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ABSTRACT: The matrix model formulation of superstring theory offers the possibility to
understand the appearance of 4d space-time from 10d as a consequence of spontaneous
breaking of the SO(10) symmetry. Monte Carlo studies of this issue is technically difficult
due to the so-called sign problem. We present a practical solution to this problem gen-
eralizing the factorization method proposed originally by two of the authors (K.N.A. and
J.N.). Explicit Monte Carlo calculations and large-N extrapolations are performed in a
simpler matrix model with similar properties, and reproduce quantitative results obtained
previously by the Gaussian expansion method. Our results also confirm that the sponta-
neous symmetry breaking indeed occurs due to the phase of the fermion determinant, which
vanishes for collapsed configurations. We clarify various generic features of this approach,
which would be useful in applying it to other statistical systems with the sign problem.
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One of the biggest puzzles in string theory is that typical space-time dimensionality turns

out to be higher than the macroscopically observed four dimensions. As a possible approach

to this problem, one may think of space-time as an emergent notion, which arises effectively

from matrix degrees of freedom. This idea of “emergent space-time” is nicely realized in the

gauge-gravity duality including the famous example of the AdS/CFT correspondence [1].



Recently the gauge-gravity duality has been demonstrated from first principles by
Monte Carlo simulations of supersymmetric gauge theory in one dimension with 16 super-
charges [2-10]. (See ref. [11] for a review.) This theory can be obtained formally by the
one-dimensional reduction of ten-dimensional N' =1 U(V) super Yang-Mills theory, and it
provides a low energy description of a stack of N DO branes in type IIA superstring theory.
In particular, in the N — oo limit with large 't Hooft coupling, the one-dimensional gauge
theory was conjectured to be dual to the O-brane solution in type ITA supergravity [12].
Monte Carlo calculations have been performed on the gauge theory side for various quan-
tities such as the internal energy [4-7], the Wilson loop [8] and the two-point correlation
functions [9, 10], and the results provided first-principle confirmation of corresponding pre-
dictions based on the gauge-gravity duality. One of the most important conclusions [6] is
that the black hole thermodynamics of the O-brane solution has been understood micro-
scopically in terms of open string degrees of freedom attached to the DO branes, which are
described by the gauge theory. In other words the 1d U(NN) supersymmetric gauge theory
describes the interior structure of the black hole in ten dimensions.

As a closely related but more ambitious conjecture, the IIB matrix model was proposed
as a nonperturbative definition of type IIB superstring theory in ten dimensions [13-15].
This model can be formally obtained by the zero-dimensional reduction of ten-dimensional
N =1 U(N) super Yang-Mills theory, and it has manifest SO(10) symmetry. Here the
space-time is represented by the eigenvalue distribution of the 10 bosonic matrices [16].
Therefore, the model offers the possibility to realize dynamical compactification,® where
the extra dimensions become small due to the spontaneous symmetry breaking (SSB) of
SO(10). This scenario has been supported by explicit calculations based on the Gaussian
expansion method (GEM). By comparing the free energy of the SO(d) symmetric vacua
with d = 2,4,6,7, it was shown that d = 4 is favored at the 3rd order of the expansion [18].
Higher order calculations confirmed this conclusion [19-21]. (See refs. [22, 23], however.)

Just as Monte Carlo simulations have been useful in studying the gauge-gravity du-
ality from first principles, they are expected to be useful also in addressing the issue of
dynamical compactification in the IIB matrix model and many others. Indeed early works
on zero-dimensional matrix models [24-33] have provided us with a wealth of information
on the large-N limit of the models and the nonperturbative dynamics of their degrees of
freedom. When one applies such an approach to the IIB matrix model, one encounters
a serious technical problem called the sign problem since the determinant (or Pfaffian,
strictly speaking) one obtains from integrating out the fermionic matrices is complex. Due
to the fluctuation of the phase, huge cancellations occur in Monte Carlo integration over
the bosonic matrices. To overcome this problem, a promising method termed the fac-
torization method has been proposed [34], tested on simple models [35-37] and used in
simulations of finite density QCD [38—40]. (See refs. [41-43] for related works on the QCD
phase diagram and refs. [44-55] for other approaches to the complex action problem.) It
resembles previously proposed density of states methods [56-61] but suggests more general
and efficient ways of slicing the configuration space. With the proposed technique it is

1See ref. [17] for an earlier work suggesting this possibility in the framework of bosonic string field theory.



possible to compute the chosen distribution function in the region which is enhanced due
to relatively small fluctuations of the phase. Expectation values can be computed as the
easily located minima of the free energy thereby drastically reducing the propagation of
errors. It also has the merit of being in principle applicable to a wide range of models and
its possible success can have a great impact on various physical problems.

In fact the fluctuations of the phase of the fermion determinant is expected to play a
crucial role in the dynamical compactification in the IIB matrix model [62, 63].2 It was
shown in ref. [62, 63] that the phase vanishes for collapsed configurations, and that the
enhancement due to this property can compensate the entropic suppression for such config-
urations. In ref. [34] it was shown that the competition between the two effects can make
the dominant configurations have very different length scales than in the phase-quenched
model suggesting a mechanism for dynamically generating small and large dimensions.
Models without the phase factor have also been studied by Monte Carlo simulations, which
provided strong evidence that the SSB does not occur in such models [27-30]. These results
stress the importance of the role played by the phase factor.

In this paper we study a simple zero-dimensional matrix model [65], which realizes
the dynamical compactification. The (non-supersymmetric) model has SO(4) rotational
symmetry and consists of four N x N bosonic matrices and Ny flavors of Weyl fermions in
the fundamental representation of SU(N). The integration over fermions yields a complex
determinant. In ref. [65], the large-N limit is taken by keeping the ratio r = Ny/N fixed,
and it is shown analytically for infinitesimal r that the SO(4) symmetry is broken down
to SO(3). If the phase is quenched, the SSB is shown not to occur. For finite r, the
model has been studied using the GEM [66]. While the exact results for infinitesimal r are
consistently reproduced, it is shown that the symmetry actually breaks down to SO(2) at
finite 7 due to the stronger effect of the phase.

Motivated by these results, we perform Monte Carlo simulation of this simplified model,
which is expected to serve as a testing ground for the ideas discussed above concerning the
SSB in the IIB matrix model as well as for the method of simulating systems with a com-
plex action. Besides being lower dimensional, the model is much easier to simulate than the
IIB matrix model with the computational effort increasing as N3 instead of N©, since the
fermions are in the fundamental representation instead of the adjoint representation. We
find that the method with appropriate generalization samples efficiently the configuration
space, heavily suppressed in the phase-quenched model but important for the full model,
overcoming the so-called overlap problem. The distribution function and the phase of the
fermion determinant exhibit nice scaling properties which are important for the extrapo-
lation to large N and to the regions of configuration space in which the phase fluctuation
obscures the Monte Carlo measurements. We present detailed analyses of this scaling,
and provide its clear understanding based on simple theoretical arguments. Thus we have
confirmed that the SSB indeed occurs in this model due to the effect of the phase.

We first apply the factorization method to a single observable as originally formulated
in ref. [34]. While the results show that the method works to some extent, we also realize

2See refs. [16, 64] for discussions on other possible mechanisms.



certain discrepancies from the GEM results as well as some puzzles, which we attribute to
the remaining overlap problem. In order to solve this problem, we generalize the method
to multiple observables, and show that the GEM results can be consistently reproduced.
The importance of controlling multiple observables in the factorization method is reported
briefly in our previous publication [67].

This paper is organized as follows. In section 2 we review the basic properties of the
model, and discuss the sign problem that arises in its Monte Carlo studies. In section 3 we
investigate the model by the factorization method with a single observable. In section 4
we generalize the factorization method to multiple observables. Section 5 is devoted to a
summary and discussions. In appendix A we describe the details of the algorithm used in
our Monte Carlo simulation. In appendix B we discuss some properties of the functions
that play an important role in the method. In appendices C and D we present the details
of the large-INV extrapolations made in our analyses.

2 The model and the sign problem

The model we study in this paper is defined by the partition function [65]

Z = / dA dip dop e~ Set58) (2.1)
1 2
Sp = 5 Ntr(Au)*, (2.2)
St = —1/;({ (Fu)aﬁ A;ﬂ/’g . (2-3)
The bosonic degrees of freedom are represented by N x N Hermitian® matrices Ay (p=
1,---,D). Hereafter we assume D to be even.* The fermionic degrees of freedom are

represented by QM and ¢£, which have a spinor index @ = 1, , p, where p represents the
number of components of a D-dimensional Weyl spinor

p =201 (2.4)

They also have a flavor index f = 1,---, Ny, where Ny represents the number of flavors.
The fermionic variables zﬁg and 1/1£ are N-dimensional row and column vectors, respectively,
so that the actions (2.2) and (2.3) have an SU(N) symmetry. The p x p matrices I, are
SO(D) gamma matrices after the Weyl projection. Thus the actions (2.2) and (2.3) have an
SO(D) symmetry, where the bosonic variables A, transform as a vector and the fermionic
variables transform as Weyl spinors. The fermionic part can be regarded as the zero volume
limit of Weyl fermions interacting with a background gauge field via fundamental coupling.
Integrating out the fermions, we obtain

Z = /dAeSb Z:[A], (2.5)

3In ref. [66] the matrices A,, are assumed to be also traceless to simplify the calculations in the Gaussian
expansion. In our Monte Carlo studies, we do not impose the tracelessness condition to avoid unnecessary
complication, since it is irrelevant in the large- N limit.

4For odd D, the model can be defined using Dirac fermions instead [65]. In that case, however, the
fermion determinant is real, and no SSB of SO(D) is expected.



where Z¢[A] = (det D) and D = I', A4, is a pN x pN matrix. Let us then discuss the
properties of the fermion determinant detD for a single flavor. First of all, it is complex
in general. Under parity transformation Ap — —Ap, A; — A; (i # D), it transforms as
det D — (det D)*. This implies that detD is real® for configurations with Ap = 0. From
this fact alone, it follows that the phase of the determinant becomes stationary for config-
urations with Ap = Ap_1 = 0 since one cannot have a phase fluctuation within a linear
perturbation around such configurations.® These properties of the fermion determinant are
analogous to those found in the IIB matrix model [62, 63].

As in the case of the IIB matrix model [62, 63], one can extend the above argument
further to arrive at the following statements, which actually play an important role in our
analysis. Let us define “d-dimensional configurations” (d > 1) as such configurations A,

that can be transformed into Ajy1 = --- = Ap = 0 by an SO(D) transformation. Then
for general d-dimensional configurations, we have
o'T
=0 for k=1,---,(D—-1)—d, 2.6
aAlulaA‘uk or ) ( ) ( )

where I' represents the phase of the fermion determinant Z;[A].

We take the large-N limit with » = N¢/N fixed, which corresponds to the Veneziano
limit.” This is needed to make the fermionic degrees of freedom contribute to the partition
function comparably to the bosonic degrees of freedom in the large-N limit. Whether the
SSB of SO(D) occurs in that limit is the issue we would like to address. For that purpose,
we consider the “moment of inertia tensor” [16, 27]

1
Ty = Ntr(AMAV), (2.7)
and its real positive eigenvalues A, (n =1,---, D) ordered as
AM>X>-->Ap. (2.8)

The vacuum expectation values (VEVs) of these eigenvalues (\,,) play the role of the order
parameters. If they turn out to be unequal in the large-IN limit, it implies the SSB of
SO(D). In this model, the sum of the VEV of all the eigenvalues is given exactly as®

D
Z()\n> = <Jiftr(Au)2> =D+pr. (2.9)

n=1

5In this case, the fermion determinant Z¢[A] for N flavors is actually real positive for even N¢, although
it is not necessarily so for odd N¢. There is some numerical evidence, however, that configurations with
positive determinant dominate statistically in the large-N limit. Therefore we consider that there is no
distinction between odd N; and even N in the large-N limit. In the present work, we always use even N
to avoid this subtlety.

6Obviously the same statements hold for configurations obtained by SO(D) rotations.

"For r = 1 the fermionic variables can be written in terms of N x N matrices (Va);; and (¥a) ;.
The fermionic part of the action becomes Si = —(T'x)agtr(¥aA, ¥s), which can be compared with a term
St = —(Tp)aptr(¥al[A,, Ug)) in the IIB matrix model.

®This can be derived by rescaling A/, = k2 A,. Defining Z() = [ dA Z¢[A] exp [— 5 Ntr(A;},)?] and using
Z[A'] = kPTN?/2 Z4[A], we obtain Z (k) = kN (PHPD/27(1). Finally ( Ltr(4,)?) = — 2% 2 log Z(n)‘ =
D + pr. The same derivation with the replacement Z¢[A] — |Z¢[A]| holds for the phase-quenched rnoﬁdzell.
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Figure 1. The VEVs (\,)o (n = 1,2,3 and 4) in the phase-quenched model (2.11) are plotted for
r =1 (Left) and r = 2 (Right) against 1/N. The data for N > 8 can be nicely fitted to straight
lines meeting at the same point (1 + r/2) at N = oo, which demonstrates the absence of SSB for
each r.

From now on, let us consider the D = 4 case, which implies p = 2 due to (2.4). The
gamma matrices are given by

1 —1 1 )
F1201=<(1)0> ) F2=U2=<? 01) ) F3203=<0_01> ) F4=i04=<é?> .

Using a simple technique familiar in random matrix theory, it was shown in the large-N
limit and at infinitesimal r that the VEV (),,) is given as [65]

(2.10)

) = 1+7r+o(r) forn=1,2,3,
"V 1—=r+o(r) forn=4,

which implies that the SO(4) symmetry is broken down to SO(3). This SSB is associated
with the formation of a condensate (1/?{21/1@, which is invariant under SO(3) only.

Here the effect of the phase plays a crucial role. To see that, let us consider the
“phase-quenched model”

Zy :/dAeSW‘l, (2.11)
So[A] = Sp[A] — Nrlog |det D[A]] . (2.12)

Eq. (2.9) holds for this model as well (See footnote 8.), and therefore the absence of SSB
would imply in the large-IN limit

(ado=1+,  forall n=1234, (2.13)

where the VEV ( - )¢ is taken with respect to (2.11). Indeed this can be confirmed at
infinitesimal r [65]. Here we simulate the system (2.11) for » = 1,2 and plot the eigenvalues
(An)o against 1/N in figure 1. We find that the data can be nicely fitted to straight lines,
and the extrapolation to N = oo gives the value 1+ 7/2 for all n = 1,2,3 and 4 in accord



r=1 r=2
ansatz SO(3) SO(2) SO(3) SO(2)

(A1) .17 14 123 1.7
(A2) .17 14 123 1.7
(A3) .17 07 123 05
(A1) 0.5 05 031 0.1

free energy  -1.5 -1.8 -1.9 -3.6

Table 1. The results for the normalized eigenvalues (S\n) and the free energy obtained by the GEM
at N = oo with the SO(3) and SO(2) ansatz [66].

with (2.13)? with accuracy better than 0.3%. This implies, in particular, that the SSB of
SO(4) does not occur in the phase-quenched model.
In what follows we will study the normalized eigenvalues

(2.14)

The deviation of (\,) from 1 represents the effect of the phase. The relevant question is
whether this deviation depends on 7 in the large-N limit.

At finite r < 2, the large-N limit of the full model (2.1) was studied by the GEM up
to the 9-th order [66] in the same way as it was used in the IIB matrix model [18-21]. The
results for r = 1 and r = 2, which are the cases we focus on in this paper, are summarized
in table 1. We have translated the results for the unnormalized quantities (\,,) in ref. [66]
to the normalized ones (\,) using (2.13) and (2.14).

The free energy obtained with the SO(2) ansatz was found to be smaller than the one
with the SO(3) ansatz, which implies that the true vacuum is only SO(2) symmetric. At
smaller 7 [66], the free energy and the VEV ()\,,) obtained with the SO(2) ansatz asymptotes
to the ones obtained with the SO(3) ansatz, which ensures the consistency with the analytic
results (2.10) obtained at infinitesimal 7.

Monte Carlo simulation of the full model is not straightforward since the complex
integrand of (2.5) cannot be regarded as the Boltzmann weight, and hence the idea of
importance sampling is not applicable. One approach is to rewrite (2.5) as

Z = / dA e~ 5olAl gTAL (2.15)

and to calculate expectation values by reweighting

(0eT)

<eiF>O ’

where the VEVs on the right-hand side are taken with respect to the phase-quenched

(0) = (2.16)

model (2.11), and hence can be evaluated, in principle, by standard Monte Carlo techniques.
The VEV (e'')q is nothing but the ratio of the partition functions Z/Zy, and it decreases

9Similar results have been obtained for » = 0.25,0.5, 1.5, 4.0.



—N2AF

exponentially at large N as e , where AF > 0 is the difference in free energy of the

two systems. This can happen due to huge cancellations from the factor e, As a result,

const.V 2) configurations to compute an observable with given accuracy by

one needs Ofe
using the formula (2.16) directly. This is called the sign problem.

Another closely related problem is the so-called overlap problem. By using Z; in
sampling configurations, we usually sample the wrong region of configuration space, which
has little overlap with the dominant configurations in the system given by Z. This problem

becomes exponentially hard at large N and makes importance sampling inefficient.

3 Factorization method with a single observable

In this section we perform Monte Carlo studies of the model (2.5) by applying the factor-
ization method to a single observable as originally proposed in ref. [34]. While the analysis
shows various encouraging behaviors, we will see that the method is only partially suc-
cessful in reproducing the known results of the GEM. We argue that this is due to the
remaining overlap problem, and discuss in section 4 how it can be solved by generalizing
the method to multiple observables.

3.1 The basic idea

Let us consider calculating the VEV (\,) by Monte Carlo simulation. Instead of using the
reweighting formula (2.16) directly, we first rewrite the VEV as

<5‘n> - / dxxpn(x) (3'1)
0
in terms of the distribution function
pn(x) = <5(x — S\n)> . (3.2)

Applying now the reweighting (2.16) to the right-hand side, one finds that it factorizes as

pu(2) = - pn’ (@) wn(2) - (3-3)
The real parameter C' is a normalization constant given by'®

c (eMYg = (cosT)g, (3.4)
which need not be calculated in the present method. The real function p1(10) () is nothing
but the distribution function of A, in the phase-quenched model defined by

0 def X
(@) = (8= An)) . (3.5)

10T the second equality, we have used the fact that the phase I' flips its sign under the parity transfor-
mation Ap — —Ap, which is a symmetry of the phase-quenched model (2.12). A similar comment applies
also to the second equality of (3.6).



which is peaked at x = 1 due to the chosen normalization (2.14). The function w,(z)

in (3.3) is defined by

wn(x) d:ef <eir>n,x = <COS F>n,:v s (3.6)

where ( - ), » denotes a VEV with respect to the partition function
Tipw = / dAe 50 5(z — \y) . (3.7)

It turns out that w,(x) > 0, which simplifies our analysis significantly.!!
Using the saddle point approximation in the integral (3.1), the problem of determining
<5\n> can be reduced to that of minimizing the “free energy”

Fn(z) = —log pp(x), (3.8)
which simply amounts to solving
Oy def 4y 0y~ 4

It turns out that both sides of this equation scales as O(N?). Therefore, the saddle point
approximation actually becomes exact in the N — oo limit.

3.2 Practical implementation of the method

As we have discussed above, the calculation of the VEV ()\,,) reduces to the determination
of the two functions wy(x) and fy(LO) (z). Here we discuss how we can measure them by
Monte Carlo simulation following ref. [34]. For that purpose we approximate the delta

function 6(z — \,) in (3.7) by the Gaussian function and simulate the system defined by
1
Zny = [dAcTEVON V() = Ly - o, (3.10)

where v and € are real parameters. Let us then consider the distribution function of \,, for
the system (3.10), which is given by

pn,v(x) & <5(x — 5\n)>n\/ x pO () exp{ — V<x<)\n>o>} , (3.11)

where ( - ), v represents a VEV with respect to Z,, y. The position of the peak, which we
denote by x,, can be obtained by solving

0= T 1ogpuy(@) = FO(@) ~ (o V' (2(Anbo) (3.12)

Since the distribution function p,, v (z) is sharply peaked at x;, for sufficiently large ~,
we can use the VEV of A, as an estimator of zp, i.e.,

2 = Mn)nv - (3.13)

HThis property does not always hold in applications of the factorization method to a system with the
complex action problem. See ref. [35, 36] for a study in such a case.



By varying the value of £ in (3.10), we obtain the functions w,(z) and fy(LO) (z) by!?

wy(xp) = (cos)y, v, (3.14)
10G5) = Ao V' (Oadnv ) =7 o (b =€) - (3.15)

The parameter v should be chosen large enough to make the fluctuation of A smaller than
the required resolution in x. For the purpose of evaluating f,so)(x), however, one should not
use too large «. Theoretically, the right-hand side of (3.15) should converge to the correct

value in the v — oo limit, which implies that <<)\n>n,v — 5) x 1/7. Hence a small error in

(An)n,v propagates to f,(LO) (x) by the factor of .

Note that the computation of w,,(z) based on (3.14) is hard due to the sign problem.
However, we only have to obtain w,(z) in the region where the (possibly local) minima of
the free energy (3.8) are likely to exist. This typically implies the region where wy,(z) is
not extremely small. In such a region, one can make a sensible large-N extrapolation

1
O, () = A}E)noo N2 log wy,(x) . (3.16)

Then one can use the equation
! (0) =— & 3.17

to obtain the VEV (),). Since there is no sign problem in the calculation of f,so) (x), one
may obtain the left-hand side of (3.17) at larger N (if necessary) than the values of N
used to obtain ®,,(z) in eq. (3.16). Note also that the error on both sides of (3.17) due to
statistics and finite N does not propagate exponentially to (S\n> as a direct computation
based on (3.1) would imply.

3.3 Asymptotic behaviors of the functions w,(x)

In our approach the effects of the phase I' are represented by the right-hand side of (3.17).
Therefore, the large-N extrapolation (3.16) is the most crucial step for the success of the
method. In the left columns of figures 2 and 3, we plot our results for ]\}2 log wy,(z) for
r =1 and r = 2, respectively.

As one can see from these plots, the function w,(z) approaches 1 for x < 1 and/or
x > 1. These are the regions, which are favored by the effects of the phase. We can un-
derstand these properties as follows. Let us recall that w,,(x) defined by (3.6) is the VEV
of el in the ensemble (3.7). The dominant configurations in the ensemble for x < 1 have
(5 — n) shrunken directions due to the ordering (2.8), and hence they are approximately

configurations with dimension d = (n — 1). Similarly, dominant configurations for x > 1

20ne might naively think that the function p&f))(x), and hence the function f.” (z), can be obtained
by measuring the distribution of A, in the phase-quenched model Zy. By such a direct method, however,
accurate calculation is possible only in the vicinity of the peak = 1. Note that the solution of (3.9) is
typically not very close to the peak.

,10,



have n extended directions, and hence they are approximately configurations with dimen-
sion d = n. Since the phase of the determinant vanishes for collapsed configurations (i.e.,
with 1 < d < 3 dimensions) as we explained below eq. (2.5), the VEV of e!l" approaches 1
when such configurations dominate in the corresponding ensemble.

Moreover, we can deduce the asymptotic behaviors of the functions w,(z) as

1 { —CnCUS_n (m <1l,n=2 3,4) ) (3 18)

log wy, (7) =~
N2 osw (x) —dpz= 4 (2> 1,n=1,2,3) .

This can be derived from the property (2.6) of the phase. It follows that the fluctuation
of the phase is of the order of 6I" ~ (§A/|A[)*~ around a collapsed configuration with
1 < d < 3 dimensions, where 0A and |A| represent the typical scale of A, in the shrunken
and extended directions, respectively. Due to the definition (2.7), it is expected that 0 A/|A]
is proportional to y/z (and 1/y/x) for x < 1 (and x > 1), respectively. When z < 1, the

distribution of the phase is therefore expected to have a width o oc (y/z)>™"

13

. Assuming
that the distribution is Gaussian,'® we can evaluate the expectation value of el by using

the formula [41]

1 1 ; 1
ar Jome exp (— 9,2 F2> el = exp (—202> . (3.19)

1_2 5—n

Thus we obtain —logwy(z) = ;0% o« Similarly, when z > 1, the distribution is

expected to have a width of the order of (1/y/z)*", and hence — log w, (z) oc z~*=™).

We fit our data to the asymptotic behaviors (3.18) and extract the coefficients ¢, and
dy, as described in appendix C. It turns out that the finite-N effects in these coefficients
are of the order of 1/N. Based on this observation, we make large-N extrapolations to
obtain (3.16) in the asymptotic regions, which is also plotted in the left columns of figures 2
and 3. The two solid lines represent the margin of error due to the uncertainty from the
large- N extrapolation.

The regions of z in which ®,(x) becomes small represent the regions in which the
sign problem becomes severe. As we approach such regions, it becomes more difficult to
obtain data points, in particular, for larger N. A big virtue of the factorization method is
that we can use the function @, (x) in the asymptotic regions to extrapolate towards the
region where the data points are not available due to the sign problem. One should keep
in mind, however, that the true function ®,(z) may deviate from the asymptotic behavior
as one approaches  ~ 1, which causes certain systematic error. We will discuss this issue
in sections 4.4 and 4.6.

3.4 Results for (A\,)

On the right columns of figures 2 and 3, we plot our results for the function A}Q f,(LO) (x) for
r =1 and r = 2, respectively. Since there is no sign problem in this calculation, we can
obtain results for much larger N, which clearly show the large-N scaling behavior. Note
also that the function ]\}2 f,so) (x) crosses zero at x ~ 1 corresponding to the fact that p1(10) (x)

13We have checked that this is indeed the case in the region of x where wy(x) is close to 1.
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n Ts x] D, (xs) D, (x1) En JANS
1 2.14(1) -0.231(3)
2 049(1) 1317(1) -0.274(3) -0.218(1) 0.27(1) 0.33(2)
306202  L11(2)  -0.20(1)  -0.18(2)  0.10(2) 0.11(4)
4 0.71(5) -0.20(2)

r=2
n Ts x] D, (xs) (1) =n AN

1 2.12(2)

2 04718(1) 1.39(1) -0.2528(1) -0.27(1) 0.253(5) 0.23(1)
3 047(1)  1.159(1)  -0.208(3) -0.305(2) 0.18(1)  0.08(2)
4 0.44(4) -0.20(2)

-0.213(2)

Table 2. The first two columns show the solutions (x5 and ;) to eq. (3.17) that correspond to the
(local) maxima of p,(z). The other columns show the results for @, (xs), ®,(x1), E, and A, that
appear in eq. (3.20).

is peaked at  ~ 1. The asymptotic behaviors of the functions f,SO) (x) in the regions = < 1
and x > 1 are discussed in appendix B. In the same figures, we also plot — ddm ®,,(x) using
the scaling function ®,,(x) obtained as described above. Then the solutions to (3.17) can
be obtained as the x coordinates of the intersection points.!*

For n = 1,4 there is only one intersection. The effect of the phase is to suppress the
x ~ 1 region and to shift the corresponding scale to larger /smaller scales, respectively. For
n = 2,3 there are two intersections, which correspond to the local maxima of p,(x). The
effect of the phase is to produce a double peak structure in p,(z), which corresponds to
two dynamically generated length scales for the corresponding dimensions. In table 2 we
present the solutions of (3.17) for each n, where x5 and z; denotes the solutions in the
r < 1 and x > 1 regions, respectively.

For n = 2,3, we have to determine which of the two peaks of p,(z) actually dominates
in the N — oo limit. For that purpose we calculate the difference of the free energy [34]

A, def ]&2 {log pn(x1) — log pn(ms)} = {@n(ml) — @n(ms)} +2,, (3.20)

@
where EZ, d:ef/ dx {]\},2]}30)(3:)} . (3.21)

If we find that A,, is positive (negative), the peak at x = x; (z = x5) dominates in the
large-N limit. Note that A, depends on the values of ®,(z) at xg and xj, but there is
no need to know the correct values of ®,(z) in the region where we have a severe sign

MWe will discuss in section 4.5 that in fact there should be more intersecting points that are not seen in
these plots. The statements given below ignore this subtle issue.
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problem. The integral =, can be computed by fitting the data points for largest N to some
known function with free parameters in the region zy < z < z;, and then integrating that
function over the region. In table 2 we also present the results for ®,,(zs), @, (1)), =, and
A,. For n = 2 we obtain a clearly positive value for A,,, which means that the peak at
x = x; dominates. For n = 3 the obtained value for A,, is too small to reliably determine
the dominant peak considering the expected systematic errors (See section 4.6.) in ®,,(zy)
and @, (z).

The results presented above suggest that (\,) indeed deviate from 1 representing the
strong effect of the phase, and that we are likely to get (A1), (A) > 1 > (\4), which is
consistent with the GEM results. Thus our results support the speculation that the SSB of

SO(4) symmetry occurs due to the effect of the phase. Moreover, the value of x| for n = 2
and the value of zs for n = 3 are reasonably close to the GEM results for (A) and (A3),
respectively, obtained with the SO(2) ansatz. (See table 1.)

On the other hand, our results for (\;) and (\,) are not very close to the corresponding
GEM results with the SO(2) ansatz. We also notice a puzzle. In usual Monte Carlo
calculations, one obtains various observables using the same set of configurations. However,
in the present method, one has to perform independent simulations to obtain (S\n> for
different n. In fact the dominant configurations one obtains by simulating the constrained
system (3.7) with the parameter = fixed at the GEM results for (\,) can be quite different
for different n. While this is not a problem per se at least theoretically, it suggests the
existence of a practical problem, which is closely related to the observed discrepancies.

For instance, the dominant configurations one obtains from the constrained sys-
tem (3.7) with n = 1 and 2 > 1 have A\j(= x) > 1 > Xy, A3, \s. Note that wy(z) is
calculated as the VEV of e in such an ensemble. When z is close to (\;) obtained by the
GEM with the SO(2) ansatz, the dominant contribution to w; () is expected to come from
SO(2) symmetric configurations due to the enhancement by e'’. This clearly suggests that
the overlap problem still remains. As a result, it is expected that w(x) is underestimated
in that region of x, which naturally explains the discrepancy for <5\1> observed above. Due
to this remaining overlap problem, we need to be careful in interpreting the results of the
single-observable analysis. We will come back to this point in section 4.5.

4 Factorization method with multiple observables

The important point of the method described in the previous section was to consider the
distribution function (3.2) instead of trying to calculate the VEV directly by reweight-
ing (2.16). Then the effect of the phase was factorized and represented nicely by the
weight function wy,(z) defined by (3.6). This function suppresses the region near x = 1,
which is preferred by the phase-quenched model, and enhances the regions x < 1 and/or
x > 1. By solving the equation (3.17), we can obtain solutions quite different from = = 1.
If we simulate the phase-quenched model, the observables \,, fluctuate around A, = 1, and
it would be difficult to sample configurations having A, different from 1, which represents
the overlap problem. By simulating the constrained system (3.7), we are able to estimate
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the effect of the phase in the region strongly suppressed in the phase-quenched model, and
thus the overlap problem can be reduced.

However, we also noticed that the overlap problem can still remain when one evaluates
wy(x) defined by eq. (3.6) since it is calculated as the VEV of el in the constrained
system (3.7). There might be some region of the configuration space which cannot be
sampled efficiently by simulating the constrained system (3.7), and yet has important
contribution to the VEV due to less fluctuation of I'. In this section we discuss how we
can solve this problem by generalizing the factorization method to multiple observables.
Instead of considering the distribution function of ), for each n separately, we consider the
distribution function specifying all the A, (n=1,2,3,4) at the same time. We discuss the
possibility of including more observables in section 4.7.

4.1 The generalized formulation

We can actually generalize all the formulae in section 3.1 to the multi-observable case in a

straightforward manner. The relevant functions for the single-observable case can then be

written in terms of those for the multi-observable case. In this generalized formulation, one

can clearly identify the overlap problem that still remains in the single-observable analysis.
Let us begin by defining the distribution functions for multiple observables as

p($1,$2,$37x4) = <H5(1‘k — S\k)> s (4.1)
k

p(o) (1‘1,1‘2,1‘3,.%’4) = <H5(1‘k — S\k)>0 (4.2)
k

for the full model and the phase-quenched model, respectively. By definition (2.8), these
functions vanish unless x1 > x9 > x3 > x4. Applying the reweighting (2.16) to the right-
hand side of (4.1), one finds that it factorizes as

1
plwr, 22,73, 04) = PO (21, o, 23, m4) w1, 20, T3, T4) (4.3)

where C is a normalization constant given by eq. (3.4). The correction factor
w(xy, e, 3, z4) is defined by

def ;
w(wy, v2, T3, T4) = <ezr>x17$27$37$4 = (cos F>x17$27l‘37$47 (4.4)

where ( - )z, 20.25,2, denotes a VEV with respect to the partition function
Ly w2338 = /dA e H(S(xk - 5\k) : (4.5)
k

Note that all the four observables X, (n =1,2,3,4) are constrained here in contrast to (3.7).
We can rewrite the relevant functions in the single-observable case in terms of the
functions defined above. For instance, we have

pn(xn) = / H dxy p(z1, 22, T3, T4) (4.6)

k#n
P (xn) = /H day, p0 (21,29, 73, 74) . (4.7)
k#n
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Using (3.3), we also obtain

 Cpnlwn) S Tign daw 9O (@1, 20, 23, 20) w1, 22, 3, 24)

- , 4.8
pglo) (l“n) f Hk;ﬁn dxy P(O) (961, T9, X3, x4) ( )

Wy (Tn)
where we have used (4.3), (4.6) and (4.7) in the second equality. This formula reveals the
possibility that the overlap problem can still occur when one calculates the function wy, ()
defined by (3.6) as the VEV of ¢! in the system Zn.z- The region that gives dominant
contribution in the numerator of (4.8) may not be sampled efficiently by simulating the
system Z,, ;. It is also clear that the overlap problem can be reduced further by constraining
all the four observables A, (n =1,2,3,4) at the same time.

Now we have to maximize the distribution function p(x1, 2, x3, x4) with respect to x1,
9, x3 and x4. This leads to the coupled equations

log pO (1, 29, w3, 24) = — logw(xy,ze,x3,24) forn=1,2,34. (4.9)

Bacn 8-%'71

The function on the left-hand side and w(x1,z9, x3,x4) defined by (4.4) can be obtained
similarly to the single-observable case described in section 3.2. In fact it is a formidable
task to search for solutions in the 4d parameter space (x1,x9,x3,24) in full generality.
However, given the insights we obtained from the analysis in the previous section, we can
restrict ourselves to the region of (x1,x2,x3,x4) in which we expect to find a solution. In
particular, it is expected that there exist solutions which satisfy

(a) zy=w9=w3>1>u1y,
(b) Ty =x0>1>23 > 24,
(C) 1 >1>x0 > 23> 24 . (4.10)

The solutions one obtains for the cases (a) and (b) correspond to the SO(3) and SO(2)
symmetric vacua, respectively, and hence one can compare the results against those ob-
tained by the GEM with the SO(3) ansatz and the SO(2) ansatz.!> That would still require
solving coupled equations for 2 variables in the case (a), and for 3 variables in the case
(b). In what follows, we restrict ourselves to the r = 1 case for simplicity, and investigate
whether the GEM results for (\,) with the SO(3) ansatz and the SO(2) ansatz are indeed
solutions to (4.9) in the cases (a) and (b), respectively. We also discuss the calculation of
free energy in section 4.6.

4.2 Analysis for the SO(3) symmetric vacuum

Let us consider the case (a) in (4.10). We define the reduced functions

def
p(SOO)(?))(x’y) = p(o)(x,x,x,y), (411)

def
wso(3)($,y) = ’U)(JT,CE,f,y) . (412)

5The case (c) was not studied by GEM in ref. [66] since it is technically more difficult than the other
cases due to the existence of more free parameters in the Gaussian action. However, our result Ay > 0
discussed in section 3.4 strongly suggests that the solution for the case (c¢) has larger free energy than the
solution for the case (b).
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Figure 4. (Left) The function A}Q logwgo(s)(w,0.5) is plotted against x for N = 8,12,16. The
solid lines represent the function ®go(3)(z,0.5) obtained by extrapolation to N = oo as described

in appendix D.1. (Right) The function ., fs(%)(g)_z(z, 0.5) is plotted against = for N = 16, 32, 64.
The solid lines represent — 6‘1 Pgo(3)(7,0.5) obtained from the plot on the left.

From the coupled equations (4.9), we obtain the counterpart of (3.17) as

I Lo 0
N2 féc3<3),¢<x, y) = ~oc P50 (3) (2, 9) (4.13)
where ¢ = z,y, and we have defined
(0) ()
fso(?’)vf(x’ y) - a< lOg pSO(S) (:Ua y) ) (414)
def . 1
Cso()(2,y) = lim o logwsoes) (@, y) - (4.15)

The GEM results obtained for 7 = 1 with the SO(3) ansatz are (\,)so3) = 1.17 (n = 1,2,3)
and (A\4)s0(3) = 0.5 (See table 1.) We would like to check whether (z,y) = (1.17,0.5) indeed
solves eq. (4.13).

First let us consider the ( = x component of eq. (4.13). Let us set y to 0.5 and solve
the equation for z to see if the solution agrees with the value 1.17. We can calculate
wgo(3)(z,0.5) and fé((]))(gm(x,()ﬁ) using the method described in section 3.2. In figure 4
(Left) we plot the function ]\}2 log wgo(s)(7,0.5) for N = 8,12,16. We make a large-N
extrapolation using the asymptotic behavior at large = to obtain ®go(3) (x,0.5) represented
by the solid lines. (See appendix D.1 for the details.) Figure 4 (Right) shows that the
solution lies at x = 1.151(2), which is consistent with the GEM value 1.17.

Next let us consider the ¢ = y component of eq. (4.13). We set = to 1.17 and solve the
equation for y. In order to obtain ®g03)(1.17,y), we have to make a large-IV extrapolation.
For that purpose we first tried to use the asymptotic behavior of ]\}2 log wso(g)(1.17, y) at
small y. However, it turned out that the finite-N effects in ]\}2 log wso(g)(1.17, y) at small y
are much severer than in ]\}2 log wgo(3) (x,0.5) at large = investigated above.'® We therefore
use an “orthogonal” method here.

%The same trend can also be seen in the single-observable analysis relevant to the SO(3) ansatz. In
figure 2 (Left), the finite-N effects in logws(z) at z < 1 are much severer than in logws(z) at z > 1.
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Figure 5. (Left) The values of the function ®go3)(1.17,y) at y = 0.45,0.5,0.55 are plotted against
y. (Right) The function ., f§2(3) ,(1.17,) is plotted against y for N = 16,32,64. The solid lines
represent 7(%4)30(3)(1.17, y) at y = 0.5 obtained from the plot on the left.

Note that we were able to obtain the function ®go3)(7,y) at y = 0.5 from figure 4
(Left). We can do the same thing for different y such as y = 0.45,0.55. (See appendix D.1
for the details.) In figure 5 (Left) we plot ®go(3)(1.17,y) for y = 0.45,0.50,0.55. By fitting
the three points to a straight line, we obtain the derivative 8831(1)80(3)(1.17, y) = —0.33(2) at
y = 0.5. Figure 5 (Right) shows that the solution lies at y = 0.59(2), which is reasonably
close to the GEM value 0.5 given the uncertainties involved in the analysis.

4.3 Analysis for the SO(2) symmetric vacuum

Let us consider the case (b) in (4.10). We define the reduced functions
0 def
Poe (@:,2) = pO(w,2,y,2), (4.16)
def
wSO(Q)(x7y7 Z) = U)(l',l’,y,Z) : (417)
From the coupled equations (4.9), we obtain the counterpart of (3.17) as

L) 0
N2 fSO(2)7¢(~"3ay,Z) = —a<¢80(2)($>y, z), (4.18)

where ( = x,y, z, and we have defined

0 def O 0
fio@ (@y,2) = o log p0) (9, 2) (4.19)
def . 1
Pso)(,y,2) = lim 0, logwso)(@,y,2) - (4.20)

The GEM results obtained for r = 1 with the SO(2) ansatz are <5\n>50(2) =14 (n =
1,2), (A3)so(e) = 0.7 and (A4)go(2) = 0.5 (See table 1.) We would like to check whether
(z,y,2z) = (1.4,0.7,0.5) indeed solves eq. (4.18).

First let us consider the ( = = component of eq. (4.18). We set y and z to 0.7 and
0.5, respectively, and solve the equation for z. In figure 6 (Left) we plot the function
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Figure 6. (Left) The function ]\}2 log wso(2)(7,0.7,0.5) is plotted against x for N = 8,12,16.
The solid line represents the function ®go(2(,0.7,0.5) obtained by extrapolation to N = oo as
described in appendix D.2. (Right) The function J\}Q fs(%)(z)_’z(x,().l()ﬁ) is plotted against x for
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-0.13 : : ‘ 08—
. 058 N=32 6 -
= -0.14 Q) %é N=B4 o
2 S 04r - (0/dly) Pz (1:4.y,0.5) ]
< F | %@@“
> 015t = 03
A > 02t "B,
= 8 g,
a -0.16 | 3 oi1f -
3 b= 0r %A@@.
4 < “CBg
017 | Z 01+ Sioug,
T o027 -
-0.18 : s 03 ‘ ‘ ‘ ‘ | | | |
0.6 0.65 0.7 0.75 0.8 05 06 07 08 09 1 11 12 13 14
y

Figure 7. (Left) The values of the function ®go(2)(1.4,y,0.5) at y = 0.65,0.70,0.75 are plotted
against y. (Right) The function fgﬁ))@) ,(1.4,4,0.5) is plotted against y for N' = 16,32, 64. The
solid lines represent 7(961/(1)30(2)(1.4, y,0.5) at y = 0.7 obtained from the plot on the left.

]\}2 log wgo(2) (2,0.7,0.5) for N = 8,12,16. We make a large-N extrapolation using the
asymptotic behavior at large x to obtain ®gg(9)(x,0.7,0.5) represented by the solid line.
(See appendix D.2 for the details.) Figure 6 (Right) shows that the solution lies at = =
1.373(2), which is consistent with the GEM value 1.4.

Next let us consider the ¢ = y component of eq. (4.18). We set z and z to 1.4 and 0.5,
respectively, and solve the equation for y. In order to obtain <I>SO(2)(1.4, y,0.5), we have to
make a large-IN extrapolation. The region of y of the function ]\}2 log wgo(2)(1.4,y,0.5) is
restricted to 0.5 <y < 1.4, and we do not have any asymptotic behavior with respect to
y that can be used for large-IN extrapolation. Therefore we use the “orthogonal” method
which was used in section 4.2 for studying the ( = y component of eq. (4.13). Since
we were able to obtain ®gq 2 (z,y,2) for y = 0.7 and z = 0.5, we do the same thing
for different y such as y = 0.65,0.75. In figure 7 (Left) we plot ®g(2)(1.4,9,0.5) for
y = 0.65,0.70,0.75. By fitting the three points to a straight line, we obtain the derivative
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Figure 8. (Left) The values of the function ®go(2)(1.4,0.7,2) at z = 0.45,0.5,0.55 are plotted
against z. (Right) The function ., f;g;@) .(1.4,0.7, 2) is plotted against z for N = 16,32,64. The
solid lines represent ,é?z Pg0(2)(1.4,0.7, 2) at z = 0.5 obtained from the plot on the left.

gy@so(z)(1.4,y,0.5) = —0.243(4) at y = 0.7. Figure 7 (Right) shows that the solution
lies at y = 0.649(4), which is consistent with the GEM value 0.7 given the uncertainties
involved in the analysis.

Finally let us consider the ( = z component of eq. (4.18). We set x and y to 1.4 and
0.7, respectively, and solve the equation for z. In order to obtain ®gp(9)(1.4,0.7,2), we use
the “orthogonal” method.!” Since we were able to obtain Ps0(2) (z,y,2) for y = 0.7 and
z = 0.5, we do the same thing for different z such as z = 0.45,0.55. In figure 8 (Left) we
plot ®50(2)(1.4,0.7,2) at z = 0.45,0.50,0.55. By fitting the three points to a straight line,
we obtain the derivative gZCI)SO(Q)(lA,O.?, z) = —0.357(4) at z = 0.5. Figure 8 (Right)
shows that the solution lies at z = 0.551(2), which is close to the GEM value 0.5.

4.4 Estimates on the systematic error

One thing we notice from the results in sections 4.2 and 4.3 (See table 3 for a summary.)
is that the agreement with the GEM results is better for the large eigenvalues (\,) > 1
than for the small eigenvalues () < 1. Apart from the use of the “orthogonal” method
in the latter case, we consider that the systematic error may be a possible reason.

Let us first consider the SO(3) symmetric vacuum. The VEV (),) is determined by
solving (4.13). The left-hand side is determined accurately since there is no sign problem,
and they behave as

1
N ) 2 (@:,05) ~ —a(x —1.17) = b, a=143(2),b=0174(1),  (421)

1 - -
e Fom (L1, y) ~ —a(y—0.5)+b,  a=170(4),b=0452(1),  (422)

near the solution as one can obtain from the right panel of figures 4 and 5. Let us denote
the right-hand side of the ¢ component of (4.13) by Dgg3)¢, and assume that it has an

"We first tried to use the asymptotic behavior of ]\}2 log wso(2)(1.4,0.7,2) at small z. However, it
turned out that the finite-N effects in ]\}2 log wso(2)(1.4,0.7,2) at small z are much severer than in
1\}2 log wgo(2)(x,0.7,0.5) at large x investigated above.
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error ADgq3),¢c, where ¢ = z,y. This error includes the systematic error due to deviation
from the asymptotic behavior as well as the one due to the large-N extrapolation. Then
the error in Dgg(s),, propagates to the error of the solution z as a Az = ADgq3) ., from
which we obtain
Az _ |Dso@)..l ADso@) 01 ADso(3),x
T ar  |[Dso@)el  [Dso@)el

On the other hand, the error in Dgg(s), propagates to the error of the solution y as

(4.23)

a Ay = ADgo(3),y, from which we obtain

Ay _ Pso@yl ADsopny , , APsow)y

- . . 4.24
y ay  |Dso)yl [Dso3).yl (4.24)

Thus we find that the coefficient is four times bigger for y than for z. A similar analysis
can be made for the SO(2) symmetric vacuum, and we obtain

AD AD

Az 0.24 S0 91 SO(2),x 7 (4.25)
x  0.82-1.4 [Dso).l [Dso(2).|
A 0.25 AD AD

y 0907 [Dso),l 1Dso).4l
A 0.35 AD AD

z N SO(2),z ~ 0.43 S0(2),2 , (427)
z  1.6-0.5 [Dgo),.| [Dso ),

where Dgg(a),¢ and ADgg(g)¢ are defined analogously to the SO(3) case. Thus we find
that the relative errors for the large eigenvalues tend to be smaller than those for the
small eigenvalues.

4.5 Comparison with the single-observable analysis

In this section we compare the results obtained above by the multi-observable analysis
with those obtained by the single-observable analysis in section 3.4. For that, we first need
to reconsider the interpretation of the latter taking into account the artifacts due to the
remaining overlap problem.

Let us recall that the generalized distribution function p(z1, ze,z3,z4) is expected to
have three local maxima corresponding to each of the three cases (4.10). Therefore, the
distribution function p,(z) in the single-observable analysis is also expected to have three
local maxima due to the relation (4.6). The fact that we observe only two for n = 2,3 and
one for n = 1,4 as we described in section 3.4 is due to the remaining overlap problem.

We reconsider the plots in the right column of figure 2 from this point of view. For
instance, the intersection of the two curves shown in the uppermost panel can be naturally
identified as the one corresponding to the case (c¢). As x decreases from the intersecting
point, the true curve y = — d‘i:@l(x) is expected to have four more intersections with the
curve y = ]\}2 fl(o) (z) in the z > 1 region. Two of them represent the local maxima of
the distribution function p;(z) corresponding to the cases (a) and (b) in (4.10). Such
a structure is invisible in the results of the single-observable analysis due to the overlap
problem. From this point of view, it is misleading to compare the solution z; for the n =1
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ansatz SO(3) SO(2)
method single-obs. multi-obs. GEM  single-obs.  multi-obs. GEM

(A1) — — 1.17 — — 1.4
(A2) — — 1.17 1.317(1) 1.373(2) 14
(A3) 1.129(1)  1.151(2)  1.17 0.62(2) 0.649(4) 0.7
(A1) 0.71(5) 0.59(2) 0.5  not available  0.551(2) 0.5

Table 3. The results for the normalized eigenvalues (5\”> for r = 1 obtained by the factorization
method with the single-observable and multi-observable analyses for the SO(3) and SO(2) symmetric
vacua. The dash implies that the result should be the same as the one below in the same column
due to the imposed symmetry. We also show the GEM results obtained at N = oo in ref. [66].

case with the (\;) for the SO(2) symmetric vacuum. Rather we should consider it as an
estimate for (\;) in the vacuum corresponding to the case (c) in (4.10). This provides a
prediction for the calculation using GEM, which is not done yet. (See footnote 15.)

Similar arguments apply to the n = 2,3, 4 cases. The solutions zs and ] for the n = 2
case should be interpreted as estimates on <5\2> in the vacuum corresponding to the case
(c) in (4.10) and in the SO(2) symmetric vacuum, respectively. The solutions zs and z;
for the n = 3 case should be interpreted as estimates on (A3) for the SO(2) and SO(3)
symmetric vacua, respectively. The solution xg for the n = 4 case should be interpreted as
an estimate on (\;) for the SO(3) symmetric vacuum.

In table 3 we summarize our results for (\,) corresponding to the SO(2) and SO(3)
symmetric vacua. We also show the results of the single-observable analysis with the new
interpretation except for an estimate on (\4) for the SO(2) symmetric vacuum, which is
not available. We do find that the results of the multi-observable analysis have better
agreement with the GEM values.

4.6 Calculation of the free energy

In sections 4.2 and 4.3, we have checked that the GEM results with the SO(3) ansatz and
the SO(2) ansatz can indeed be obtained as solutions to (4.9). In order to determine which
solution dominates the path integral, we need to compare the free energy. This was done in
the GEM and the result is shown in table 1, from which we find that the SO(2) symmetric
solution dominates in the large-NV limit. Here we try to obtain the difference of free energy
for the two solutions by Monte Carlo simulation. The factorization method has the nice
feature that the difference of free energy is decomposed into the term coming from the
phase-quenched model and the term due to the effect of the phase. The former can be
calculated accurately, and the latter is the main source of the error.

What we should calculate is the difference of log p(x1, x2, x3,x4) between the two so-
lutions. Let us denote the solution for cases (a) and (b) as #, = (X', X', X", Y’) and
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7y, = (X, X,Y, Z), respectively. From table 1 we find for » = 1 that

(a) X'~1.17,Y'~05, (4.28)
(b) X~14,Y ~0.7,Z~05. (4.29)

Using the factorization property (4.3), we obtain

def =
A= NQ{logp(wa) logp(wb)}
= {‘1)80(3) (X, Y') = @g0(2)(X, Y, Z)} + =, (4.30)
where = /fa dx; Lo log p O (1, 22, 3, 24) (4.31)
— = 5 ']N26.Tj gp 1,42,L3,44) - .

The first term in (4.30) can be estimated as (See appendix D.)

Bso(3)(1.17,0.5) = —0.160(3), (4.32)
Bgo(2)(1.4,0.7,0.5) = —0.155(1) . (4.33)

In order to calculate the second term = in (4.30), we first define a path in the (1, x2, 3, 24)-
space connecting the two solutions Z, and &, obtain the gradient of log p(®) (r1,x9,23,24)
and integrate it along the path. As a path connecting the two solutions, we consider

(X, X,Y,2) — (X, X,X,Z),
Gy (X, X,X,2)— (X,X,X,Y),
Cs 1 (X, X, X,Y")— (X', X', X', Y") .

The paths Cj and C5 are investigated already in sections 4.3 and 4.2, respectively, while
the path Cy should be investigated newly. In the r = 1 case, we have Y ~ Z’ accidentally,
and therefore the study of the path Cy can be totally omitted. The second term in (4.30)
can then be evaluated as

1.4 1 1.4 1
/ 0(2 (1.4,y,0.5) dy —/ N2fS ( ,0.5) dx
1.17
~0.014) — (—0.079) = 0.065 , (4.34)

where the integrals are calculated by fitting the data points for largest N in figures 4
and 7 (Right) to some known functions with free parameters in the integration domain.
The errors are negligible compared to those in the first term of (4.30). Thus we obtain
A = 0.060(4), which should be compared with the value A ~ —0.3 predicted by GEM as
one can see from table 1.

According to the interpretation of the single-observable analysis given in section 4.5,
what we have done above may be regarded as a refined version of the calculation of Az in
section 3.4, where we obtained Az = 0.11(4) for r = 1.

Let us recall that the calculation of (4.34) does not have much ambiguity. Note also
that Z > 0 implies that the SO(3) symmetric configuration (X', X', X’ Y”") has lower free
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energy in the phase-quenched model than the SO(2) symmetric configuration (X, X,Y, 7).
This is reasonable considering that the former configuration is closer to the dominant SO(4)
symmetric configuration A, = 1 in the phase-quenched model.

On the other hand, the estimates (4.32) and (4.33) may be subject to systematic
errors due to the deviation of the functions ®gq3) (2,0.5) and Pso(2) (2,0.7,0.5) from their
asymptotic behaviors and due also to large-N extrapolations. Let us recall that the error
propagation in solving the ( = x component of eq. (4.13) is given by (4.23), while the error
in (4.32) can be roughly estimated to be

A®g03)(1.17,0.5)  ADgo3)

~ . 4.35
|Ps0(3)(1.17,0.5)]  [Dso(3),.l (4.35)

Therefore, the relative error in ®g3)(1.17,0.5) is ten times larger than that in (A3) in the
SO(3) symmetric vacuum. The crucial point here is that the function ®gg3)(z,0.5) changes
very rapidly in the region where the solution to (4.13) lies. Therefore, a small systematic
error in its estimation affects the value at the solution much more than the solution itself.
A similar argument applies also to the SO(2) symmetric vacuum. It is therefore reasonable
to conclude that the first term in (4.30) is not obtained with the accuracy that is sufficient
for the determination of the sign of A.

While this sounds a bit disappointing, let us recall that the SO(2) and SO(3) sym-
metric vacua become degenerate as the parameter = N¢/N of the model goes to zero.
For instance, it would have been much easier to compare the free energy for the solutions
corresponding to the cases (b) and (c) in (4.10) as the calculation of Aj in section 3.4 sug-
gests. Clearly the situation would be model dependent, and we consider that the difficulty
in the calculation of the free energy is not a generic feature of the factorization method.

4.7 Including more observables

As we have seen above, the overlap problem can be reduced drastically by constraining all
the A, (n=1,2,3,4) at the same time instead of constraining just one of them. A natural
question that arises then is whether there is no more overlap problem we have to worry
about so that we actually do not need to include more observables in our analysis. Note
that this is relevant not only to the calculation of the VEV of observables other than Ay,
but also to the calculation of (5\”> and the free energy that we have discussed above.

Let us see directly a possible overlap problem associated with a general observable O

in a simulation with constraints on A, (n = 1,2,3,4). For that we rewrite the VEV (O) as

4 4
(0) = / [T e (O T ot~ A)) (4.36)
k=1 k=1

4 <(’)eir>
= /dekp($1,$2,$3,$4) TLE L (4.37)
k=1 <€’T>
x1,22,T3,T4

Assuming the usual equivalence between the canonical ensemble and the microcanonical
ensemble, we may consider that the integral over xj in (4.37) is dominated by (X, X,Y, Z)
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giving the absolute maximum of p(x1,x2, x3,x4). This leads to

(o)
X,X\Y,Z

()
X,X\Y,Z

Thus we can calculate the VEV by using the standard reweighting formula within the
“microcanonical ensemble” characterized by (X, X,Y,Z). For O = An, the VEV will be
given by X, X,Y, Z for n = 1,2, 3,4, respectively, as it should.

(0) ~ (4.38)

For a general operator O, however, we can still have an overlap problem due to the
same reason that we have one when we apply the reweighting method to the original model.
If it turns out that (O)x, x v,z is actually close to (4.38), there is no more overlap problem
as far as the operator O is concerned. Note that this requires that

< OeiF> N <(9> <ez‘F> : (4.39)
X, X,Y,Z X, X,Y,Z X, XY, Z

as we can see from (4.38). Eq. (4.39) only implies that the correlation of the operator
O and the phase factor e/ within the “microcanonical ensemble” is small. If the same
statement holds for arbitrary observable, we may say that the sign problem is practically

solved even if <e’T> is not close to one at all.
X,X,Y,Z

2Ly

Thus we find that the success of the factorization method in a general model relies
on whether one can find the minimal set of observables that is needed to “solve” the sign
problem in the above sense [67]. We consider that the matrix model we are studying
provides an explicit example in which this can be done.

In order to provide some evidence for this statement, let us consider an observable

1 2
O=-4 gm«mu, A2, (4.40)
WV

and the normalized one @ = 0/(O)y. When we constrain O to a small value, the domi-

nant configurations have the property [A,, A,] ~ 0, meaning that A, are simultaneously

(1) (N

diagonalizable, e.g. as A, = diag(oy’, -+, au )). For such configurations, the determi-

detD = ﬁ{Z(afj))Q} >0. (4.41)

Therefore, the observable (4.40) is considered as a “dangerous” one, which can potentially

nant becomes

have strong correlation with the phase factor.

Clearly the formula (4.38) is not useful for actually investigating the overlap problem
associated with the operator O. For that purpose, we can use the factorization method
including not only A, (n=1,2,3,4) but also O. Let us define the corresponding functions
p® and w with five arguments, and also define the reduced functions

o) (@) = pO(X, XY, Z,2), (4.42)
wo(z) = w(X, XY, Z z) . (4.43)
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Figure 9. (Left) The function ]\}2 logwe(z) is plotted against « for N = 6,8,12. We also plot
the function ®p(x) obtained by extrapolation to N = oo as described in appendix D.2. The
two solid lines represent the margin of error. (Right) The function ,, di log pg) (x) is plotted for

N =8,16,32. We also plot —di@o(x) obtained from the plot on the left.

The VEV (O) can then be obtained by solving

1 0 d
N2 fo ' (x) = = dp Sp(z), (4.44)
where f((/)o) (z) and ®p(x) are defined as
d
16 @) = | logpd) (), (4.45)
1
Qp(z) = A}E)noo N2 log wo(x) . (4.46)

From figure 9 (Left) we find that ]\}2 log wo(x) approaches zero for  — 0 as expected
from (4.41). We make a large-N extrapolation as described in appendix D.2 to obtain
® (), which is also shown in the same figure by the two solid lines showing the margin
of error. From figure 9 (Right) we find that the effect of the phase is to shift the estimate

of (O) by Az = 0.07(3). On the other hand, the standard deviation of the distribution
pg]) (x) is estimated as o ~ 0.7/N from the slope of the function plotted in figure 9 (Right)
around z ~ 0.92. This means that the deviation Az is < 20 for N < 16. Thus, the
remaining overlap problem associated with this observable (4.40) is practically small. This
is consistent with the fact that we were able to reproduce the GEM result by constraining

only the four observables \,, (n =1,2,3,4).

5 Summary and discussions

In this paper we tested the proposed scenario for dynamical compactification of space-
time in the IIB matrix model, in which the phase of the fermion determinant induces the
spontaneous breaking of rotational symmetry. We have shown that this can indeed occur
in a simplified model [65] by performing Monte Carlo simulations. The model exhibits SSB
of SO(4) rotational symmetry in agreement with the results of GEM [66], and the phase
of the fermion determinant plays a crucial role in the mechanism of SSB.
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First, in the absence of the phase, we have confirmed that the model has no SSB
by calculating the VEV of the eigenvalues of T},,, which is analogous to the moment of
inertia tensor. The effect of the phase has been studied by using the factorization method
originally proposed in ref. [34]. From the single-observable analysis, we find that the phase
fluctuations strongly suppress the region of the configuration space favored in the phase
quenched model and result in different length scales for each dimension of space-time. While
our results are in partial agreement with the GEM results in ref. [66], we also observe some
discrepancies and puzzles, which we attributed to the remaining overlap problem. This
motivated us to generalize the method to multiple observables. In particular, we find
that controlling the four eigenvalues of the “moment of inertia tensor” is good enough to
reduce the overlap problem to a sufficient level. Restricting ourselves to the SO(2) and
SO(3) symmetric vacua, we were able to reproduce the GEM results for the VEV of the
eigenvalues consistently.

Our results are an encouragement for pursuing similar studies on the I1B matrix model.
Although it is computationally more demanding, the supersymmetry of the IIB matrix
model could make the SSB of rotational symmetry easier to see. In particular, we have
observed in ref. [34] that the f,so)(x) that appears in (3.17) is actually very close to zero,
which can be understood as a result of cancellations by fermionic and bosonic contributions
to the interactions among space-time points. This implies that the solutions to eq. (3.17)
appear in the region where the sign problem is not severe. We are currently studying the
6 dimensional version of the IIB matrix model by Monte Carlo simulation [68] and trying
to compare the results against the predictions obtained by the GEM recently [69].

We would like to emphasize that the model studied in this paper has a severe sign
problem despite its simpleness. It is encouraging that such a system can be studied by
Monte Carlo simulation using the factorization method, which gives us a lot of useful
insights into the effect of the phase. The method itself is quite general and it can be
applied to any interesting system which suffers from the sign problem. The crucial step
is to find an appropriate set of observables that one can control in order to determine
and sample efficiently the region of the configuration space favored by the relatively small
fluctuation of the phase. We expect that this is possible in many interesting systems.
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A Details of the Monte Carlo simulation

In this section we present the details of the algorithm used for our Monte Carlo simulation.
It is essentially the hybrid Monte Carlo (HMC) algorithm, which has been applied in
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similar models in refs. [28-30, 34-36, 70]. The computational effort grows as O(N?3) in the
present model.

We first discuss the HMC algorithm for the phase-quenched model (2.12). We introduce
auxiliary bosonic Hermitian matrices P, and consider the action

Sumc|P, A] = ;tr(PM)Q + So[A] . (A1)

The original model is obtained by integrating out P,. We regard the action Sumc[P, A
as the Hamiltonian of a classical system described by A, (7) and its conjugate momentum
P,(7), where 7 denotes the fictitious time of the classical system. The Hamiltonian equation
of motion is obtained as

d(Apw  OSumc

dr - a(P,u)kl = (P,u)lka (A2)
d(Py)wi _ dSumc
dr O(Au) ki

= —N(A)i + J\sz {Tr (D_la(ijj)kl> + Tr (D_la(if)lk>*} , (A.3)

where Tr denotes a trace with respect to the 2/N-dimensional index. The indices k,[ run
over k,l = 1,2,--- /| N. The updating procedure consists of (i) refreshing the momentum
variables P, by Gaussian random numbers, which obey the distribution e~uMC and (i)
solving the Hamiltonian equation of motion for a fixed time interval 7. In actual calculations
we have to discretize the Hamiltonian equation (A.2) and (A.3). The reversibility of the
time evolution is preserved by using the so-called leap-frog discretization, which gives

AT 0S
pa/2y . — (pO)y, HMC  1(0) ’
(Bi P = (B = 3(14“)191( i)
(A = (A + A7 (PP, (A.4)
oS
pr+1/2)y - (plr=1/2)y A HMC (4 (r)
(P, e = (P )kl Ta(Au)kl( 2
(AT = (AP + Ar (PIH2), (A.5)
AT 08
pPwhy, . — (pv=1/2)y HMC ¢ 4 (v) A
(P = (P, = A ) (A.6)
where r = 1,2,--- ,v — 1 and T = v A1, and we have introduced the short-hand notation

Plsr) = P,(r A7) and Aff) = A,(r A7). The conservation of the Hamiltonian (Suwmc) is
violated by the discretization. The detailed balance can be preserved, however, by adding
a Metropolis accept/reject procedure at the end of each trajectory. Namely we accept
the trial configuration with the probability min(1, e*ASHMC), where ASymc represents the
difference of Spnmc between the trial and original configurations. The step size A7 for the
time evolution should be small enough to keep the acceptance rate reasonably high.

Next we discuss how to simulate the constrained system defined by the partition func-
tion Zy, 2,244 i0 €q. (4.5). As we discussed in section 3.2 for the single-observable analysis,
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we approximate the delta function by the Gaussian function as
Z$17J:27m3,m47v - /dA exp

4
- (So +)° mm)] , (A7)
n=1
1

Van) = 59 = )" - (A.8)

The system (3.10) used for the single-observable analysis in section 3 can be obtained by
setting v = 0 for k # n.

Taking into account the potential term V;,(A,) in (A.7), we need to subtract the term
%‘(/Zf;:l) from the right-hand side of eq. (A.3). This term can be calculated explicitly as

follows. Let us note first that the eigenvalues A, satisfy

4
> Ty = v, (A.9)
p=1
where vfln) is the eigenvector of the 4 x 4 matrix 7}, normalized as Zi:l vfln)v!(tn) =1. (No
summation over the index n.) Taking the derivative of eq. (A.9) with respect to (A,),
we obtain
4 (n) (n)
BTyp (n) 3vp 8)\71 avy
vV + T, = o N, . A.10
; <5(Au)kl 8 PO(A K ) O Ak Ay (4.10)

Multiplying both sides of eq. (A.10) by v,(,n) and taking a sum over v, we obtain

4 4
o7, o\ o\
m 9T ) _ Ny Py O A1l
E vy v E vy, vy, , )
Ak ” Ak Akt (11

v,p=1 v=1

where the second terms of each side of eq. (A.10) cancel. Therefore we obtain

WVn(An) _ 3 O 27, o)
a(A,u)kl = Vn()\n gn)a(Au)kl = N ()\n fn)zvu vy, (Au)lk . (A.12)

v=1

Let us comment on actual values we have chosen for the parameters in the poten-
tial (A.8). For the single-observable analysis in section 3, we typically'® used 7, = 10*.
For the multi-observable analysis in section 4, we studied the cases (a) and (b) in (4.10)
corresponding to the SO(3) and SO(2) symmetric vacua, respectively. In the case (a), we
set 71 = 79 = 0 since \; and Ay are automatically close to A3. When we fix A4 to the
value obtained by GEM and vary A3 as we do in section 4.2, we set 4 much larger than 3
(typically 74 = 10° and ~3 = 10%), and set &; to the GEM value for (\;) obtained with the
SO(3) ansatz. In the case (b), we set 3 = 0 since A; is automatically close to A\y. When
we fix A3 and A4 to the values obtained by GEM and vary As as we do in section 4.3, we
set 3 and 4 much larger than o (typically 73 = 74 = 10° and 7o = 10?), and set 3 and
&4 to the GEM values for (A\3) and (\4), respectively, obtained with the SO(2) ansatz.

81n fact we have used ~,, in the range 10°—107. We have checked that our results are independent of
¥n within a wide range.
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Figure 10. The function 7 (z) at N = 64 is plotted against = for r = 1 (Left) and r = 2
(Right). The straight lines are fits to the behavior (B.1).

B Asymptotic behaviors of the functions fqgo)(m)

In this section we discuss the asymptotic behaviors of the functions f,so)(x) that appears
in (3.17). While these behaviors are not explicitly used in our analysis, they help us
understand the dynamical properties of the eigenvalues A, in the matrix model. In fact
the functions fr(bo) () in the IIB matrix model behaves quite differently as we mention in
section 5, and we hope that our results given below would be useful for comparison.

Let us recall that the function fT(lo) (x) is defined by eq. (3.9) in terms of pﬁf) (x), which
is the distribution function of A, in the phase-quenched model. It is therefore expected to

have simple scaling behavior when © < 1 or z > 1. At small z we expect

110 ~ {;(5 —n) +r6n1} D tan. (B.1)

This behavior is due to the phase space suppression since (5 — n) directions shrink as we
decrease x. Considering that the shrunken directions have the extent proportional to /z,
we obtain pglo) (z) ~ (V2)® N’ The n = 1 case differs since all the eigenvalues of A,
collapse to 0 at x < 1 and the suppression factor comes also from the fermion determinant,
which is a homogeneous polynomial of A, of degree 2r N 2. This gives an extra suppression
factor of (\/x)Qer. From the definition (3.9), we obtain the leading behavior of (B.1).
Assuming that we have some analytic function of z multiplied to the leading power-law
behavior of pﬁf) (x), we obtain some constant a,, in (B.1) as the subleading term.

At large x we expect

1 1 n 1
P @) == nOno+ (1) (B.2)
As we increase z, the eigenvalues Aq,---, A\, are forced to be large and the (n 4 1)-th

through the 4-th directions remain relatively small. In that case it is the bosonic action

that dominates the suppression of those configurations and we expect that

P () ~ exp <—<;Ntr (A“)2>n v) ~ exp <—;N2 i@\i&n,v) : (B.3)
’ k=1
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Figure 11. The function ., f,so)(z) at N = 64 is plotted against 1/x for r = 1 (Left) and r = 2
(Right). The straight lines represent the behavior (B.2).

r=1 r=2
n Cn dp, Cn, dp,
1 2.26(6) 2.02(5)
2 23(1) 0.378(2) 2.407(2) 0.53(2)
3 0.52(4) 0.20(3) 0.96(6) 0.353(3)
4 0.26(4) 0.46(8)

Table 4. Large-N extrapolated values of the coefficients ¢, and d,, in the asymptotic behav-
iors (3.18).

Since (Ag)n,v ~ x(Ap)o at large = for k = 1,--- ,n, we obtain the first term of (B.2), which

r
2

p1(10) (z) that comes from the measure and the fermion determinant as we discussed in the

becomes —in(1+ ) at large N. We also expect a power-law correction (V) H2rIN? g
case of z < 1. Thus we obtain the second term in (B.2) as the subleading term. Figures 10
and 11 confirm the above asymptotic behaviors at small z and large z, respectively.

C Large-NN extrapolations in the single-observable analysis

In this section we explain the large-N extrapolations made in the single-observable analysis
based on the asymptotic behavior (3.18).

In figures 12 and 13 we show the log-log plots of —]\}2 logwy(z) for r =1 and r = 2,
respectively. We fit the data to the behavior (3.18) at © < 1 and at x > 1, and extract the
coefficients ¢, and d,, in (3.18) for each N. The results are plotted against J{, in figures 14
and 15 for r = 1 and r = 2, respectively. Assuming that the finite-N effects are O(1/N), we
make large-N extrapolations, which give the values shown in table 4. The corresponding
functions (3.18), which we define as the scaling functions @, (x) in each region, are also
plotted in figures 12 and 13. (The two solid lines show the margin of error.) The scaling
functions thus obtained are plotted in the left column of figures 2 and 3.
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Figure 12. The log-log plot of — A}Q logw, (x) for » = 1. The straight solid lines represent the
power-law behavior (3.18) with the coefficients presented in table 4, which are obtained by the
large-N extrapolation from the N = 4,6,8 data as described in figure 14. A clear trend towards
large- N scaling is observed, in particular, for the n = 2,3 cases.
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Figure 13. The log-log plot of —]\}2 logw,, (x) for r = 2. The straight solid lines represent the
power-law behavior (3.18) with the coefficients presented in table 4, which are obtained by the
large-N extrapolation from the N = 4,6,8 data as described in figure 15. A clear trend towards
large- N scaling is observed, in particular, for the n = 2,3 cases.
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Figure 14. The coefficients ¢, and d,, in the asymptotic formula (3.18) for r = 1 extracted

from figure 12 are plotted against ]{] The data points are fitted to a straight line. The large-N
extrapolated values obtained in this way are presented in table 4.
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Figure 15. The coefficients ¢, and d,, in the asymptotic formula (3.18) for » = 2 extracted

from figure 13 are plotted against ]{] The data points are fitted to a straight line. The large-N
extrapolated values obtained in this way are presented in table 4.
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Figure 16. (Top) The function . logwsos)(z,0.5) is plotted against \/105 for N = 8,12,16. The

straight lines represent the fits to the asymptotic behavior (D.1). (Bottom) The coefficients d, and
dy in the asymptotic behavior (D.1) extracted from the top figure are plotted against 11, The data
points can be fitted nicely to a straight line.

D Large-NN extrapolations in the multi-observable analysis

In this section we summarize the large-N extrapolations we made in the multi-observable
case. We describe them for the SO(3) and SO(2) symmetric vacua separately.

D.1 Extrapolations for the SO(3) symmetric vacuum

Similarly to the asymptotic behavior (3.18) used in the single-observable analysis, it is
expected that

1 s 15
A2 log wgo(3) (7,0.5) ~ —dyx Uy dyx™3/2 (D.1)

at x > 1. Here we have added the subleading term motivated from the fact that 6A/|A|

1/y/x as described below (3.18).

In figure 16 (Top), we plot 7, logwsos)(w,0.5) agiiinst \}f’ which confirms (D.1)
including the subleading term. We plot the coefficients d; and do against ]{, in figure 16
(Bottom), which shows that the finite N effects are of the order of 1/N. Based on this

observation, we obtain the large-N extrapolated values d; = 0.1572(5) and do = —0.032(4).
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Figure 17. (Top) The function ;f; log wso(2) (7,0.7,0.5) is plotted against \/193 for N = 8,12, 16.
The straight lines represent the fits to the asymptotic behavior (D.4). (Bottom) The coefficients d;
and dg in the asymptotic behavior (D.4) extracted from the top figure are plotted against 11, The
data points can be fitted nicely to a straight line.

The scaling function (4.15) obtained in this way is plotted in figure 4 (Left). By plugging
r = 1.17 into (D.1), we obtain ®g03)(1.17,0.5) = —0.160(3) as in eq. (4.32).
We redo the calculation for y = 0.45,0.55 and obtain the large-N extrapolated values

dy = 0.1433(2), dy = —0.023(1) for y = 0.45, (D.2)
dy = 0.1749(2), dy = —0.029(3) for y = 0.55, (D.3)

from which we obtain ®go(3)(1.17,y) for y = 0.45 and 0.55. These results, together with
the value at y = 0.5, are plotted in figure 5 (Left).

D.2 Extrapolations for the SO(2) symmetric vacuum

Similarly to (D.1) for the SO(3) symmetric vacuum, it is expected that
1 s 5o
N2 log wgo(2)(7,0.7,0.5) ~ —dix 2 4 doz—0/? (D.4)
at x > 1. In figure 17 (Top), we plot ]f,zz log wgo(2) (7,0.7,0.5) against \}x, which con-

firms (D.4) including the subleading term. We extract the coefficients d; and dy for
N = 8,12,16, and make a large-N extrapolation for dy and dy as in figure 17 (Bottom),
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The coefficients d; and ds in the asymptotic behavior (D.9) are plotted against 11/ The data points
can be fitted nicely to a straight line.

from which we get the large-N extrapolated values d; = 0.322(2) and dy = 0.021(1). The
scaling function (4.20) obtained in this way is plotted in figure 6 (Left). By plugging
r = 1.4 into (D.4), we obtain ®gp(2)(1.4,0.7,0.5) = —0.155(1) as in eq. (4.33).

We redo the calculation for y = 0.65,0.75, and obtain the large-N extrapolated values

dy = 0.295(3), dp=0.018(1) for y=0.65, (D.5)
dy = 0.344(3), dy =0.019(3) for y =0.75, (D.6)

from which we obtain ®gp(9)(1.4,9,0.5) at y = 0.65,0.75. These results, together with the
value at y = 0.7, are plotted in figure 7 (Left).

We redo the calculation for z = 0.45,0.55, and obtain the large-N extrapolated values

dy = 0.292(5), dy=0.026(2) for z=10.45, (D.7)
dy = 0.352(2), do=0.015(3) for z=0.55, (D.8)

from which we obtain @SO(Q)(1.4, 0.7,z) at z = 0.45,0.55. These results, together with the
value at z = 0.5, are plotted in figure 8 (Left).
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Finally let us describe the large-N extrapolations used in section 4.7 in the analysis
for the observable (4.40). First the asymptotic behavior of ]\}2 logwo(z) is expected to be

]\172 log wo(z) = —dya® + daz®? . (D.9)
The leading term is obtained as follows. Let us consider a small perturbation around a
diagonal configuration. The phase of the fermion determinant appears at the second order
of this perturbation. On the other hand, the observable O becomes nonzero also at the
second order. Therefore the distribution of the phase is expected to have a width o o x.
Applying the formula (3.19), we obtain the leading term. The power of the subleading term
can be deduced by expanding the fermion determinant around a diagonal configuration.

xgﬁvg logwe(x) against /z. The data points can be fitted

In figure 18 (Top) we plot
nicely by straight lines, which confirms the asymptotic behavior (D.9). We extract the
coefficients Jl and Jg for N = 6,8,12, and make a large-IN extrapolation for Jl and Jg as
in figure 18 (Bottom). We obtain d; = 0.38(2) and dy = 0.26(1). The scaling function (4.46)

obtained in this way is plotted in figure 9 (Left).
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