (µ = d + 1, . . . , D).3 The effect of the

sign problem is reduced by simulating phase-quenched “microcanonical” systems with the

3Note that the expectation values 〈λµ〉 are calculated after the ordering (2.15) and that equality is

expected only in the large-N limit.
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constraints
∏
µ δ(λµ − xµ). Here the values of xµ are chosen appropriately assuming that

the SSB of SO(D) to SO(d) with d < D is realized for each d. Varying the parameters xµ,

one can sample in entropically highly suppressed regions of the configuration space in which

the fluctuations of Γ are milder. The expectation values 〈λµ〉 for each SO(d) symmetric

vacuum are obtained by minimizing the free energy for the constrained system with respect

to the parameters xµ using the saddle-point approximation, which is justified at large N .

The effect of the phase is factorized in the free energy, and it can be obtained by computing

the average phase as a function of xµ. The results for 〈λµ〉 obtained in this way for each

SO(d) symmetric vacuum are found to be consistent with the results obtained by the GEM

to be discussed below. However, comparison of the free energy for different vacua requires

integration over xµ, which cannot be done accurately enough to draw a definite conclusion

on the SSB pattern due to propagation of both systematic and statistical errors.

The issue of the SSB of SO(D) was also addressed analytically by using a systematic

expansion called the GEM. Although the method involves only perturbative calculations,

it can give nonperturbative information on the model to which it is applied [108], as we

review in more detail in section 4. In the context of matrix models, the GEM has been

first applied to the BFSS matrix theory [109] and to simplified versions of the Euclidean

IKKT model [110, 111]. Then the SSB of rotational symmetry in the Euclidean IKKT

model and related models has been investigated intensively [26–30, 112–117]. One expands

around a Gaussian action S0 introduced by hand and containing many parameters, one for

each quadratic term. In order to reduce the number of parameters, an “ansatz” that has

an SO(d) symmetry is considered. The free energy and the expectation values of observ-

ables are calculated in an expansion around S0 as functions of the parameters introduced.

One can actually determine the region of the parameter space in which the free energy is

independent of the parameters, and using these values of the parameters, one can obtain

the free energy and the observables 〈λµ〉 for each d.

The D = 6 model was studied in this way [29] and the SSB to SO(3) was found. The

free energy and the spacetime extent were calculated up to the fifth order for the SO(d)

ansatz with 2 ≤ d ≤ 5, and the free energy obtained for the SO(3) ansatz was found to be

the minimum. The extended directions have an extent R2(d) = 〈λµ〉, µ = 1, . . . , d, which is

equal to R2(3) ≈ 1.76 for d = 3. The shrunken directions have an extent r2 = 〈λµ〉 ≈ 0.223

(µ = d + 1, . . . , D), which turned out to be almost independent of d. Furthermore, the

values R2(d) are such that they obey the constant volume property given by the relation

Rd(d) rD−d ≈ lD , (2.16)

where l is a length scale such that v ≡ lD gives the volume of spacetime. Its value was

calculated and found to be l2 ≈ 0.627. These values are consistent with the Monte Carlo

simulations in refs. [19, 21].

A similar study was done also for the D = 10 model [30]. A systematic computation

up to the third order was carried out for the SO(d) ansatzes with 2 ≤ d ≤ 7. The free

energy for the SO(3) ansatz was found to be the minimum, suggesting also the SSB to

SO(3). The values of the large and small extents of space R(d), r were calculated and
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found to have similar properties as in the D = 6 case. In particular, one obtains

R2(3) ≈ 3.27 , r2 ≈ 0.155 , l2 ≈ 0.383 . (2.17)

These results are consistent with the ones obtained by Monte Carlo simulations [20]. Note

also that these values are obtained in the large-N limit and that they are finite. This

should be contrasted with the results in the Lorentzian model, where space seems to expand

indefinitely in the large-N limit.

3 Applying the CLM to the Euclidean IKKT model

As we reviewed in the previous section, the SSB of SO(10) symmetry in the Euclidean

IKKT model is expected to occur due to the effect of the phase of the Pfaffian in (2.13),

which causes the sign problem. The aim of the present work is to use the CLM to overcome

this sign problem, and to understand the SSB pattern from first principles.

Here we apply the CLM to investigate the SSB of the SO(10) symmetry in the Eu-

clidean IKKT model in a way similar to refs. [21, 53]. We discuss how to probe the SSB

by using appropriate order parameters and taking appropriate limits. We also discuss im-

portant techniques used to avoid known problems in the CLM such as large excursions in

the anti-Hermitian direction and the singular-drift problem [44–48, 118]. These techniques

include a deformation of the fermionic action, the adaptive stepsize and gauge cooling. By

satisfying certain criteria [47, 49], we can ensure that the CLM yields correct results for a

large space of parameters. The discussion is brief and more details can be found in ref. [21].

Our main results are presented in the last subsection.

3.1 The complex Langevin method

The model (2.13) we investigate can be written as

Z =

∫
dA e−Seff , (3.1)

where we define the effective action Seff = Sb − log PfM, which is complex. In the CLM,

we complexify the dynamical variables, which amounts to regarding Aµ as general complex

traceless matrices, and consider their fictitious time evolution governed by the complex

Langevin equation, which is given as

d (Aµ(t))ij
dt

= −∂Seff [Aµ(t)]

∂ (Aµ)ji
+ (ηµ)ij (t) . (3.2)

Here t is the fictitious time and ηµ(t) are traceless Hermitian matrices whose elements are

random variables obeying the Gaussian distribution ∝ exp

(
−1

4

∫
tr {ηµ(t)}2 dt

)
. The

first term on the right-hand side is called the drift term, which is given as

∂Seff

∂ (Aµ)ji
=

∂Sb

∂ (Aµ)ji
− 1

2
Tr

(
M−1 ∂M

∂ (Aµ)ji

)
, (3.3)
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where Tr represents the trace of a 16(N2− 1)× 16(N2− 1) matrix. The expectation value

of an observable O[Aµ] can be calculated from

〈O[Aµ]〉 =
1

T

∫ t0+T

t0

O[Aµ(t)]dt , (3.4)

where Aµ(t) is a general complex matrix solution of (3.2), t0 is the thermalization time and

T is large enough in order to obtain good statistics. Upon complexification of the matrices

Aµ(t), the observable O[Aµ(t)] depends on general complex matrices. The analyticity of

the function O[Aµ] plays a crucial role in the proof of the validity of (3.4) [44, 45, 47].

The numerical solution of (3.2) involves the discretization of the time t given as

(Aµ)ij (t+ ∆t) = (Aµ)ij (t)−∆t
∂S[Aµ(t)]

∂ (Aµ)ji
+
√

∆t (ηµ)ij (t) . (3.5)

The square root in the last term comes from the chosen normalization of the ηµ(t) so that

their probability distribution is ∝ exp

(
−1

4

∑
t tr {ηµ(t)}2

)
.

3.2 How to probe the SSB

In order to probe the SSB, we break the SO(10) symmetry explicitly by adding the terms

∆Sb =
1

2
Nε

10∑
µ=1

mµtr (Aµ)2 (3.6)

to the action, where 0 < m1 ≤ . . . ≤ m10, and take the ε→ 0 limit after taking the large-N

limit. As the order parameters, we consider [21, 53]

λµ =
1

N
tr (Aµ)2 , µ = 1, . . . , 10 , (3.7)

where no sum over µ is taken.4 The λµ are complex for a generic complexified configuration

Aµ(t), but after taking the average using eq. (3.4), the 〈λµ〉 become real. This is due to the

symmetry of the drift term (3.3) under Aµ 7−→ (Aµ)† for µ = 1, . . . , 9 and A10 7−→ −(A10)†.

Due to the choice of the ordering of mµ, we have 〈λ1〉 ≥ . . . ≥ 〈λ10〉 for finite N . If there

is no SSB of the SO(10) rotational symmetry, all 〈λµ〉 are equal in the N →∞ and ε→ 0

limits. If it turns out that some of them are different, we conclude that SSB occurs.

3.3 Some techniques to make the CLM work

In order for the CLM to yield correct results for the expectation value 〈O[Aµ]〉 of an

observableO[Aµ], the probability distribution P (A
(R)
µ , A

(I)
µ ; t) of the general complex matrix

solutions Aµ(t) to eq. (3.2), where A
(R)
µ (t) = (Aµ(t)+A†µ(t))/2, A

(I)
µ (t) = (Aµ(t)−A†µ(t))/2i,

must satisfy the relation∫
dAµ ρ(Aµ; t)O[Aµ] =

∫
dA(R)

µ dA(I)
µ P (A(R)

µ , A(I)
µ ; t)O[A(R)

µ + iA(I)
µ ] . (3.8)

4We avoid the use of the eigenvalues of Tµν in eq. (2.14) so that we do not enter into the subtleties

involved in the holomorphicity of the observables. We have measured them, however, using an ordering

based on their real part and the results are quantitatively identical to those obtained by using eq. (3.7).
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On the left-hand side of the above equation, Aµ are the original Hermitian matrices in the

model (3.1) and ρ(Aµ; t) is a complex weight which is a solution to a Fokker-Planck equation

such that lim
t→∞

ρ(Aµ; t) = e−Seff [Aµ]/Z, giving the desired 〈O[Aµ]〉 in the t → ∞ limit (for

details, see e.g., ref. [47]). The right-hand side involves the (real positive) probability

distribution of the complex matrix solutions of the complex Langevin equation (3.2) and

the analytic continuation of O[Aµ] 7−→ O[A
(R)
µ +iA

(I)
µ ], and in the t→∞ limit, it essentially

gives the quantity on the right-hand side of eq. (3.4). A sufficient condition for eq.(3.8) to

hold is that the probability distribution p(u) of the magnitude of the drift5

u =

√√√√ 1

10N3

10∑
µ=1

N∑
i,j=1

∣∣∣∣∣∂Seff [Aµ]

∂ (Aµ)ij

∣∣∣∣∣
2

(3.9)

in the ensemble defined by P (A(R), A(I); t) falls off exponentially or faster [47]. The above

condition can be violated if the Aµ(t) makes long excursions in the anti-Hermitian direction

(“excursion problem”). In order to avoid it, we employ gauge cooling [50] in our simulations

by minimizing the “Hermiticity norm” defined by

NH = − 1

10N

10∑
µ=1

tr

{(
Aµ −A†µ

)2
}

(3.10)

at each step of (3.5). (See ref. [21] for more details.) It was proven [47, 51] that adding the

gauge cooling procedure in the CLM does not affect the argument for its justification.

The stability of the evolution given by eq. (3.5) is also controlled by the adaptive

stepsize [119]. The typical magnitude of the drift term |∂S/∂(Aµ)ji|∆t ∼ u
√
N∆t in (3.5)

has to be kept small compared with the typical |(Aµ)ij | & (λmin/N)1/2, where λmin ≡
min
µ
|λµ| for a given configuration. Therefore, at each step we adjust ∆t = min{∆tmax,

εt
(√
λmin/(Nu)

)
}, where ∆tmax and εt are tuned so that the results have negligible finite

∆t errors. Measurements are taken at fixed intervals of the Langevin time.

Another reason for the condition on the drift distribution to be violated is the singular-

drift problem. This problem occurs because of the appearance of M−1 in eq. (3.3) when

the eigenvalues of M accumulate densely near zero. In order to avoid this problem, we

deform the fermionic action by adding a term

∆Sf = −imf
N

2
tr
(
ψα(CΓ8Γ†9Γ10)αβψβ

)
, (3.11)

where mf is the deformation parameter. The addition of this term shifts the eigenvalue

distribution of M away from the origin, enabling us to avoid the singular-drift problem.

This technique was proposed originally in ref. [53], where the singular-drift problem was

indeed overcome in an SO(4) symmetric matrix model with a complex fermion determinant,

and it was used successfully also in the D = 6 version of the IKKT matrix model [21]. Note

that the above term (3.11) breaks the SO(10) symmetry down to SO(7)×SO(3) explicitly.

5The effective action Seff [Aµ] in eq. (3.9) should be modified appropriately taking account of the

terms (3.6) and (3.11) added to the action in actual simulation.

– 11 –



J
H
E
P
0
6
(
2
0
2
0
)
0
6
9

Therefore, we investigate whether the remaining SO(7) symmetry breaks down to smaller

subgroups as mf is varied and discuss what occurs at mf = 0.

Note that as mf → ∞, the fermionic degrees of freedom decouple and we obtain the

dimensionally reduced Yang-Mills model without fermionic matrices (“bosonic model”),

which is SO(10) symmetric [20]. Thus the deformation (3.11) can be regarded as an

interpolation between the IKKT model and the bosonic model.

The presence of the singular-drift problem depends on the values of the parameters

mf and ε. For large enough mf the problem is cured, but it reappears as mf is reduced for

values of ε smaller than some value depending on mf . In our simulations, we choose the

range of the simulated (mf , ε) for each N carefully so that the probability distribution of

the magnitude of the drift (3.9) falls off faster than exponentially, ensuring that we do not

have the singular-drift problem. In appendix A, we show some results suggesting that the

singular-drift problem vanishes for large enough N for given values of (mf , ε).

3.4 Results of the CLM

In this subsection we present our main results obtained in the way discussed in the previous

subsections. The deformation (3.11) breaks the SO(10) symmetry down to SO(7)×SO(3),

and we examine if the SO(7) symmetry is broken down to a smaller group for mf = 3.0, 1.4,

1.0, 0.9, 0.7 to consider what happens for the undeformed IKKT model (3.1) corresponding

to mf = 0. In order to probe the SSB, one has to take the N →∞ limit first and then the

ε→ 0 limit.

The mµ in eq. (3.6) are chosen so that this term does not break SO(10) completely

because otherwise the spectrum of mµ becomes too wide to make the ε→ 0 extrapolation

reliably. For mf = 3.0, we choose mµ = (0.5, 0.5, 0.5, 1, 2, 4, 8, 8, 8, 8), which enables us to

distinguish SO(d) vacua with d = 3, 4, 5, 6, 7. For smaller values of mf , we choose mµ =

(0.5, 0.5, 1, 2, 4, 8, 8, 8, 8, 8), which enables us to distinguish SO(d) vacua with d = 2, 3, 4, 7.

In particular, we may confirm that the SO(3) symmetry remains unbroken by seeing that

〈λ1〉 = 〈λ2〉 and 〈λ3〉 agree in the N →∞ and ε→ 0 limits. On the other hand, this choice

of mµ has a drawback that λ6 and λ7 are mixed up because of m6 = m7, and hence one

cannot distinguish SO(5) and SO(6) vacua. This does not cause any harm, however, as far

as we find that 〈λ4〉 and 〈λ5〉 do not agree in the N →∞ and ε→ 0 limits, which implies

that the SO(7) symmetry is broken to SO(4) or lower symmetries.

For given mµ in eq. (3.6), the large-N limit is obtained by first computing the ratio

ρµ(mf , ε,N) =
〈λµ〉mf ,ε,N∑10
ν=1 〈λν〉mf ,ε,N

, (3.12)

and then by making a large-N extrapolation

ρµ(mf , ε) = lim
N→∞

ρµ(mf , ε,N) . (3.13)

The reason for investigating the ratio (3.12) instead of 〈λµ〉 is that a large part of the

ε dependence is canceled between the numerator and the denominator, which makes the

ε → 0 extrapolation more reliable. The large-N extrapolation is performed by plotting
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Figure 1. The large-N extrapolation of ρµ(mf , ε,N) for mf = 1.0, ε = 0.2 with mµ =

(0.5, 0.5, 1, 2, 4, 8, 8, 8, 8, 8). The ρµ(mf , ε,N) are averaged for µ = 1, 2, µ = 6, 7 and µ = 8, 9, 10 to

increase statistics. A quadratic fit with respect to 1/N is performed.

ρµ(mf , ε,N) against 1/N and making a quadratic fit with respect to 1/N . We find that

the quadratic term is necessary in the fits especially for small (mf , ε). In figure 1 we show

a typical case of such a fit.

In figure 2 we plot the large-N extrapolated values ρµ(mf , ε) as a function of ε for

mf = 3.0, 1.4, 1.0, 0.9 and 0.7. In order to increase statistics, we average the ρµ(mf , ε) for

the µ that we expect to give equal values due to degeneracies in mµ. For mf = 3.0, we use

mµ = (0.5, 0.5, 0.5, 1, 2, 4, 8, 8, 8, 8), which implies that the ρµ(mf , ε) should be equal for µ =

1, 2, 3 and µ = 8, 9, 10. For mf = 1.4, 1.0, 0.9, 0.7, we use mµ = (0.5, 0.5, 1, 2, 4, 8, 8, 8, 8, 8),

which implies that the ρµ(mf , ε) should be equal for µ = 1, 2, µ = 6, 7 and µ = 8, 9, 10.

The ε→ 0 extrapolation

ρµ(mf) = lim
ε→0

ρµ(mf , ε) (3.14)

is performed by fitting ρµ(mf , ε) to a polynomial in ε.

From the extrapolated values ρµ(mf), we find that the SO(7) symmetry of the deformed

model is not spontaneously broken at mf = 3.0, but it is actually broken to SO(4) for

mf = 1.4 and to SO(3) for mf = 1.0, 0.9, 0.7. Thus as mf is decreased, the SO(7)

symmetry seems to be spontaneously broken to smaller subgroups gradually in the same

way as it was observed in the D = 6 case [21]. However, we consider that the symmetry

is not going to be broken further down to SO(2) at smaller mf . This is based on the fact

that the Pfaffian vanishes identically for strictly 2D configurations [24, 25], which implies

that the mechanism of SSB due to the phase of the Pfaffian no longer works there.6 Hence

our results are consistent with the results obtained by the GEM for the undeformed model,

which show that the SO(3) vacuum has the smallest free energy.

6This is also reflected in the GEM results [29, 30] for the free energy of the SO(d) vacuum, which becomes

much larger for d = 2 than for d ≥ 3.
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Figure 2. The ρµ(mf , ε) in eq. (3.13) are plotted against ε for mf = 3.0 (Top-Left), mf = 1.4

(Top-Right), mf = 1.0 (Middle-Left), mf = 0.9 (Middle-Right) and mf = 0.7 (Bottom). We use

mµ = (0.5, 0.5, 0.5, 1, 2, 4, 8, 8, 8, 8) for mf = 3.0 and mµ = (0.5, 0.5, 1, 2, 4, 8, 8, 8, 8, 8) for the other

values of mf . The continuous lines are polynomial fits in ε. For mf = 3.0 a quartic fit is performed,

whereas for the other values of mf the fits are quadratic in ε. In the mf = 3.0 plot, the curves from

top to bottom are (ρ1 + ρ2 + ρ3)/3, ρ4, ρ5, ρ6, ρ7 and (ρ8 + ρ9 + ρ10)/3. For the other plots, the

curves from top to bottom are (ρ1 + ρ2)/2, ρ3, ρ4, ρ5, (ρ6 + ρ7)/2 and (ρ8 + ρ9 + ρ10)/3.

When we make the fit for the ε → 0 extrapolation in figure 2, we excluded the data

points at small ε except for mf = 3.0. These data points show a clear tendency towards the

restoration of SO(10) rotational symmetry. We consider that this is due to the insufficient

large-N extrapolation performed to obtain these points due to severe finite-N effects for

small mf and small ε. As we discussed earlier, the parameter mf interpolates between the

bosonic and supersymmetric models. In the bosonic model there is a strong attractive

force between all the pairs of the N spacetime points defined by the eigenvalues of the Aµ,

which represents an O(N2) effect [14], whereas in the supersymmetric model the attractive

force is mostly canceled due to supersymmetry and it becomes an O(N) effect [2]. Also, a

large value of ε reduces the spacetime volume according to eq. (3.6). Therefore, for given

N the density of spacetime points becomes small as one takes smaller values of mf and ε,

and this is the reason why finite-N effects become severe in this region.
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When finite-N effects are important, SSB is suppressed and configurations appear

symmetric. The transition between the regions in which one sees true SSB effects and a

(falsely) symmetric behavior can be seen as a clear smooth crossover in the three lower

plots in figure 2 for mf = 0.7, 0.9 and 1.0. The crossover disappears for larger values of mf

as expected. This is seen to happen already for mf = 3.0 in figure 2, whereas the crossover

is very mild for mf = 1.4. The fitting region is chosen so that finite-N effects in the small-ε

region do not affect the ε→ 0 extrapolation.

4 Consistency check based on the GEM

In the previous section we discussed the pattern of the SSB of SO(10) as the deformation

parameter mf in eq. (3.11) is varied. As it has already been mentioned, mf interpolates

between the IKKT matrix model (mf → 0), where SSB to SO(3) is expected to occur, and

the bosonic model (mf → ∞), where there is no SSB. As the value of mf is decreased,

the SSB pattern gradually changes from more symmetric vacua to less symmetric ones.

However, we had to make extrapolations, first the large-N extrapolation and then the

ε → 0 extrapolation, which introduce systematic errors. Therefore, it is important to

verify the results using a completely different approach.

In section 2.2 we made a short introduction to the GEM and its application to the

Euclidean IKKT matrix model. In particular, SO(10) was found to be broken down to

SO(3) [30]. Here we apply the GEM to the IKKT matrix model deformed by the parameter

mf . We perform a three-loop calculation using SO(d) symmetric ansatzes, where d = 6, 7,

and calculate the free energy. We observe a trend that the free energy for the SO(6) vacuum

becomes smaller than the SO(7) vacuum as we decrease mf . We also find that the extent

of space obtained at mf = 3.0 agrees very well between the two methods.

It should be noted that the GEM does not depend on the large-N and small-ε extrap-

olations. The N → ∞ limit can be taken by simply using planar graphs, and the SSB

can be readily probed by comparing the free energy obtained with various ansatzes for the

Gaussian action with different symmetries. Furthermore, the systematic errors of the GEM

come mainly from the truncation of the expansion and the determination of the parameters

giving the physical solutions, which are completely different from the systematic errors of

Monte Carlo simulations. Therefore the results of the two methods can be considered to

be independent and their consistency provides more confidence in our conclusion.

4.1 Applying the GEM to the deformed model

Here we review the GEM used in ref. [30] to study the original IKKT matrix model and

apply it to the deformed model with the fermionic mass-like term (3.11). The basic idea is

to introduce a Gaussian action S0 and to rewrite the original action S = Sb + Sf + ∆Sf as

S = S0 + (S − S0) , (4.1)

where the first and second terms are regarded as the “classical action” and the “one-loop

counterterm,” respectively. This enables us to perform a perturbative expansion. The

Gaussian action contains a large number of arbitrary parameters and the results depend
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on these parameters in general. On the other hand, physical quantities should not depend

on these parameters. It turns out to be possible to find a range of these parameters in

which observables are (almost) independent of their values.

Let us consider the Gaussian action

S0 =
N

2

10∑
µ=1

Mµtr(A2
µ) +

N

2

16∑
α,β=1

Aαβtr(ψαψβ) , (4.2)

where Mµ and Aαβ are the parameters for the bosonic part and the fermionic part of the

Gaussian action, respectively. We choose the ordering 0 < M1 ≤ . . . ≤ M10 so that the

notation matches with (3.6). The complex 16× 16 antisymmetric matrix Aαβ in (4.2) can

be expanded using the 10-dimensional gamma matrices Γµ as

Aαβ =
10∑

µ,ν,ρ=1

i

3!
mµνρ(CΓµΓ†νΓρ)αβ , (4.3)

where mµνρ is a totally antisymmetric 3-form. The effect of the fermion mass term (3.11)

can be readily implemented by replacing the coefficient as m8,9,10 7→ m8,9,10 −mf .

The partition function can be rewritten as

Z = Z0〈e−(S−S0)〉0 ,

Z0 =

∫
dAdψ e−S0 ,

where 〈 · 〉0 represents the expectation value with respect to the partition function for the

Gaussian action Z0. One can expand the free energy F = − logZ perturbatively as

F =

∞∑
k=0

fk , (4.4)

f0 = − logZ0 ,

fk = −
k∑
l=0

(−1)k−l

(k + 1)!
k+lCk−l〈(Sb − S0)k−l(Sf)

2l〉C,0 ,

where the subscript C in 〈 · 〉C,0 means that only connected diagrams are summed over.

Similarly, the expectation values of observables are given by

〈O〉 = 〈O〉0 +

∞∑
k=1

Ok , (4.5)

Ok =

k∑
l=0

(−1)k−l

(k + l)!
k+lCk−l〈O(Sb − S0)k−l(Sf)

2l〉C,0 .

In practice, we truncate the infinite series such as (4.4) and (4.5) at some finite order

and evaluate each term using Feynman diagrams, where we restrict ourselves to planar

diagrams since we are interested in the large-N limit.

– 16 –



J
H
E
P
0
6
(
2
0
2
0
)
0
6
9

As we already mentioned above, for a generic set of parameters Mµ and Aαβ , the

results obtained in this way depend on their values. In order to find “physical” results that

do not depend on these parameters, we search for stationary points of the free energy with

respect to those parameters by solving the “self-consistency equations”

∂

∂Mµ
F = 0 ,

∂

∂mµνρ
F = 0 . (4.6)

The solutions to these equations are obtained numerically, and they are used as the probe

of the plateaus for the values of the free energy in the space of the parameters Mµ and Aαβ .

In order to consider the SO(d) symmetric vacuum, we impose the SO(d) symmetry on

the Gaussian action by setting M1 = . . . = Md and mµνρ = 0 unless µ, ν and ρ are different

from each other with µ, ν, ρ ≥ d + 1. Thus we are left with (11 − d) parameters from Mµ

and 10−dC3 parameters from mµνρ. However, it turns out hard to solve the self-consistency

equation (4.6) with more than 5 parameters. In the previous work, we reduced the number

of parameters by imposing some discrete symmetries Σd to the shrunken directions as well,

where SO(d)×Σd are subgroups of SO(10). In the present work, we focus on two cases, in

which we impose SO(d)×Z3 with d = 6 and d = 7, where Z3 represents a group of cyclic

permutations of the 8th, 9th and 10th directions. Note that the imposed symmetries are

subgroups of SO(7)×SO(3), which remains after adding the mass term (3.11).

4.2 Results of the GEM

In figure 3 we plot the free energy calculated up to three loops for the solutions found with

the SO(7) and SO(6) ansatzes against the fermion mass mf . We observe a clear tendency

that the SO(6) symmetric vacuum is more favored as mf is decreased. However, the free

energy for the two ansatzes tends to become degenerate as mf is increased. In this situation

it is difficult to identify the critical point, given the accuracy of the GEM results.

In figure 4, we plot the extent of space λi (i = 1, . . . , 10) in each direction against mf

for the SO(7) and SO(6) ansatzes. For the SO(7) ansatz (Left), we plot λ1 = . . . = λ7,

and λ8 = λ9 = λ10. We find that the two lines come close to each other as mf increases,

which is consistent with the fact that the deformed model becomes the bosonic model

at mf = ∞, where the full SO(10) symmetry is expected to be restored. For the SO(6)

ansatz (Right), we plot λ1 = . . . = λ6, λ7 and λ8 = λ9 = λ10. We find that the line

in the middle corresponding to λ7 goes up as mf increases and asymptotes to the line at

the top corresponding to λ1 = . . . = λ6. As a result, the plot looks almost identical to

the plot for the SO(7) ansatz in the large-mf region. This clearly explains why the free

energy for the two ansatz asymptotes to each other as mf increases. On the other hand,

the line in the middle goes down as mf decreases and it seems to asymptote to the line at

the bottom corresponding to λ8 = λ9 = λ10. This is consistent with the GEM results for

the undeformed model, which suggest that the shrunken directions have a common extent.

It is also natural from the viewpoint that the explicit breaking of SO(10) symmetry to

SO(7)× SO(3) by the fermion mass term is removed as mf decreases.
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Figure 3. The free energy calculated up to three loops for the solutions found with the SO(7)

and SO(6) ansatzes are plotted against the fermion mass mf . We observe a clear tendency that the

SO(6) symmetric vacuum is more favored as mf is decreased, whereas the free energy for the two

ansatzes tends to be degenerate as mf is increased.

Figure 4. The extent of space in each direction is plotted against mf for the SO(7) ansatz (Left)

and for the SO(6) ansatz (Right). For the SO(7) ansatz, we plot λ1 = . . . = λ7 and λ8 = λ9 = λ10.

For the SO(6) ansatz, we plot λ1 = . . . = λ6, λ7 and λ8 = λ9 = λ10.

The results of the CLM at mf = 3.0 shows that we obtain an SO(7) symmetric vacuum

with the extent of space given by

ρ1 = · · · = ρ7 = 0.115 , (ρ8 + ρ9 + ρ10)/3 = 0.065 . (4.7)

On the other hand, from the results plotted in figure 4 (Left), we find for the SO(7) ansatz

that the extent of space is λ1 = . . . = λ7 = 0.333, λ8 = λ9 = λ10 = 0.184 at mf = 3.0.

Taking the ratio, we obtain ρ1 = · · · = ρ7 = 0.116 and ρ8 = ρ9 = ρ10 = 0.064, which are in

very good agreement with (4.7).
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5 Summary and discussions

In this paper we have applied the CLM to the Euclidean IKKT matrix model, which is

conjectured to be a nonperturbative formulation of superstring theory in ten dimensions.

This is the first time that a first principle study of this model produced clear results on

the question of dynamical compactification of extra dimensions via SSB of the SO(10)

rotational symmetry of the model. Monte Carlo simulations are plagued by a serious sign

problem, which is overcome by applying the CLM. In order to avoid the singular-drift

problem in the CLM, we deform the model by adding a mass-like term in the fermionic

action parameterized by the parameter mf so that the conditions proposed in ref. [47]

can be met. By taking the large-N limit and then the ε → 0 limit, we have studied the

SSB pattern as a function of the mf . At mf = 3.0 an SO(7) vacuum is found, which is the

maximally symmetric vacuum of the deformed theory. At mf = 1.4 we find that our results

are consistent with an SO(4) vacuum. At mf = 1.0, 0.9 and 0.7, the vacuum becomes SO(3)

symmetric. Taking into account the argument that an SO(2) vacuum is not likely to be

realized in this model [24, 25], we conclude that our results are consistent with the ones

obtained by using the GEM on the Euclidean IKKT matrix model [30], which predict SSB

to an SO(3) vacuum.

As a consistency check, we performed independent calculations applying the GEM to

the mf -deformed Euclidean IKKT matrix model. We did a three-loop calculation using

SO(7) and SO(6) ansatzes and calculated the free energy. It turns out that the transition

from an SO(7) symmetric vacuum to an SO(6) symmetric one occurs smoothly as mf

decreases. Also the extent of space obtained at mf = 3.0 agrees very well between the two

methods.

Our conclusion that the SO(10) rotational symmetry of the Euclidean IKKT model

breaks down to SO(3) due to the phase of the Pfaffian is interesting, but it makes the model

somewhat more difficult to interpret. Given the promising properties of the Lorentzian

model reviewed in section 2, we consider that the naive Wick rotation to the Euclidean

model is not the right direction to pursue. On the other hand, the fact that the CLM

enabled us to obtain a clear SSB pattern for the deformed model, which suffers from a severe

sign problem, is encouraging. We hope that the CLM is equally useful in investigating the

Lorentzian IKKT model, in particular in the presence of fermionic matrices, which are not

included yet in ref. [11].

Let us emphasize that the model has the amazing properties that spacetime, and

possibly the matter content as well, are contained in the matrix degrees of freedom and

that many interesting related questions can be answered dynamically. The surmounting

evidence that the IKKT matrix model has nontrivial dynamics makes it a particularly

promising candidate for a nonperturbative definition of superstring theory. By improving

the algorithms that solve the sign problem and by acquiring more computational power

that will allow us to study larger N , there is a great hope that we will find answers to

many profound questions, in a similar way that it was done for QCD using the lattice

gauge theory.
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Figure 5. (Left) The distribution p(u) of u defined in eq. (3.9) for mµ = (0.5, 0.5, 1, 2, 4, 8, 8, 8,

8, 8), mf = 0.9, ε = 0.16. For N = 16 we observe a long subexponential tail indicating the presence

of the singular-drift problem. For N ≥ 32, where the singular-drift problem is absent, the tail

falls off (super)exponentially. (Right) The small νk distribution of the Youla decomposition values

νk ≥ 0, k = 1, . . . , n, n = 8(N2 − 1) of the antisymmetric matrix M for the same parameters,

together with a fit of the form (ν − νc)aebν with νc = 0.283(1), a = 0.82(2) and b = 1.49(3). The

cutoff νc develops for N ≥ 32, whereas for N = 16 the values accumulate near zero, causing the

singular-drift problem.
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A The singular-drift problem vanishing at large N

Rather surprisingly, we find that the singular-drift problem vanishes for large enough N

for given values of (mf , ε). In figure 5 (Left), we plot the probability distribution p(u) of

u defined in (3.9) for mf = 0.9 and ε = 0.16 with mµ = (0.5, 0.5, 1, 2, 4, 8, 8, 8, 8, 8) using

various values of N within 16 ≤ N ≤ 96. We observe for N = 16 that the tail of the p(u)

distribution is subexponential as a result of the singular-drift problem [47]. For N ≥ 32,

the tail of the distribution is suppressed as an exponential or faster, indicating that the

singular-drift problem is absent.

This is confirmed by measuring the distribution p(ν) of the fourth root of the doubly de-

generate non-negative eigenvalues dk of the positive definite Hermitian matrix D =MM†,
where νk = d

1/4
k . These can be seen to be directly related to the singular-drift prob-

lem by considering the Youla decomposition [120] of the antisymmetric7 even dimensional

7Note that the antisymmetry of M remains after the addition of the term ∆Sf .
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16(N2 − 1)× 16(N2 − 1) matrix M

UᵀMU = diag

{(
0 ν1

−ν1 0

)(
0 ν2

−ν2 0

)
. . .

(
0 νn
−νn 0

)}
, (A.1)

where U is unitary, Uᵀ is its transpose and νk ≥ 0, k = 1, . . . , n, n = 8(N2 − 1). Then,

PfM = eiθ
n∏
k=1

νk = eiθ| detM|1/2 = eiθ detD1/4 ,

where detU = eiθ. The singularities of the drift term (3.3) appear from the term

1

2
Tr

(
∂M

∂ (Aµ)ji
M−1

)
= i

∂θ

∂ (Aµ)ji
+

N∑
k=1

1

νk

∂νk
∂ (Aµ)ji

, (A.2)

when the νk accumulate near the origin. The plot in figure 5 (Right) shows that the

distribution of the νk develops a small-ν finite cutoff νc > 0 for N ≥ 32 proving that there

is no singular-drift problem and that for N = 16, the νk accumulate near the origin showing

the appearance of the singular-drift problem.
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