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On the spontaneous breakdown of Lorentz symmetry in matrix models of superstrings
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In string or M theories, the spontaneous breaking of 10D or 11D Lorentz symmetry is required to describe
our space-time. A direct approach to this issue is provided by the type IIB matrix model. We study its 4D
version, which corresponds to the zero volume limit of 4D supeXN) Yang-Mills theory. Based on the
moment of inertia as a criterion, spontaneous symmetry bredl88# seems to occur, so that only one
extended direction remains, as first observed by Bialas and BtralaHowever, using Wilson loops as probes
of space-time we do not observe any sign of SSB in Monte Carlo simulations Wheras large as 48. This
agrees with an earlier observation that the phase of the fermionic integral, which is absent in the 4D model,
should play a crucial role if SSB of Lorentz symmetry really occurs in the 10D type IIB matrix model.
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I. INTRODUCTION broader eigenvalue distributions than the other- @) ma-
trices, up to some S@O) transformatiort. Our four-
Matrix models[1,2] are considered the most promising dimensional space-time may be accounted for, if de4
candidate for a nonperturbative definition of string or M configurationgin the above senge&lominate the integration
theories. They may play an analogous role as lattice gaugever the bosonic matrices. It was found recently that the type
theory does in quantum field theory. One of the most fundatiB matrix model is indeed endowed with a natural mecha-
mental questions that can be addressed using these modelsiism that may realize such a scendfic6).
the issue of spontaneous breakdown of Lorentz invariance, The realization of our space-time as a “brane” in a
which is required to occur in order for these theories in 10higher-dimensional space-time has attracted much attention
(or 11) dimensions to describe our four-dimensional spaceas an alternative to the more conventional approach in string
time. For early works which address this issue using stringheory using compactificatiorsee Ref.[7] and references
field theory, see Ref$3]. therein. It turned out that such a setup has many phenom-
The type 11B matrix modefor Ishibashi-Kawai-Kitazawa-  enological advantages, including possible mechanisms which
Tsuchiya (IKKT) model [2], which is conjectured to de- may solve the cosmological problem and the hierarchy prob-
scribe type 1IB superstrings nonperturbatively, is a supersymiem. However, the dynamical origin of the brane has not
metric matrix model composed of 10 bosonic matrices andheen discussed so far. The type 1B matrix model enables us
16 fermionic matrices, which can be obtained formally byto investigate whether a four-dimensional space-time
taking the zero-volume limit of 10D super SN) Yang- emergeslynamicallyas a brane in ten-dimensional type 1IB
Mills theory! This model is particularly suitable for the superstring theory through some nonperturbative effects.
study of spontaneous symmetry breaki®5B of Lorentz The spontaneous breakdown of Lorentz symmetry in ma-
invariance; since it is manifestly invariant under $)  trix models has been addressed first in the bosonic [@se
transformations, which transform the bosonic and fermionigyhere fermionic matrices are omittéfr recent work on the
matrices as a vector and as a Majorana-Weyl spinor, respeposonic model, see Refgl0,11]). There the absence of SSB
tively. The bosonic matrices represent the dynamically genhas been established by both an analytical metfiodall
erated space-time. A-dimensional space-time is described orders in a 1D expansiohand by Monte Carlo simulations.
by configurations withd bosonic matrices having much The same numerical result was obtained in the 6D and 10D
supersymmetric(SUSY) matrix models[12], albeit with
some simplifications to enable simulations at laijeThe
*Email address: ambjorn@nbi.dk fermion integrals are complex in general in these cases, and
TEmail address: konstant@physics.uoc.gr the simulations were carried out including only the modulus,
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!Dimensionally reduced Yang-Mills theories were first studied in “A possible obstacle may be that gravitons propagate in ten-
Refs.[4]. dimensional space-time, and hence one fails to reproduce the ob-

2When one defines the type 1B matrix model nonperturbatively, aserved four-dimensional Newton’s law. In RE8], it was demon-
Wick rotation to Euclidean signature is needed. Hence by Lorentatrated that this obstacle can be avoided in the case of D3-brane
symmetry we actually mean $00) symmetry. backgrounds due to the mechanism of R&f.
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but omitting the phase. In addition, a low-energy effectivelessNXN complex matrices. The & 2 unitary matriced,
theory was used in order to further reduce the computationadre gamma matrices after Weyl projection; they can be given

effort. for example by
In Ref.[13] we presented Monte Carlo simulations of the ) ) )
4D version of the type 1B matrix model, which is a super- I1=ioy, Dp=ioy, Iz=ios, Iy=1 (2.2

symmetric matrix model obtained from the zero-volume
limit of 4D super SUN) Yang-Mills theory. We were able to
study the model witiN=16,24,32,48 without any simplifi-
cations. These values df turned out to be sufficiently large
to extract the largeN behavior of the space-time structure
and to reveal the largd scaling for a number of Wilson loop 1. + — it
correlators. AuVANT e ViVl Y= ViV (2.3
Recently, it has been reported for the 4D SUSY model URyhere v e SU(N). All these symmetries are inherited from
to N=8 that the space-time is observed to be Onethe super Yang-Mills theory before the zero-volume limit.

dimensional, if one selects configurations with large extentrne model can be regarded as the four-dimensional counter-
from the ensemblgl4]. In the D-dimensional SUSY models part of the type 11B matrix model.

in general,D=4,6,10, configurations with large extent are  The model is well-defined for arbitrafy=2 without any
suppressed only by the power(2D —5), independent oN  cytoff. This was first conjectured based on numerical results
[15]. Therefore, the observed anisotropic configurations mayt smallN [17], confirmed further at largeX [13] and finally
play some rqle in the largd limit, and s_uch effects may also proved by Ref[11]. Therefore, the parametg—which is
be relevant in other SUSY models, including the type 1IBthe only parameter of the model—can be absorbed by rescal-

This model is invariant under 4D Lorentz transformations,
whereA, transforms as a vector anf, as a Weyl spinor.
The model is manifestly supersymmetric, and it also has a
SU(N) symmetry

matrix model. . . ing the variables,
In this paper, we reconsider the issue of SSB of Lorentz
invariance in the 4D SUSY model. If we adopt the conven- A=0YX,; ¢.=g¥,. (2.9

tional criterion based on the moment of inertia tensor, then ) )

the space-time appears one-dimensional, as suggested by theereforeg is a scale parameter rather than a coupling con-

observation in Refl14]. This would mean that the SSB does stant, i.e. theg dependence of physical quantities is com-

occur at largeN. However, this conclusion depends on the Pletely determined on dimensional grounds. The parangeter

definition of the order parameter, as we shall see. Thus wghould be tuned appropriately as one seNds infinity, so -

have to address the question which criterion for the SSB ofhat each correlation function of Wilson loops has a finite

Lorentz symmetry is actually physical. largeN limit. This issue has been studied numerically in Ref.
We recall that in the interpretation of the type I1B matrix [13]. The conclusion is that the produgfN has to be kept

model as a string theory, the Wilson loops are identified withconstant when taking the largélimit. The tuning ofg was

the string creation operatofd6]. Physical observables— also discussed in terms of analytical arguments in Refs.

such as scattering amplitudes—should be extracted from cok16,18-20.

relation functions of Wilson loops, which were observed to  The integration over fermionic variables can be done ex-

have well-defined larg#l limits in D=4 [13]. We therefore  Plicitly and the result is given by de¢t, M being a 2{N?

propose a “physical criterion” of SSB using Wilson loops as —1)x2(N?~1) complex matrix which depends oA, .

a probe, and we study it by Monte Carlo simulations of theThe matrixM is given by

full 4D SU(N) SUSY model. As a result, we find no trend of _
SSB up toN=148. Maapp=(T ) ap THE[A, ), (2.5

wheret? are generators of SB), and we considerga)

respectively bB) as one index. Hence the system we want
The model we investigate is a supersymmetric matrixt0 Simulate can be written in terms of bosonic variables,

model obtained from the zero-volume limit of 4D W)

super Yang-Mills theory. Its partition function is given by Z:f dA & S detM. (2.6)

Il. THE 4D TYPE IIB MATRIX MODEL

sz dA efsbf dydye™, A crucial point is that the determinant dét is real positive
[13]. This property was demonstrated in Rgif3], and it had
1 been suspected earligt7]. (It also holds in other 4D SUSY
Sp=— —2Tr[AM,A,,]2, models, see Ref21] and second Ref. if14].) Due to this
49 property, we can simulate the model using a standard algo-
n rithm for dealing with dynamical fermionghe so-called Hy-
v brid R algorithm[22]). In the framework of this algorithm,
Si= = T Wa(l™) gl Ao 6D, @D ach update of a configuration is done by solving a Hamil-
tonian equation for a fixed “time”r. This algorithm is
whereA, (n=1,...,4) are bosonic tracelebs<N Her-  plagued by a systematic error due to the discretization of
mitian matrices, ands,, ¢, (a=1,2) are fermionic trace- that we used to solve the equation numerically. We per-
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formed simulations at three different values of the “time sE T T T
step” A7 and we extrapolate td r=0. N N=16 ]
25 - ~~~~~~~~~ Fremee -
I1l. SSB OF LORENTZ SYMMETRY? T S — ;S -]
In the type IIB matrix model, the eigenvalues of the T -
bosonic matrices\, are interpreted as the space-time coor- N . Hom + ]
dinates[2,18,23. We adopt this point of view in the 4D g R s ]
model as well. Since the matricés, are not simultaneously I osennnsnnnn oo oo +
diagonalizable in general, the space-time is not classical. To 0 B
extract the space-time structure we first define the space-time At
uncertaintyA by [13] E——S——S
35 —‘\\ -1
2 1 2 1 )12 of e M=o
AP=JTr(A,)— max NZ {(UA,UN;12, (3.1 L T _ 1
uesupy™ + o BE e ]
M) o TR ]
which is invariant under Lorentz transformations and under ST e .
the SUN) transformation$2.3). Formula(3.1) has been de- wk ]
rived in Ref.[9] based on the analogy to quantum mechan- N o M
ics, considering\,, as an operator acting on a space of states. oy
As a natural propertyA? vanishes if and only if the matrices 0 0.002 0.003 0.004 0.005
A, are diagonalizable simultaneously. For each configuration Ar
A, generated by a Monte Carlo simulation, we maximize N,
Ei{(UAMUT)”}2 with respect to the SUN) matrix U. We B ]
denote the matrix which yields the maximum @s,,,, and 0F g N=32 ]
we define sk T . ]
t <_’\L) 20 L T L . :
Xi = (UmaA U mayii 3.2 9 L el e .
- .
as the space-time coordinatesMfpointsx; (i=1,... N) °r s e : ]
in four-dimensional space-time. r ]
In order to S(_aarch thg spontaneous breakdovv_n of Lorentz ol '0‘(;02 0.(;03 '0.(;04 0‘(;05
symmetry, we first consider the moment of inertia tensor of Ar

N pointsx; . It can be defined as
FIG. 1. The eigenvalues of the tensor of ineffias functions of

2 the algorithmic “time step”Ar at N=16, 24 and 32. The dashed
To=—— E (Xi = Xi ) (Xip—Xi ), (3.3 lines on top represent the fits to €§.4), confirming that the largest
Y ON(N=-1) 15 R . eigenvalue diverges logarithmically in the limitr— 0. (The other
lines are drawn to guide the eye.
which is aD X D real symmetric matriX.The D eigenvalues
A1>N\,>--->N\p>0 of the tensofl represent the principal (wherec,, c; are constant irA 7), while the other eigenval-
moments of inertia. We take the average,) over all con-  ues convergé We recall that the extent of the space-tife

figurations generated by the Monte Carlo simulation. defined by
In Fig. 1 we plot the results fof\ ,)/g againstA 7 at N
=16, 24 and 32(In all the figures in this section, we plot 2
dimensionless quantities, so that they do not depend on the R2=—< 2 (Xi_xj)2> (3.5
choice of the scale parametgy As A r vanishes{\)/g is N(N—=1) |5

observed to diverge as

was found to be divergent 3]. SinceRzzEM()\,), at least

(AM)/g~—ciInA7+co (3.4  (\,) has to diverge ad 7— 0. What we observe here is that
(\1) is indeed the only divergent eigenvalue. This is consis-
tent with the observation in Ref14].

SThis quantity has also been studied in Rdfs9,12. Alterna-
tively, one may define the moment of inertia tensor by,
=(1N)Tr(A,A,), as it was done in Refd9,14]. We have also ®We note that based on our data, a logarithmic divergenca Hf
measured the eigenvalues of that tensor, and the spectra are in quadi-unlikely, but it cannot be absolutely excluded. This slight uncer-
tative agreement with the eigenvalues that we presentflbased  tainty is still a little stronger if we use the definitioh,,,
on definition(3.3)]. =(1/N)Tr(A,A,) for the moment of inertia tensor.
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Let us introduce the probability distribution for the dis- e R A A I I I IR R
tance of two space-time points as e B N=16 4
L T e I -
EVRY new 2.5 b
p(r)= N(N Y <E sr—Jxi—xp?). (3.6 (_A;if_n A ]
g | T AL S
15 ]

ThenR? can be written as . . . .

9 0.5 + —+ +
— N N - B A N IS I I SN PN TN I T
- fo drr p(r) (37) 00 2e—IOS 4e:05 Ge—IOS ) 8e—IOS 0.0:]01 0‘0(;012 0‘0(;014

(A7)? |In A7

The observed logarithmic divergenceRf is consistent with —
the asymptotic behavior a5 b ' z ' ' ' ' NI= 24 ' i
p(r)~r~3, (3.9 st e e ]
25 B
which was predicted analyticaljl5]. Based on this obser- Qﬂ b3 N USSR e N
vation, a modified definition for the extent of the space-time vl i
has been introduced in RgfL3], E * * + ]
. 05 * -1
Roew= 2 Vo=x)? - | arro, o e e wow oo omord

N(N b 0 (A7) [ln A7
(3.9

R I B B B B L B B B
which turned out to be finite—as expected from relation as| N=32
(3.8). The largeN behavior of this quantity has been ob- g [ o i
served to amount tBe,/\/g=3.30(1)x N*4 which is con- I S
sistent with the prediction based on the low-energy effective )" ., i
theory[18]. Ja 4 e
This motivates us to define analogously a new tensor L : - —
1k . R -
Tnew_ 2 < (xw—xj#)(xiu—xjv)> 0'2-....................................._
N(N— 1) /(Xi _Xj)2 (3 10) 0 2605  4e05 (EZO; )2 ls;;)sA TT‘oom 0.00012 0.00014

FIG. 2. The eigenvalues of the new ten§(§:ﬂiw) as functions of
the algorithmic “time step”A7 at N=16, 24 and 32. The straight
lines are the fits to Eq(3.11). We see that now all eigenvalues
converge in the limitA 7— 0.

Let us denote theD eigenvalues of the tensoF("™") as
AW \(ew . > \(W~ 0 Due to the relation
P )\(”e‘”)— Rhew, all the eigenvalues are expected to con-
verge In Fig. 2 we show the results fox{"*")/ /g again at
N=16, 24 and 32. We carried out an extrapolatlonAm
=0 assuming the observabt®(A r) at smallAr to behave

as[13]
O(AT)— O(AT=0)x(A7)%-|[In Al (3.1 I T T T T
S o]
In Fig. 3 we plot the extrapolated and normalized eigenval- % 5k },./{"" 4
ues(A ")/ (\JgN*) against IN. (This is the normalization = | s 1
needed for a finite largh! limit.) We observe that they move s L ¥ ]
closer together adl increases. Therefore we cannot recog-  § LIREEE BeIE xomem T T *
nize any trend for SSB. E oo
5 05 . ¥ * *x .
s ! B - -
IV. APHYSICAL CRITERION IN TERMS OF WILSON - |
PR | 1 Pl 1 | I
LOOPS 0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
1/N

The results in the previous section reveal a subtlety in the
issue of SSB in the 4D SUSY model. The crucial question is F|G. 3. The eigenvalues of the new ten (;yew) extrapolated
whether any signal of SSB can be probed by physical quano Ar=0 and normalized by the facton/gNY4 1. We also in-
tities, such as scattering amplitudes. Therefore we have tglude the results foN=48, which are obtained ah=0.002(our
reconsider how the type IIB matrix model is interpreted as astatistics at other values afr is insufficient for a sensible extrapo-
string theory. In Ref{16] it has been demonstrated that Wil- lation in this cask
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son loops in matrix models can be identified with string cre- L A R I B B BN B
ation operators in string theory. Hence Wilson loop correla- I — "
tion functions are the only objects with a direct physical 5T pom "'"""_": _______________ < |
interpretation in string theory. So we should ask whether any - osk e o i
signal of SSB can be probed by Wilson loops. (B | e T
We recall that the extent of the space-time can be probed 04 G g -
by the vacuum expectation valy§¢EV) of the “Polyakov - g .
line” [13] 2r o1 TR
0 I P 1 PE Y 1 a1 Pl .-
> 1 . 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
P(p)= NTr explip ,A,), (4.2 1/N
L e B B T LA B
where p, represents the total dimensionfiénd hence DU +
“physical”) momentum carried by the strifgThe VEV 061 g A ]
(P(p)) depends only op= Vp,.p, due to the S®¥) invari- . ol xoom oo T i
ance. It starts at 1 fop=0 and drops down to zero at some (Fa) | B Ko
valuep. Then 1p is a measure for the extent of the space- 02 .. -
time. In Ref.[13], it was shown that the one-point function , I - s T
- - - - B E
(P(p)), as well as other Wilson loop correlators, converge to | pP=02 ]
a certain function op in the largeN limit, if the scale pa- ool e
rameterg is taken to be proportional to JN. This means in O 0l / N e el
particular thatpoc (\JgNY4) ~1. [If we setg=(N/48)"'? as
we do in Figs. 4 and 5, we find=0.7 forN=186, . .. ,48] b ]
Therefore, the largeN behavior of the space-time extent I T R
— It
probed by the Polyakov line is A% gNY* which is con- 04 T <
sistent with the result obtained fromR,,, defined in Eq. (B) 02' oo b T
(3.9. T Moo K]
Let us formulate the SSB of Lorentz symmetry by using ok . * 1
the Wilson loops as a probe. For each configuratiop L, A e
we perform a S@) transformationA,=A ,,A, so that 02| P08 -
~ ~ o~ ~ PRRPENT TSN N SPUN Y N U SN NVUN S SN S U SAT SN AN NSNS UN S R R
l,=(1N)Tr(A,A,) becomes diagonal: I 0 00l 002 003 004 005 006 007
=diag(w;,w,,w3,w0,), Where ;> w,>w3>w,>0. Then 1/N
we define ~
FIG. 4. The four Polyakov lineéP,(p)) (u=1,...,4) atp
1 =0.316, 0.447, 0.548, where we take the scaling parangeter
ﬁﬂ(p) = N'|'r exy(i pﬂﬂ). 4.2 be g=(N/48) "2 The Polyakov lines become approximately equi-

distant and they move closer togetherNagcreases; hence we do
not see any signal for SSB of Lorentz symmet{Jhe lines are
As a consequence of the diagonalization, the VEVsdrawn to guide the eyg.
(P.(p)) (v=1,...,4) do depend om for finite N. If
these functions are different even in the lafgdimit, we  yme. Similarly, the VEv<p(|5)> in Eq. (4.1) depends only

This method is analogous to the Ising model, where theyroken.

magnetizatio{|[M[) (M is the sum of spins divided by their  Qur results are shown in Fig. 4In this case we just
numbey, serves as an order parameter for the SSEZof present the results obtained &t=0.002, which appears to
symmetry. Taking the absolute value bf correspongls 10 pe sufficiently smal). Here we seg=(N/48)~Y2 and plot
making an appropriate 3@ transformation fromA, toA,,.. (B (p)) againsiN at three different values of the momentum
Note, on the pther hand, th&i)=0 fqr any f|n|t¢ lattice p, all of them belowp. We observe no trend of SSB up to
volume even if the SSB takes plader infinite lattice vol-  \/_ 45" 10 jllustrate this observation in yet another way, we
show in Fig. 5 the function$l3#(p)> for N=16 and forN
"This momentump is identical tokphy5(=k/\/§) introduced in =48. We see that the results for the four Polyakov lines

Ref.[13]. We take this opportunity to correct a typo in Fig. 5 of Ref. move closer toget.her dd INCreases.

[13]. The label for the horizontal axis should ké\/§ instead of Finally, we clarify the relation of the above resglt to the
k%g. This typo has propagated to our review articled,25 as  previous result3.4). Let us denote the eigenvaluesAf as
well. Figure 3 of{24] and Fig. 3 of25] should havep instead ofp? a, (i=1,...N) and introduce the probability distribution
as the label. of thee,; as
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The logarithmic divergence dfw,) found in the previous
section(consider footnote Gimplies that(P;(p)) has a non-
analyticity atp=0 of the form
P ~ ~
() (Ba(p))~1+C(N)p2Inp+- - . 4.6
On the other hand,TDM(p» with u=2,3,4 do not have this
non-analyticity, sinc€ w,), (ws), (w,) are finite. Our ob-
Y P T S S S servation that the four Polyakov linegP,(p)) (u
=1, ...,4) converge to a single function pfsuggests that
the coefficienC(N) in Eq. (4.6) vanishes in the largh limit
(at g°N fixed).

These statements can be checked by extracting the coef-
ficient of the logarithmic divergence in E(.4). If we fit the
data for (A,)/g to the expected asymptotic function
—c1(N)In Am+cy(N), we find that the normalized coefficient
ci(N)/N amounts to 2.@), 2.527), 1.757) for N

=16, 24 and 32, respectively. Hence the beha@gt— 0
asN—oo is conceivable.

Py N N B TN T To summarize, our observation in this section implies that
0 02 04 » 0.6 08 ! the quantities
~ 2
FIG. 5. The Polyakov line¢P,(p)) (u=1,...,4) atN=16 ” . @
and atN=48. They move closer together Bsincreases, in agree- ,xdx Xz[hll'inwfﬂ(x)]_ dpz[,\ll'inm<P#(p)>]
ment with the proposed scenario that they coincide in the Iarge p=0
limit. (The curves were measured quasi-continuously, and we show (n=1,...,9 (4.7

a few error bars as examplgs.

are all finite and equal. Notice that in E@.7), the limit N
1 N —oo js taken before setting p=0. The point is that one
f(x)= < N > S(x— a#i)> : (4.3 should first take the larghl limit of the Wilson loop to make
=1 it actually physical, andhenits derivatives ap=_0 inherit a
physical meaning, too. This does not need to be true for

Then we can Write{F’#(p» as derivatives atp=0 for finite N. In fact, our results suggest
that thep—0 limit and the largeN limit do not commute.
N
~ 1 : ® .
<P,L(|O)>=<N ;1 e'p”‘*“> = f_mdxfﬂ(x)e"”‘- (4.9 V. DISCUSSION

In this paper, we wanted to clarify the issue of spontane-
Thus the VEV of the Polyakov line is just the Fourier trans-ous Lorentz symmetry breakdown in supersymmetric matrix
form of the distributiorf ,(x). Our observation thafP ,(p)) ~ models, which was raised by Ref44]. We propose a physi-
for ©=1,2,3,4 approach the same function pfat N=c cal criterion for SSB, which we consider as a solution to this

implies that their inverse Fourier transfornig(x) for w problem. In the particular case of the 4D SUSY model, con-
=1,2,3,4 also approach the same functioxat N— . On figurations with only one-dimensional extent dominate when
the other hand, our result in Fig. 1 suggests thaix) one adopts a conventional criterion for the SSB using the
~C(N)/|x|? at largex, but thef ,(x) with »=2,3,4 have a moment of iner'tia tensor, as was suggestgd by Héaf§. .
sharper fall-off at largex. This suggests that the coefficient However, contributions of those configurations to physical
C(N) vanishes in the larghl limit (at fixedg2N). qguantities such as Wilson loop correlators seem to be
We can rephrase the above statement in the followingtrongly suppressed in the lartydimit. Indeed, if we rely on

B ~ ur physical criterion using Wilson loops as a probe, we do
way. Notg thaKwM>—<(1/.N)Tr(AM)2>.(here we do. NOLSUM o observe any trend of SSB; the space-time probed by
over the indexu on the right-hand sidecan be written as

Wilson loops appears to be four-dimensional.
\ Let us comment on the casBs=6 andD =10. We recall
1 ) * that in the D-dimensional SUSY models in generd)
<“’M>:<N ;1 (i) >: f_wdxxzfﬂ(x) =4,6,10, the eigenvalue distribution &f, has a slow fall-
off with the power— (2D —5) independent oN [15]. There-

d2 _ fore, as pointed out also in Rdfl4], a problem may arise
=—F<Pﬂ(p)) (4.5 if one considers a tensor such as")(,, wherel,,
p p=0 =(1/N)Tr(A,A,) and n=D—3. The VEVs of the corre-
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sponding eigenvalues can be written as (4) No SSB occurs in the 4D SUSY modéhhere the
\ fermionic partition function is real positiyeas discussed in
w1 on\ [ N the present work, where we do not use any simplification of
(0N ={ 5 2 (aw™) = [ doent,o0 the full model,
When one integrates over the bosonic matrices in the 6D
or 10D type IIB matrix model, the phase of the fermion
(5.1 integral fluctuates rapidly except for the vicinity of configu-
rations, for which the phase becomes stationary. In fact, this
happens for anyd-dimensional configurations with 3d
However, one has to take the larbyelimit before settingp <D —2 [5]. Those configurations are therefore considerably
=0, in order to have a correct interpretation in string theoryenhanced compared to the case where the phase is omitted.
The possible divergence d{w,)") for finite N does not By using a saddle-point approximation, it was found that
immediately imply an appearance of the SSB of Lorentzonly the dimensionalities within the above range are pos-
symmetry in physical quantities, as we have see®in4.  sible. Note in particular thad=4 is not excluded.
On the other hand, the conventional moment of inertia tensor
| ., (or T,, in Sec. lll) does not have such a problemDn
=6,10, since thep— 0 limit and the largeN limit commute. We would like to thank P. Bialas, Z. Burda, B. Petersson,
If one observes an SSB with the conventional moment ofl. Tabaczek, and J. F. Wheater for useful discussions. The
inertia tensor, it immediately implies an SSB in physical computation for generating configurations has been carried
guantities. out partly on VPP700E at The Institute of Physical and
The absence of SSB in 4D SUSY modelith the physi- Chemical ResearctRIKEN), and on SX4 at the Research
cal criterion) is consistent with the conjecture that the phaseCenter for Nuclear PhysicRCNP of Osaka University.
of the determinant in the fermionic partition function plays aK.N.A.’s research was partially supported by RTN grants
crucial role in a possible SSB of Lorentz symmetry. ThisHPRN-CT-2000-00122 and HPRN-CT-2000-00131, the
conjecture is supported by the following results: INTAS contract N 99 0590, and the National Fellowship
(1) The bosonic model does not show SEB. Foundation of GreecédKY ). J.A. acknowledges support by
(2) The SUSY model irD=6 andD=10 (using a low- the EU network on “Discrete Random Geometry,” grant
energy effective theojydoes not exhibit SSB if one omits HPRN-CT-1999-00161(which also supported K.N.A. by
the phase of the determindri2]. ESF network no.82 on “Geometry and Disorder” and by
(3) SSB does appear in thedeformed SUSY model in  “MaPhySto,” the Center of Mathematical Physics and Sto-
D=6 andD =10 in the largev limit, where v couples to the chastics, financed by the National Danish Research Founda-
phase of the fermionic partition functid]. tion.

2n

=(-1)"—-(P.(p)

dp 0=0
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