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New approach to the complex-action problem and its application to a nonperturbative study
of superstring theory
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Monte Carlo simulations of a system whose action has an imaginary part are considered to be extremely
difficult. We propose a new approach to this ‘‘complex-action problem,’’ which utilizes a factorization property
of distribution functions. The basic idea is quite general, and it removes the so-called overlap problem com-
pletely. Here we apply the method to a nonperturbative study of superstring theory using its matrix formula-
tion. In this particular example, the distribution function turns out to be positive definite, which allows us to
reduce the problem even further. Our numerical results suggest an intuitive explanation for the dynamical
generation of 4D space-time.
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I. INTRODUCTION

It occurs in many interesting systems ranging from co
densed matter physics to high-energy physics that their
tion has an imaginary part. Some examples for instanc
high-energy physics are the finite density QCD, Che
Simons theories, systems with topological terms~such as the
u term in QCD!, and systems with chiral fermions. Whil
this is not a conceptual problem, it poses a technical prob
when one attempts to study these systems by Monte C
simulations, which would otherwise provide a powerful to
to understand their properties from first principles~see Refs.
@1–3# for recent works!.

In this paper we propose a new approach to t
‘‘complex-action problem.’’ Suppose we want to obtain
expectation value of some observable. Then, as a more
damental object, we consider the distribution function as
ciated with that observable. In general the distribution fu
tion has a factorization property, which relates it to t
distribution function associated with the same observable
calculatedomitting the imaginary part of the action. The e
fect of the imaginary part is represented by a correction f
tor which can be obtained by a constrained Monte Ca
simulation. One of the virtues of this method is that it r
moves the so-called overlap problem completely. This pr
lem comes from the fact that the two distribution functions
one for the full model and the other for the model omitti
the imaginary part—have little overlap in general. T
method avoids this problem by ‘‘forcing’’ the simulation t
sample the important region for the full model.

The determination of the correction factor becomes
creasingly difficult as the system size increases. In this se
our approach does not solve the complex action prob
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completely. This should be contrasted with the meron-clus
algorithm @1#, with which one can study a special class
complex-action systems by computer efforts increasing
most by some power of the system size. The factorizat
method eliminates the overlap problem, which compo
some portion of the complex action problem, but not t
whole. However, the resolution of the overlap problem is
fact a substantial progress. For instance, Refs.@2# developed
a new method to weaken the same problem in finite den
QCD, and the critical point was successfully identifie
Therefore we expect that thecompleteresolution of the over-
lap problem allows us to address various interesting qu
tions related to complex-action systems with the pres
computer resources. Since our method is based on the
eral property of distribution functions, it can be applied
any complex-action systems.

In this article we are concerned with a nonperturbat
study of superstring theory using its matrix formulation@4#.
Eventually we would like to examine the possibility that o
4-dimensional space time appears dynamically in
dimensional string theory@5–10#. Monte Carlo simulation of
the matrix model suffers from the complex action proble
and there are evidences that the imaginary part of the ac
plays a crucial role in the dynamical reduction of the spa
time dimensionality@7#. We will discuss how we can stud
such an issue by Monte Carlo simulation using the new
proach.

II. THE SUPERSTRING MATRIX MODEL

As a nonperturbative definition of type IIB superstrin
theory in 10 dimensions, Ishibashi, Kawai, Kitazawa a
Tsuchiya @4# proposed a matrix model, which can be fo
mally obtained by the zero-volume limit ofD510, N51,
pure super Yang-Mills theory. The partition function of th
type IIB matrix model~and its obvious generalizations t
D54,6) can be written as
©2002 The American Physical Society08-1
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Z5E dAe2SbZf@A#, ~1!

whereAm (m51, . . . ,D) areD bosonicN3N traceless Her-
mitian matrices, andSb52(1/4g2)Tr(@Am ,An#2) is the
bosonic part of the action. The factorZf@A# represents the
quantity obtained by integration over the fermionic matric
and its explicit form is given for example in Refs.@7,11#. The
convergence of the integral~1! for arbitrary N>2 was first
conjectured@12# and proved recently@13#. The only param-
eter g in the model can be absorbed by rescali
Am°AgAm , which means thatg is merely a scale paramete
rather than a coupling constant. Therefore, one can determ
the g dependence of any quantities on dimensional grou
@16#. Throughout this paper, we make our statements in s
a way that they do not depend on the choice ofg.

In this model space-time is represented byAm , and hence
treated dynamically@5#. It is Euclidean as a result of th
Wick rotation, which is always necessary in path integ
formalisms. Its dimensionality is dynamically determin
and can be probed by the moment of inertia tensor define
@6#

Tmn5
1

N
Tr~AmAn!. ~2!

SinceTmn is a D3D real symmetric matrix, it hasD real
eigenvalues corresponding to the principal moments of in
tia, which we denote asl i ( i 51, . . . ,D) with the ordering

l1.l2.•••.lD.0. ~3!

Let us define the vacuum expectation value~VEV! ^O& with
respect to the partition function~1!. If we find that^l i& with
i 51, . . . ,d is much larger than the others, we may conclu
that the dimensionality of the dynamical space-time isd.

III. THE COMPLEX ACTION PROBLEM

The fermion integralZf@A# in the partition function~1! is
complex in general forD510, N>4 and forD56, N>3
@7#. Let us restrict ourselves to these cases in what follo
Parameterizing the fermion integral asZf@A#5exp(GR
1 iG), the partition function~1! may be written as

Z5E dAe2S0eiG, ~4!

where S05Sb2GR is real. According to the standard re
weighting method, one evaluates the VEV^l i& as

^l i&5
^l ie

iG&0

^eiG&0

, ~5!

where the symbol̂ •&0 denotes a VEV with respect to th
partition function

Z05E dAe2S0. ~6!
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The VEV ^•&0 can be evaluated by standard Monte Ca
simulations. However,̂eiG&0 is nothing but the ratio of the
two partition functionsZ0 /Z, and therefore it behaves a
e2N2DF at largeN, whereDF.0 is the difference of the free
energy density of the corresponding two systems. This e
mous cancellation~note thatueiGu51 for each configuration!
is caused by the fluctuation of the phaseG, which grows
linearly with the number of fermionic degrees of freedo
which is of O(N2). As a result the number of configuration
required to obtain the VEV̂eiG&0 with sufficient accuracy
grows as econstN2

. The same is true for the numerato
^l ie

iG&0 in Eq. ~5!. This is the notorious ‘‘complex action
problem’’ ~or rather the ‘‘sign problem,’’ as we see below!,
which occurs also in many other interesting systems.

In fact we may simplify the expression~5! by using a
symmetry. We note that under parity transformation:

A1
P52A1 , Ai

P5Ai for 2< i<D, ~7!

the fermion integralZf@A# becomes complex conjugate@7#,
while the bosonic actionSb is invariant. Since the observabl
l i is also invariant, we can rewrite Eq.~5! as

^l i&5
^l icosG&0

^cosG&0
. ~8!

Note, however, that the problem still remains, since coG
flips its sign violently as a function ofAm .

IV. THE NEW METHOD

A. The factorization property of distributions

The model~6! omitting the phaseG was studied up to
N5768 andN5512 forD56 andD510 respectively using
the low-energy effective theory@5#. There it was found that
^l i&0 /(gN1/2) approaches a universal constant independ
of i asN increases. This means that the dynamical space-t
becomes isotropic inD dimensions atN5`, and hence the
absence of spontaneous symmetry breaking~SSB! of SO(D)
symmetry,if one omits the phaseG.

We normalize the principal moments of inertial i as

l̃ i5
def l i

^l i&0
. ~9!

Then the deviation of̂ l̃ i& from 1 represents the effects o
the phase. The relevant question is whether the devia
depends oni at largeN. In order to obtain the expectatio
value ^l̃ i&, we consider the distribution associated with t
observablel̃ i :

r i~x!5
def

^d~x2l̃ i !&. ~10!

As an important property of the distributionr i(x), it factor-
izes as
8-2
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r i~x!5
1

C
r i

(0)~x!wi~x!, ~11!

whereC is a normalization constant given by

C5
def

^eiG&05^cosG&0 . ~12!

The real positive functionr i
(0)(x) is defined by

r i
(0)~x!5

def

^d~x2l̃ i !&0 , ~13!

which is nothing but the distribution ofl̃ i in the model~6!
without G. The functionr i

(0)(x) is peaked atx51 due to the
chosen normalization~9!. The functionwi(x) in Eq. ~11! can
be regarded as the correction factor representing the effe
G, and it is given explicitly as

wi~x!5
def

^eiG& i ,x5^cosG& i ,x , ~14!

where the symbol̂•& i ,x denotes a VEV with respect to ye
another partition function

Zi ,x5E dAe2S0d~x2l̃ i !. ~15!

Given all these definitions, it is straightforward to prove t
relation ~11!.

B. Monte Carlo evaluation of r i
„0…

„x… and wi„x…

In order to obtain the functionwi(x), we have to simulate
Eq. ~15!. In practice we simulate instead the system

Zi ,V5E dAe2S0e2V(l i ), ~16!

whereV(l i) is some potential introduced only for thei-th
principal moment of inertia. The explicit form of the pote
tial we used in the study isV(z)5 1

2 g(z2j)2, whereg andj
are real parameters. The results are insensitive tog as far as
it is sufficiently large and we tookg51000.0. Let us denote
the VEV associated with the partition function~16! as
^O& i ,V . Then the expectation valuêcosG&i,V provides the
value ofwi(x) at x5^l i& i ,V .

The functionr i
(0)(x) can be obtained from the same sim

lation ~16!. Note that the distribution function forl̃ i in the
system~16! is given by

r i ,V~x!5
def

^d~x2l̃ i !& i ,V}r i
(0)~x!e2V(^l i &0x). ~17!

The position of the peakxp is given by the solution to

05
]

]x
ln r i ,V~x!5 f i

(0)~x!2^l i&0V8~^l i&0x!, ~18!

where we have defined
10600
of

f i
(0)~x!5

def ]

]x
ln r i

(0)~x!. ~19!

This implies that̂ l i&0V8(^l i&0xp) gives the value off i
(0)(x)

at x5xp . Since we takeg sufficiently large, the distribution
r i ,V(x) has a sharp peak, and we can safely replace the
sition of the peakxp by the expectation valuêl̃ i& i ,V . Once
we obtainf i

(0)(x), we can obtainr i
(0)(x) by

r i
(0)~x!5expF E

0

x

dz fi
(0)~z!1constG , ~20!

where the integration constant can be determined by the
malization ofr i

(0)(x).

C. Resolution of the overlap problem

Fromr i
(0)(x) andwi(x), we may obtain the VEV̂l̃ i& by

^l̃ i&5E
0

`

dx xr i~x!5

E
0

`

dx xr i
(0)~x!wi~x!

E
0

`

dx r i
(0)~x!wi~x!

. ~21!

Actually this simply amounts to using the reweighting fo
mula ~8! but calculating the VEVs on the right-hand sid
~RHS! by

^l̃ icosG&05E
0

`

dx xr i
(0)~x!wi~x! ~22!

^cosG&05E
0

`

dx r i
(0)~x!wi~x!. ~23!

This reveals one of the virtues of our approach as compa
with the standard reweighting method using the formula~8!
directly. Suppose we are to obtain the LHS of Eqs.~22! and
~23! by simulating the system~6!. Then for most of the time,
l̃ i takes the value at the peak ofr i

(0)(x). However, in order
to obtain the VEVs accurately we have to sample configu
tions whosel̃ i takes a value whereur i

(0)(x)wi(x)u becomes
large. In general the overlap of the two functions becom
exponentially small with the system size, and this makes
important sampling ineffective. Therefore, this ‘‘overla
problem’’ composes some portion of the complex-acti
problem. The new approach eliminates this problem
‘‘forcing’’ the simulation to sample the important region.

D. Further improvement in the casewi„x…Ì0

So far, we have been discussing the general propertie
the new method. In the case at hand, we can actually fur
reduce the problem by using the fact that the correction f
tors wi(x) are actuallypositive definite, and so is the full
distribution functionr i(x). ~Note that this is not guarantee
in general.! This allows us to obtain the VEV̂l̃ i& by mini-
mizing the ‘‘free energy density’’Fi(x)52(1/N2)logri(x),
8-3
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instead of using Eq.~21!. For that we simply need to solv
Fi8(x)50, which is equivalent to

1

N2
f i

(0)~x!52
d

dxF 1

N2
ln wi~x!G . ~24!

The function in the bracket@•# is expected to approach
well-defined function asN increases:

1

N2
ln wi~x!→F i~x!. ~25!

Let us note thatwi(x) is nothing but the expectation value o
eiG in the system~15!. According to the argument below Eq
~6!, wi(x) for fixed x decreases ase2aN2

at largeN. The
constanta may depend onx, hence the assertion. Indeed o
numerical results in Fig. 1~although the achieved values o
N are not very large! seem to support this argument. Once w
extract the scaling functionF i(x), we may use it instead o
(1/N2)ln wi(x) in Eq. ~24! for largerN. Thus we are able to
obtain the VEV^l̃ i& for much largerN than those allowing
the direct Monte Carlo evaluation of the correction fac
wi(x).

The positive definiteness ofwi(x) is crucial for such an
extrapolation technique to work. If we were to calculate t
VEV ^l̃ i& by Eq. ~21!, we would need to calculate the co
rection factor for largerN by wi(x)5eN2F i (x), where the
multiplication byN2 and the exponentiation would magnif
the errors inF i(x) considerably. This doesnot occur when
we obtain the VEV̂ l̃ i& by solving Eq.~24!.

V. RESULTS

Monte Carlo simulation of Eq.~16! can be performed by
using the algorithm developed for the model~6! in Ref. @11#.
The required computational effort is O(N6). In this work, we
use instead the low-energy effective theory proposed in R
@5# and further developed in Ref.@8#. The required compu-

FIG. 1. The function (1/N2)ln w4(x) is plotted for
N512,16,18,20. Forx,1 we also plot data forN54,8 to clarify
the convergence. We extract the scaling functionF4(x) by fitting
the data to some analytic function, which is represented by the s
line. The dashed line representsF5(x), which is obtained similarly
from the scaling behavior of (1/N2)ln w5(x).
10600
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tational effort becomes O(N3). For the definition of the low-
energy effective theory as well as all the technical deta
including parameters used in the simulations, we follow R
@8#. The validity of the low-energy effective theory in study
ing the extent of the dynamical space time is discussed
Ref. @11#. We also note that the complex-action problem s
vives in passing from the full theory to the low-energy effe
tive theory, and hence we expect that the effects of the ph
on the reduction of space-time dimensionality should be v
ible also in the low-energy effective theory, if it is there
all. Here we study theD56 case~instead ofD510, which
corresponds to the type IIB matrix model! to decrease the
computational efforts further.

In Fig. 1, we plot (1/N2)ln w4(x). The correction factor
w4(x) has a minimum atx;1 and it becomes larger for bot
x,1 andx.1. This can be understood as follows. Let
recall again thatwi(x) is the expectation value ofeiG in the
system~15!, wherel̃ i is constrained to a given value ofx. At
x51, the system~15! is almost equivalent to the system~6!,
becausel̃ i would be close to 1 even without the constrain
@From this, it also follows thatwi(1) takes almost the sam
value for alli.# Therefore, the dominant configurations of th
system~15! at x51 is isotropic at largeN @8#. On the other
hand, the dominant configurations of the system~15! at small
x are (i 21)-dimensional, since the constraint forcesl̃ i to be
small, and due to the ordering~3!, all the l̃ j with j > i be-
come small. Similarly the dominant configurations of t
system~15! at largex are almosti-dimensional, since the
constraint forcesl̃ i to be large, and due to the ordering~3!,
all the l̃ j with j < i become large. Now let us recall that th
phaseG vanishes when the configurationA has the dimen-
sionality d<dcr , wheredcr54,6 for D56,10, respectively
@7#. As a consequence,w4(x) gets larger in bothx,1 and
x.1 regimes.

As mentioned already, Fig. 1 supports the scaling beh
ior ~25! with increasingN. The scaling functionF4(x) can
be extracted by fitting the data to some analytic function.
find that F4(x) approaches 0 linearly asx→0, and it ap-
proaches some negative constant exponentially asx→`. We
observe a similar scaling behavior for (1/N2)ln w5(x). The

lid

FIG. 2. The function (1/N2) f 4
(0)(x) is plotted for N564,128.

The solid line represents2F48(x), which we calculate from the
scaling functionF4(x) extracted in Fig. 1.
8-4
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corresponding scaling functionF5(x) is plotted in Fig. 1 for
comparison.

Figure 2 represents a graphical solution of Eq.~24! for i
54. The open and closed circles describe the funct
(1/N2) f 4

(0)(x) for N564,128 respectively. It is positive atx
,1 and turns negative atx.1, which reflects the fact tha
r i

(0)(x) is peaked at x51. The solid line represent
2F48(x). The intersections of the two curves provide t
solutions to Eq.~24!. At N5128, we find that the distribu
tion r4(x) has two peaks; one atx5xs,1 and the other a
x5xl.1. The ratio of the peak heightR5r4(xs)/r4(xl) can
be written asR5exp$N 2(As2Al)%, whereAs andAl are the
area of the regions surrounded by the two curves. We ob
As;5.031024 and Al;4.531023, from which we con-
clude that the peak atx.1 is dominant. In Fig. 3 we show
the results of a similar analysis forr5(x). We find that the
distribution r5(x) at N5128 also has two peaks; one atx
,1 and the other atx.1. However, here we obtainAs
;2.031023 andAl;3.831023, which are comparable.

VI. SUMMARY AND DISCUSSIONS

We have proposed a new method to study complex-ac
systems by Monte Carlo simulations. In particular we d
cussed how we can use the method to investigate the p
bility that four-dimensional space time is dynamically gen
ated in the type IIB matrix model. The space-tim
dimensionality is probed by the eigenvaluesl i of the mo-
ment of inertia tensor and we study the distribution of ea
eigenvalue. The distributionr i

(0)(x) obtained without the
phaseG has a single peak, which is located atx51. The
effect of the phaseG on the distribution function is repre
sented by the multiplication of the correction factorwi(x) as
stated in Eq.~11!.

Our results for the 4-th and 5-th eigenvalues (i 54,5) in
theD56 case show that the correction factorwi(x) strongly
suppresses the peak ofr i

(0)(x) at x51 and favorsboth
smallerx and largerx. As a result, we observe that the di
tribution r i(x) including the effects of the phase, in fact, h
a double peak structure. Moreover, the two peaks tend t
move away fromx51 asN is increased. It is important to
determine which of the two peaks becomes dominant in

FIG. 3. The function (1/N2) f 5
(0)(x) is plotted for N564,128.

The solid line represents2F58(x), which we calculate from the
scaling functionF5(x) shown in Fig. 1.
10600
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largeN limit. At N5128, we observe that the peak atx.1 is
dominant for bothr4(x) andr5(x). We note, however, tha
it is much more dominant forr4(x) than forr5(x).

From Figs. 2 and 3, we observe that the functi
(1/N2) f i

(0)(x) changes drastically as we go fromN564 to
N5128. In fact we find that (1/N) f i

(0)(x) scales@notice the
normalization factor (1/N)], as shown in Fig. 4 fori 54.
The scaling region extends fromx;1, where (1/N) f i

(0)(x)
crosses zero, namely the place wherer i

(0)(x) has a peak. A
similar scaling behavior is observed fori 55. This scaling
behavior is understandable if we recall that the long-dista
property of the system is controlled by a branched-polym
like system@5#, which is essentially a system withN degrees
of freedom. If wenaivelyextrapolate this scaling behavior o
(1/N) f i

(0)(x) to largerN, the LHS of Eq.~24! becomes neg-
ligible. It follows that the peak atx,1 eventually dominates
for both i 54,5, considering the asymptotic behaviors
F i(x) as x→0 andx→`. This means that the space-tim
dimensionality becomesd<3. However, it is well-known
that the Hausdorff dimension of a branched polymer isdH

54, which implies that such a system is not easy to colla
into a configuration with dimensions<3. The consequence
would be thatr4

(0)(x) is much more suppressed in the sm
x regime thanr5

(0)(x) at largeN. We consider that this pre
vents the peak atx,1 from dominating forr4(x), and as a
result we obtain 4D space-time. Since the above argume
based only on the scaling behaviors and the branched p
mer description, it is expected to be valid also in theD
510 case.~While this paper was being revised, an analy
evidence for the dominance of 4D space-time was also
ported@14#.!

Our new approach to complex-action systems is based
the factorization property~11! of distribution functions,
which is quite general. As we discussed in Sec. IV C, it
solves the overlap problem completely. In a separate pa
we will report on a test of the new method in a rando
matrix theory for finite density QCD, where exact results
the thermodynamic limit are successfully obtained@15#. We
hope that the ‘‘factorization method’’ allows us to study i
teresting complex-action systems in various branches
physics.

FIG. 4. The function (1/N) f 4
(0)(x) is plotted for N

516,32,64,128. A clear scaling behavior is observed.
8-5
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