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Abstract

We construct the general O(N)-symmetric non-linear sigma model in 2+1
spacetime dimensions at the Lifshitz point with dynamical critical exponent
z = 2. For a particular choice of the free parameters, the model is asymptot-
ically free with the beta function coinciding to the one for the conventional
sigma model in 1+1 dimensions. In this case, the model admits also a simple
description in terms of adjoint currents.
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1 Introduction

Quantum field theories in the Lifshitz context have received a considerable
amount of investigation recently as their renormalizability properties are rad-
ically altered compared to the conventional Lorentz symmetric theories [1].
A Lifshitz type theory is based on the anisotropic behavior between spatial
and temporal directions under scale transformations: t → bzt and x → b x

where the degree of anisotropy is measured by the dynamical critical expo-
nent z. As a result, plane waves propagate with dispersion relation ω = pz

in this theory, where ω denotes energy and p is the magnitude of spatial mo-
mentum. In the quantized theory, higher power of momenta appear in the
denominator of the free field propagator i(ω2 − p2z + iǫ)−1 which lower the
superficial degree of divergence of perturbative graphs, and render new oper-
ators renormalizable at the Lifshitz ultraviolet (UV) point. Renormalizable
theories of gravity in 3+1 dimensions have been proposed by Hořava [2, 3]
and triggered a large amount of subsequent investigations on the nature of
the flow to conventional general relativity in the low energy regime as well as
on cosmological or black hole solutions, see for example [4, 5] and references
there in. In addition, a relation between the phase diagram in Hořava-Lifshitz
gravity and causal dynamical triangulations quantum gravity is found in [6].

The renormalization of various field theoretical models in flat spacetime at
the Lifshitz point has been examined already. Hořava formulated Yang-Mills
(YM) theory in 4+1 dimensions at the Lifshitz point with z = 2 and showed
that the dimensionless coupling is asymptotically free [7]. Electrodynamics
has also been formulated at the Lifshitz point [8]. The CPN−1 model has been
constructed in 2+1 dimensions with z = 2 and a large-N analysis has shown
that the model is asymptotically free [9]. In addition, the Liouville theory
becomes renormalizable in 3+1-d Lifshitz spacetime with z = 3 [10], a fact
that may assist further cosmological investigations of Hořava’s gravity. The
four-fermion interaction is renormalizable in 3+1 dimensions with z = 3 [11]
while divergences of the Standard Model (SM) interactions become softer [12]
as for example in the Yukawa model [13], where only logarithmic divergences
remain. Such behavior is promising in dealing with the hierarchy of masses
in the SM.

From the Lifshitz UV perspective the Lorentz-symmetric gaussian terms
become relevant operators and are generically expected to dominate the in-
frared (IR) regime of the theory. Even if absent from the classical action,
quantum corrections will generate such terms which approximately restore
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Lorentz symmetry in the low energy effective action as has been demon-
strated in the Yukawa [13] and Liouville [10] theory. Note however that if
the model contains more than one species of interacting particles, the recov-
ery of the speed of light for all the modes requires the fine-tuning of bare
parameters [14].

A particular class of anisotropic actions at z = 2 are the so-called de-

tailed balance actions. These actions are constructed in D + 1-dimensional
spacetime from the squaring of the equations of motion of the Euclideanized
D-dimensional action W [φ], i.e. the spatial part of the Lifshitz Lagrangian
is proportional to

(

δW [φ]

δφ

)2

. (1)

The relation of these actions to the stochastic quantization scheme is dis-
cussed in [15]. There is evidence that the detailed balance action with the
potential term (1) inherits the quantum properties of the D-dimensional the-
oryW [φ], in the sense that the RG flow of marginal couplings in both theories
is the same. This is indeed the case in the 4+1-d YM theory constructed by
Hořava [7] which has an asymptotically free coupling with the well known
beta function of standard YM in four dimensions. This is in sharp contrast
to the conventional YM in five dimensions which is non-renormalizable. We
note that discretizations of conventional YM ala Wilson on 5-d Euclidean
lattices lack a continuum limit (in the sense that the order-disorder phase
transition is not continuous) unless anisotropic couplings in the spatial and
temporal directions are introduced [16]. On the other hand, Hořava’s model
if properly discretized will possess the continuum limit and in that sense
provides the UV completion of gauge theory in five dimensions. As a warm-
up exercise we investigate the detailed balance action for the scalar theory
in five dimensions. We utilize the general renormalization group (RG) flow
study of [14] and show in Appendix A that the beta function for the marginal
coupling of the 5-d detailed balance action is identical to the beta function
of the standard 4-d theory.

The aim of this paper is to investigate the issue of quantum inheritance
due to the spacetime anisotropy in the context of the O(N)-symmetric non-
linear sigma model (NLSM) in 2+1 dimensions. It is well known that the
O(N) NLSM is asymptotically free in 1+1 dimensions and non-renormalizable
in higher dimensions. It is reasonable therefore to expect that an asymptoti-
cally free NLSM exists in three dimensions if spacetime becomes anisotropic.
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We construct the general NLSM in 2+1 dimensions at the z = 2 Lifshitz point
through the identification of all the marginal and relevant operators allowed
by symmetry. We analyze perturbatively the model at one loop and identify
the one-coupling model which possesses asymptotic freedom. It turns out
that this ’tuned’ action shares a common beta function with the standard
NLSM in 1+1 dimensions. In addition, the Lorentz-symmetric relevant oper-
ator does not appear in the effective action. Low energy pions will therefore
propagate with a non-relativistic dispersion relation ω2 = p4 +m4.

The structure of the paper is as follows: In Section 2 we present a brief
review of the NLSM in 1+1 dimensions. In addition, we present an equivalent
formulation of the theory in terms of adjoint currents. Section 3 deals with
the NLSM in 2+1 dimensions at the z = 2 Lifshitz point. The construction
of the general action is presented in Section 3.1. In Section 3.2 we perform
a perturbative analysis of the model at one loop. In the last subsection
(3.2.2) we formulate the asymptotically free model in terms of the adjoint
currents. Section 4 contains the conclusions of this study. In Appendix A.1
we review some standard properties of scalar field theory and in Appendix A.2
we examine the quantum inheritance property for the scalar theory between
four euclidean and five anisotropic dimensions. Finally, in Appendix B we
examine the abelian rotor -or XY model- at the Lifshitz point.

2 1+1-Dimensional Non Linear Sigma Model

The O(N) invariant NLSM is defined in 1+1 spacetime dimensions through
a multiplet of scalar fields ~e which obey the unimodulus constraint at each
spacetime point x:

~e(x) = (e0(x), e1(x), .., eN−1(x)) , ~e(x) · ~e(x) = 1 (2)

with action

W [~e] =
1

2g2

∫

d2x ∂i~e · ∂i~e . (3)

The quantization of the model is performed by the functional integration

Z[~e] =

∫

D~e
∏

x

δ
(

~e(x)2 − 1
)

e−W [~e] . (4)
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The starting point for a perturbative study of the general O(N) action (3)
is the introduction of a constrained field σ, and N − 1 pion fields ~π,

~e(x) = (σ(x) , g ~π(x)) , ~π(x) = (π1(x), π2(x), .., πN−1(x)) (5)

such that

σ =
√

1− g2~π2 = 1− 1

2
g2~π2 +O(g4) . (6)

Although the expansion in g generates infinite pion vertices –the lowest in-
teraction is the four-pion vertex at O(g2)–, the theory is renormalizable to
all-orders in perturbation theory [17]. An O(g2) evaluation of the two-point
function determines easily the beta function of the model, (e.g. [18]),

β(g) = −N − 2

4π
g3 (7)

which is asymptotically free.
Although classically the model possesses a continuum of vacua belong-

ing in the O(N)/O(N − 1) coset space, the excitations above the vacua do
not remain massless in the quantum theory. This is a demonstration of the
Coleman-Mermin-Wagner theorem [19] which states that a continuous sym-
metry cannot break spontaneously in two dimensions (at finite temperature
–or equivalently finite values of the coupling g) and has its origin in the
infrared singularities of the theory. In other words, quantum fluctuations
disorder the system and a mass gap is generated dynamically.

Let us also note an equivalent formulation of the model which will become
relevant in the construction of the Lifshitz model. The 2-d NLSM action (3)

can be expressed in terms of the N(N − 1)/2 conserved currents J
(a,b)
µ of the

theory
J (a,b)
µ = ea∂µe

b − eb∂µe
a (a, b = 1, ..., N) (8)

as

W [~e] =
1

4g2

∫

d2xJ (a,b)
µ J (a,b)

µ = − 1

4g2

∫

d2x trJµJµ (9)

with Jµ viewed also as N × N matrix transforming in the adjoint represen-
tation of the internal space. The equation of motion for the fields is then
expressed as the conservation of the current Jµ

∂µJµ = 0 (10)

5



Indeed since
∂µJ

(a,b)
µ = ea△eb − eb△ea (11)

and dotting with eb leads to

∂µJ
(a,b)
µ eb = ea(~e · △~e)−△ea = 0 (12)

the well known equations of motion for the ~e fields in the presence of the
unimodulus constraint are reproduced.

Note finally that a dual current can also be defined in two dimensions as

J̃µ = ǫµνJν (13)

which is not conserved since

∂µJ̃
(a,b)
µ = 2ǫµν∂µe

a∂νe
b . (14)

3 The Non Linear Sigma Model at the z = 2

Lifshitz point

3.1 The general NLSM

In this section we construct the O(N)-symmetric non-linear sigma in 2 + 1
spacetime dimensions at the Lifshitz-type fixed point in the UV, with dy-
namical critical exponent z = 2.

The Lagrangian L of the model should respect O(N)-symmetry, and con-
sists of the kinetic term LK and a potential term LV .

L = LK −LV (15)

The kinetic term is of the form:

LK =
1

2g2
∂t~e · ∂t~e (16)

where g is a dimensionless coupling ([g] = 0), while the canonical dimensions
of t, x, and ~e are

[t] = −2, [x] = −1, [~e] = 0 . (17)
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The potential term includes all the marginal (with dimension D+z = 4) and
relevant O(N)-symmetric operators. There exist three marginal 5 6

O1 = △~e · △~e

O2 = (∂i~e · ∂i~e)2

O3 = (∂i~e · ∂j~e) (∂i~e · ∂j~e) , (18)

and one relevant, dimension two, operator

OR = ∂i~e · ∂i~e . (19)

The general potential term is hence of the form:

LV =
1

2g2
(

η1O1 + η2O2 + η3O3 +M2OR

)

(20)

where the couplings η1, η2 and η3 are dimensionless. The most general renor-
malizable O(N) action at the z = 2 Lifshitz point is therefore

Sz=2[~e] =
1

2g2

∫

dtd2x
[

∂t~e · ∂t~e−△~e · △~e− η2 (∂i~e · ∂i~e)2

−η3 (∂i~e · ∂j~e) (∂i~e · ∂j~e)−M2∂i~e · ∂i~e
]

(21)

Note that the last term (if present) will restore the Lorentz symmetry in

the low energy |~k| ≪ M regime. The coupling η1 is redundant as it can be
set to 1 without loss of generality by a suitable rescaling of space and time
coordinates.

3.2 The asymptotically free model

The general action (21) constructed in the previous sections contains three
dimensionless couplings. The flow of the couplings in general requires the
examination of four-point functions and goes beyond the scope of this work.
In contrast, our aim is to investigate the existence of asymptotic freedom in
2+1 spacetime dimensions for the Lifshitz sigma model. Therefore, keeping in
mind the Lorentzian 2-d model, we will examine the flow of the dimensionless
coupling g considering the other two couplings η2, η3 as fixed multiplicative

constants.
5 Due to the unimodulus constraint, ~e · ∂i~e = 0, ∂i~e · ∂i~e = −~e · △~e, and therefore

the operator O2 is equivalent to (~e · △~e)2. Integrating by parts, O3 is equivalent to
(~e · ∂i∂j~e)(~e · ∂i∂j~e).

6 ∂i denotes now a spatial derivative and △ = ∂i∂i.
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3.2.1 Perturbative analysis

Following the standard analysis of the 2-d model (e.g. [18]) we will examine
perturbatively the two-point function of the model at 1-loop. Solving the
unimodulus constraint in terms of σ =

√

1− g2~π2 and N − 1 pions ~π we
have

σ =
√

1− g2~π2 = 1− 1

2
g2~π2 +O(g4) (22)

and we obtain the expressions at O(g4)

∂iσ = −g2 (~π · ∂i~π) , △σ = −g2
(

(∂i~π)
2 + ~π · △~π

)

. (23)

The O(g2) pion action therefore which is amenable to the perturbative treat-
ment is written

Sz=2[~π] =
1

2

∫

dtd2x
[

∂t~π · ∂t~π −△~π · △~π + g2(~π · ∂t~π)2 (24)

−g2[(∂i~π)
2 + ~π · △~π]2 − η2g

2(∂i~π · ∂i~π)2 − η3g
2(∂i~π · ∂j~π)(∂i~π · ∂j~π)

]

where the relevant operator -proportional to M2- has been omitted as it will
not affect the UV divergences of the theory.

The bare pion propagator has the form

Gab(ω,~k) =
〈

πa(−ω,−~k)πb(ω,~k)
〉

=
i

ω2 − k4 + iǫ
δab (25)

where k = |~k|. From (24) we deduce the following Feynman rules for the
π4 interactions symmetrizing appropriately the vertex. For example the first
O(g2) term gives

i
g2

2
(iω2)(iω4)δ

abδcd → −ig2

24

[

(ω1 + ω2)(ω3 + ω4)δ
abδcd +

(ω1 + ω3)(ω2 + ω4)δ
acδbd + (ω1 + ω4)(ω2 + ω3)δ

adδbc
]

(26)

The second vertex is

−i
g2

2

[

(i~k1 · i~k2)(i~k3 · i~k4)δabδcd + ~k2
2
~k2
4 δ

abδcd − 2(i~k1 · i~k2)~k2
4 δ

abδcd
]

→
−ig2

24

[

4(~k1 · ~k2)(~k3 · ~k4) + (~k2
1 +

~k2
2)(

~k2
3 +

~k2
4) + 2(~k1 · ~k2)(~k2

3 +
~k2
4) +

2(~k2
1 +

~k2
2)(

~k3 · ~k4)
]

δabδcd + (two cycl. perms.) (27)
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Figure 1: Feynman rules for the Lifshitz NLSM. (a) the z = 2 Lifshitz
propagator, eq. (25). (b) the four-pion vertex, eqs. (26, 28, 29, 30).

which nicely simplifies to

−ig2

24

[

(~k1 + ~k2)
2(~k3 + ~k4)

2δabδcd + (~k1 + ~k3)
2(~k2 + ~k4)

2δacδbd

+(~k1 + ~k4)
2(~k2 + ~k3)

2δadδbc
]

(28)

The third vertex will be

− i
η2g

2

2
(i~k1 · i~k2)(i~k3 · i~k4)δabδcd →

−iη2g
2

6

[

(~k1 · ~k2)(~k3 · ~k4)δabδcd +

(~k1 · ~k3)(~k2 · ~k4)δacδbd + (~k1 · ~k4)(~k2 · ~k3)δadδbc
]

(29)

Finally the last interaction term produces a vertex

− i
η3g

2

2
(i~k1 · i~k3)(i~k2 · i~k4)δabδcd →

−iη3g
2

12

[

(~k1 · ~k3)(~k2 · ~k4)(δabδcd + δadδbc)

+(~k1 · ~k2)(~k3 · ~k4)(δacδbd + δadδbc) + (~k1 · ~k4)(~k2 · ~k3)(δabδcd + δacδbd)
]

(30)
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a

(b)

a bb

(a)

Figure 2: The one-loop diagrams relevant to the renormalization of the
model. (a) the bubble relevant to the wave function renormalization Z at
O(g2). (b) one-loop contribution to the pion two-point function.

The one loop corrections to the two point function (Figure 2b) can be com-
puted easily from the above vertices considering all possible contractions of
two pion fields. The symmetry factor for the two point function graph is 12.
Denoting (ω,~k) the internal and (p0, ~p) the external energy/momentum we
get from the first vertex a total contribution

C1 = −ig2
∫

dω

2π

∫

d2k

(2π)2
i
−(ω + p0)

2

ω2 − k4 + iǫ
δab (31)

From the second vertex we get a contribution

C2 = −ig2
∫

dω

2π

∫

d2k

(2π)2
i
(~k + ~p)2(~k + ~p)2

ω2 − k4 + iǫ
δab (32)
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From the third vertex we get a contribution

C3 = −iη2g
2

∫

dω

2π

∫

d2k

(2π)2
i
2(N − 1) ~k2 ~p 2 + 4(~k · ~p)2

ω2 − k4 + iǫ
δab (33)

The last vertex contributes

C4 = −iη3g
2

∫

dω

2π

∫

d2k

(2π)2
i
2 ~k2 ~p 2 + 2N(~k · ~p)2

ω2 − k4 + iǫ
δab (34)

The total contribution (C1 +C2 +C3 +C4) = Ctotδ
ab is therefore (odd terms

vanish)

Ctot = g2
∫

dω

2π

∫

d2k

(2π)2
−ω2 − p20 + k4 + p4 + [4 + 2Nη2 + (N + 2)η3]k

2p2

ω2 − k4 + iǫ
(35)

where the two-dimensional symmetric integration property has been used

∫

d2k

(2π)2
(~k · ~p)2f(k2) =

1

2

∫

d2k

(2π)2
k2p2f(k2) (36)

After a Wick rotation the ω integration is performed easily picking up poles
at ω = ±k2 through the usual Feynman prescription. The result is

Ctot = −ig2δ3(0) + i(p20 − p4)g2
∫

d2k

(2π)2
1

k2

−ip2g2
[

4 + 2Nη2 + (N + 2)η3

]

∫

d2k

(2π)2
(37)

The first term in eq. (37) is an infinite constant that can be dropped. The
second term is precisely the Lifshitz free pion action which corresponds to
the propagator (25) and renders the model renormalizable through the log-
arithmically divergent integral. The third term implies the generation of a
p2 dependent term in the effective action which diverges with Λ2 (Λ is the
momentum cutoff) that was absent in the bare marginal theory. In order
to perturbatively renormalize the model we will require the vanishing of the
third term. This is possible only if

4 + 2Nη2 + (N + 2)η3 = 0 (38)
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which in turn requires for generic N

η2 = 1 η3 = −2 (39)

For these particular values of the coefficients η2, η3 the behavior of the di-
vergences becomes identical to the ordinary 2-d NLSM. The model will be
renormalizable at one-loop with the redefinition of the scale dependent cou-
pling g, and wave function renormalization constant Z. The dependence on
the scale M is contained in the β(g) and γ(g) functions:

β(g) = M
∂

∂M
g , γ(g) = M

∂

∂M
log

√
Z . (40)

For their extraction at leading order, it is enough to consider the Callan-
Symanzik equation for the 〈σ(0)〉 and 〈ea(p)eb(−p)〉 (a, b = 1, . . . N − 1)
correlation functions:

(

M
∂

∂M
+ β(g)

∂

∂g
+ γ(g)

)

〈σ(0)〉 = 0 (41)

(

M
∂

∂M
+ β(g)

∂

∂g
+ 2γ(g)

)

〈ea(p0, p) eb(−p0,−p)〉 = 0 (42)

At O(g2) the relevant diagrams which contribute are shown in Figure 2. The
evaluation of the bubble in Figure 2a gives at the subtraction scale M :

〈σ(0)〉 = 1− g2

2
〈π2(0)〉 = 1− g2

2
(N − 1)

∫

dω

2π

∫

d2k

(2π)2
i

ω2 − k4 + iǫ

= 1− g2

2
(N − 1)

∫

d2k

(2π)2
1

k2
= 1− g2(N − 1)

8π
log

M2

µ2
(43)

where the infrared cutoff µ is also introduced. Similarly, the tree level and
one-loop terms (Figure 2b) contribute to the two-point function:

〈ea(p0, p) eb(−p0,−p)〉 = g2〈πa(p0, p) πb(−p0,−p)〉 =

g2
(

i

p20 − p4
+

i

p20 − p4
Ctot

i

p20 − p4

)

δab =
i

p20 − p4

(

g2 − g4

4π
log

M2

µ2

)

δab

(44)

Plugging the results (43) and (44) to the Callan-Symanzik equations (41),
(42), we immediately obtain the leading order beta function

β(g) = −N − 2

4π
g3 +O(g5) . (45)
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We conclude therefore that an asymptotically free NLSM exists in 2+1 space-
time dimensions at the z = 2 Lifshitz point with action

Sasym. free[~e] =
1

2g2

∫

dtd2x
[

∂t~e · ∂t~e−O1 −O2 + 2 O3

]

=
1

2g2

∫

dtd2x
[

∂t~e · ∂t~e−△~e · △~e− (∂i~e · ∂i~e)2

+ 2 (∂i~e · ∂j~e) (∂i~e · ∂j~e)
]

(46)

3.2.2 Current representation of the asymptotically free model

In this section we will present a description of the asymptotically free Lif-
shitz NLSM in terms of the adjoint current, already introduced in Section
2. Since the Lifshitz model shares the quantum properties of the standard
2-d Lorentzian model, one might assume that these properties are inherited
through a detailed balance condition. The detailed balance action in the Lif-
shitz context is basically the Lifshitz action in D + 1 spacetime dimensions
with z = 2 where the potential of the theory is constructed by squaring the
equations of motion of the (euclideanized) Lorentz symmetric theory in D
spacetime dimensions. This is evidently a property of the free Lifshitz scalar
as well as the asymptotically free gauge theory in five dimensions constructed
by Hořava [7]. In Appendix A.2 we demonstrate how the detailed balance
action of the 4+1-dimensional z = 2 marginal scalar interaction inherits the
quantum properties (in the sense of the RG flow of couplings) of the ’parent’
4-dimensional Lorentzian marginal interaction.

A naive application of the detailed balance principle in the context of
the NLSM would require the squaring of the equations of motion7 of the 2-d
action defined in (3)

δW

δ~e
= △~e− (~e · △~e) ~e = 0 (47)

The detailed balance potential would therefore correspond to a marginal
z = 2 operator

δW

δ~e
· δW
δ~e

= [△~e− (~e · △~e) ~e]2

7these are easily derived by the introduction of a Lagrange multiplier field for the
unimodulus constraint in the action and the subsequent elimination of the multiplier
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= △~e · △~e+ (~e · △~e)2~e 2 − 2(~e · △~e)(~e · △~e)

= O1 −O2 (48)

This term differs from the potential in the asymptotically free model (46)
by the term

∆L = 2O2 − 2O3 (49)

in the action density. In D = 2 (only) this term can be rewritten with the
help of the antisymmetric tensor as

∆L = 2(∂i~e · ∂i~e)(∂j~e · ∂j~e)− 2(∂i~e · ∂j~e)(∂i~e · ∂j~e)
= 2 ǫijǫkl(∂i~e · ∂k~e)(∂j~e · ∂l~e) (50)

The current representation of the 2-d NLSM introduced in Section 2 elu-
cidates greatly the meaning of these operators. Squaring equation (11) we
have

tr
[

(∂ · J)2
]

= −2
[

△~e · △~e− (~e · △~e)2
]

= −2O1 + 2O2 (51)

On the other hand, squaring the divergence of the dual current J̃µ = ǫµνJν

(equation 14) we get

tr
[

(∂ · J̃)2
]

= 4ǫµνǫρσ∂µe
a∂νe

b∂ρe
b∂σe

a = −4ǫµνǫρσ(∂µ~e · ∂ρ~e)(∂ν~e · ∂σ~e)
= −4O2 + 4O3 (52)

Introducing also the temporal component of the adjoint current in the 2 + 1
dimensional Lifshitz model

J
(a,b)
t = ea∂te

b − eb∂te
a (53)

we can express the asymptotically free action as

Sasym. free = − 1

4g2

∫

dtd2x tr
[

JtJt − (∂ · J)2 − (∂ · J̃)2
]

(54)

The analogy to the 2-d model can be made even closer through the introduc-
tion of the complex adjoint vector

Zµ = Jµ + iJ̃µ (µ = 1, 2) (55)
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Due to the properties

trJ̃µJ̃µ = trJµJµ , trJµJ̃µ = 0 , (56)

the 2-d model action (3) is expressed as

W [~e] = − 1

8g2

∫

d2x tr
[

JµJµ + J̃µJ̃µ

]

= − 1

8g2

∫

d2x tr Z · Z̄ (57)

while the asymptotically free Lifshitz model is compactly written

Sasym. free = − 1

4g2

∫

dtd2x tr
[

JtJt − (∂ · Z)(∂ · Z̄)
]

. (58)

4 Conclusions

In this work we presented a study of the Lifshitz O(N)-symmetric NLSM
in 2+1 spacetime dimensions with a dynamical critical exponent z = 2.
The general model includes three marginal dimension four operators with
three independent dimensionless couplings. The examination of the one-loop
contributions to the two-point function is instrumental in identifying the
one-coupling model which is asymptotically free with the beta function in
complete agreement to the conventional NLSM in 1+1 dimensions.

Quantum inheritance is manifest therefore in the NLSM between two and
three dimensions although the action which inherits the asymptotic freedom
does not follow from the naive squaring of the 2-d equations of motion. In-
stead, it admits an elegant representation in terms of a complexified adjoint
current which involves both the (classically) conserved and its dual current
in the two spatial directions.

The known physics of the 2-d model are expected to appear in the Lif-
shitz NLSM ’tuned’ action. The scale invariance of the 3-d action is broken
dynamically by quantum fluctuations and a scale will be introduced in the
quantum theory through the usual dimensional transmutation effect. Exci-
tations above the degenerate vacuum are expected to become massive –as a
result the O(N) symmetry will not break spontaneously in the ground state
of the 3-d model. This consists a violation of the Coleman-Mermin-Wagner
theorem [19] which states that long range order is not permitted in the ground
state of a theory with globally symmetric classical vacuum in two dimensions
only. The reason for this violation is the anisotropic nature of the Lifshitz
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point. A quick examination of the one-loop vacuum graph which determines
〈σ〉 (Figure 2a) in D + 1-dimensions with anisotropy exponent z shows that
the logarithmic singularity appears at D = z. This is in accordance to the
large-N study of the CPN−1 model [9] which established asymptotic freedom
and dynamical mass generation for all the models in D = z spatial dimen-
sions. We conclude therefore that the critical dimension for the lack of long
range order will be shifted in the Lifshitz point at z + 1 dimensions.

An equally important observation is the lack of the relevant dimension
two operator in the quantum action of the asymptotically free NLSM – at
least in the leading order. It is feasible therefore that Lorentz symmetry will
not appear in the low energy regime of this theory, in contrast to the generic
expectation confirmed already in other models [10, 13]. Instead, pions will
propagate with a Galilean-type dispersion relation ω2 = p4 + m4 in three
dimensions. Monte Carlo simulations of an appropriate discretization of the
Euclidean NLSM action should be able to confirm such behavior in the single
disordered phase of this model.

The case of the Abelian rotor (or XY) model worked out in Appendix B is
consistent with the above expectations. At N = 2 the ’tuned’ action contains
trivially a free massless boson with an anisotropic dispersion relation ω2 = p4.
The interest here lies in the examination of the order of the transition between
the massless non-relativistic phase and the disordered phase for the lattice
Lifshitz action.

Acknowledgments This work is partly supported by the National Technical
University of Athens through the Basic Research Support Programme 2008.

Appendix

A Scalar field theory at the Lifshitz point

A.1 Renormalizability and power counting

A scalar field theory at the Lifshitz point is constructed by considering the
fixed point with anisotropic scaling between time and D-spatial dimensions.
Assuming a dynamical critical exponent z which governs the anisotropy

t → bz t , xi → b xi (i = 1, . . . , D) , (59)
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the free fixed point action is constructed (∆ = ∂i∂i is the Euclidean Lapla-
cian)

Sb =
1

2

∫

dtdDx
(

φ̇2 − φ (−∆)z φ
)

. (60)

Canonical dimensions are assigned to fields and spacetime arguments as

[xκ] = −1 [t] = −z [φ] =
D − z

2
. (61)

Plane waves propagate in the theory (60) with dispersion relation

ω = (p2)
z

2 . (62)

Quantization of the theory is straightforward –a mass term can also be con-
sidered by adding −1

2
m2z

b φ2 to the action (60) where [mb] = 1. The scalar
field propagator is then written

Gb(ω,p) =
i

ω2 − (p2)z −m2z
b + iε

(63)

Interacting theories are constructed by the addition of non-gaussian terms
to (60). Perturbative renormalizability is possible and examined through
standard power counting arguments. Polynomial interactions of the type
λφn are marginal if [λ] = 0 i.e. for a critical power

ncr =
2(D + z)

D − z
(64)

and relevant for n < ncr. In particular, the scalar theory at D = z will be
power counting renormalizable to all orders in perturbation theory.

Furthermore, marginal interactions of the λ(∂iφ)
2φn type are also allowed

now for z < D since positive integer values are possible for

n =
4(z − 1)

D − z
(65)

It can also be checked that marginal interactions of the type

λ(∂iφ)
2(∂jφ)

2φn (66)

with n ≥ 0 will not appear in the z = 2, D ≥ 3 theory and are possible for
z = 3 ((D=4, n=2) or (D=5, n=0)) or higher values of z.
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A.2 z = 2 and detailed balance

In the following we examine the relation between the so-called ’detailed bal-
ance’ scalar action (which is a particular z = 2 action) in D + 1 dimen-
sions and the Lorentz symmetric theory in D− (Euclideanized) spacetime
dimensions. We will demonstrate that in fact the detailed balance theory
at the Lifshitz point shares the same quantum properties with the ’parent’
Lorentzian theory, in the sense that the marginal couplings of both theories
run with the same beta function.

As a specific example we examine the z = 2 scalar theory in 4 + 1 di-
mensions. The general action at the UV fixed point including the marginal
couplings is written

Sz=2 =

∫

dtd4x

(

1

2
φ̇2 − 1

2
(∆φ)2 − λ1φ

6 − λ2(∂iφ)
2φ2

)

(67)

where ∆ = ∂i∂i denotes the Euclidean Laplacian in D = 4. This theory
has been examined in detail in [14] where the one loop beta functions for
the running of the couplings λ1 and λ2 have been calculated in dimensional
regularization. The results –after the rescaling of equations (3.9) in [14] –
are8

βλ1
=

dλ1

d lnµ
=

15

16π2
λ1λ2 −

λ3
2

64π2
(68)

βλ2
=

dλ2

d lnµ
=

3

16π2
λ2
2 (69)

As demonstrated in [14] both couplings are IR free.
On the other hand, the detailed balance action in D + 1 spacetime di-

mensions with z = 2 is constructed by a standard kinetic term in the time
direction and a potential term which is the square of the equations of motion
of a D-dimensional Euclidean theory

Sdet.bal. =
1

2

∫

dtdDx

(

φ̇2 − 1

κ2

(

δW [φ]

δφ

)2
)

, (70)

where W [φ] is the Euclidean action of a relativistic scalar in D dimensions
and the dimensionless parameter κ can be absorbed by a rescaling of the time

8redefine the marginal couplings in [14] as λ1 = κ/6! and λ2 = g/4.
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variable. Notice that the canonical dimension of φ remains unchanged in the
relativistic theory in D−dimensions and in the D + 1 theory with z = 2.

The marginal part of the D = 4 Euclidean theory is

W [φ] =

∫

d4x

(

1

2
∂iφ∂iφ+

g

4!
φ4

)

. (71)

from which we obtain the potential term

(

δW [φ]

δφ

)2

=
(

−∆φ +
g

6
φ3
)2

= (∆φ)2 +
g2

36
φ6 − g

3
φ3∆φ (72)

Integrating by parts we can reexpress

φ3∆φ = −3φ2(∂iφ)
2 + total derivative (73)

from which the couplings in eq. (67) are identified as following in the detailed
balance action

λ1 =
g2

36
λ2 = g . (74)

It is recognized now that the coupling λ2 runs with the standard beta function
of the D = 4 relativistic φ4 theory, eq. (69). Furthermore, at the detailed
balance point λ1 = g2/36, eq. (68) becomes

βλ1
=

2g

36
βg =

15

16π2

g3

36
− g3

64π2
(75)

which is satisfied precisely by

βg =
3

16π2
g2. (76)

It is understood therefore that the detailed balance action preserves the
precise constraint of the marginal couplings (74) under the renormalization
group (RG) flow. In fact the RG flow is controlled by the flow of the lower
dimensional marginal coupling g and in that sense the 4 + 1 theory at the
z = 2 Lifshitz point inherits the quantum mechanical properties of the lower

dimensional relativistic theory. Seen differently, a deviation from the detailed
balance point

λ1 =
g2

36
+ δ λ2 = g . (77)
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will produce an RG running for δ. Substituting (77) in eq. (68) determines

βδ =
d δ

d lnµ
=

15

16π2
g δ (78)

from which it is confirmed that the detailed balance point δ = 0 is a fixed
point of the RG flow. It is interesting to note also that since g runs slowly to
the IR fixed point –in fact logarithmically due to (76) –, δ also runs slowly,
to the IR free fixed point as seen by integrating (78)

δ

δo
=

(

g

go

)5

(79)

where δo, go are fixed values of the couplings at some arbitrary energy scale.
We conclude therefore that the relative deviation of the λ1 coupling from the
detailed balance point will also diminish slowly as

δ

λ1
∼ δ

g2
∼ g3 (80)

and the detailed balance point will attract the RG flow in the deep IR regime.

B The Abelian Rotor at the Lifshitz point

The case of the XY or quantum rotor model (N = 2) can be studied by the
introduction of a compact field θ(x) such as

~e = (cos θ, sin θ) (81)

The relativistic model is simply a free massless boson

WXY [~e] =
1

2g2

∫

d2x ∂iθ∂iθ (82)

Using the derivatives

∂i~e = (− sin θ, cos θ) ∂iθ (83)

∆~e = (− sin θ, cos θ) △θ − ∂iθ∂iθ ~e (84)

the marginal operators at the z = 2 Lifshitz point take the form

O1 = (△θ)2 + (∂iθ∂iθ)
2

O2 = O3 = (∂iθ∂iθ)
2 (85)
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It is seen therefore that the ’tuned action’ is the one that inherits the free
massless property at the Lifshitz point since the four-field term cancels out
and the action (46) becomes simply

SXY =
1

2g2

∫

dtd2x
[

(∂tθ)
2 − (△θ)2

]

(86)

Beyond the ’tuned point’ the incorporation of the four-field interaction term
(∂iθ∂iθ)

2 in the model would affect non-trivially the dynamics.
It would also be very interesting to study the nature of the transition

of the lattice regularized action (86) for the quantum rotor from the high
temperature phase to the long range ordered phase corresponding to a free
Lifshitz scalar with dispersion relation

ω2 = k4 (87)

It is well known that the 2-d relativistic model possesses a Kosterlitz-Thouless
(KT) type of phase transition and it will be interesting to check if the infinite
order of the KT transition will be inherited to the lattice Lifshitz model.
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