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On the spontaneous breakdown of Lorentz symmetry in matrix models of superstrings
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In string or M theories, the spontaneous breaking of 10D or 11D Lorentz symmetry is required to describe
our space-time. A direct approach to this issue is provided by the type IIB matrix model. We study its 4D
version, which corresponds to the zero volume limit of 4D superSU(N) Yang-Mills theory. Based on the
moment of inertia as a criterion, spontaneous symmetry breaking~SSB! seems to occur, so that only one
extended direction remains, as first observed by Bialas and Burdaet al.However, using Wilson loops as probes
of space-time we do not observe any sign of SSB in Monte Carlo simulations whereN is as large as 48. This
agrees with an earlier observation that the phase of the fermionic integral, which is absent in the 4D model,
should play a crucial role if SSB of Lorentz symmetry really occurs in the 10D type IIB matrix model.
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I. INTRODUCTION

Matrix models @1,2# are considered the most promisin
candidate for a nonperturbative definition of string or
theories. They may play an analogous role as lattice ga
theory does in quantum field theory. One of the most fun
mental questions that can be addressed using these mod
the issue of spontaneous breakdown of Lorentz invarian
which is required to occur in order for these theories in
~or 11! dimensions to describe our four-dimensional spa
time. For early works which address this issue using str
field theory, see Refs.@3#.

The type IIB matrix model@or Ishibashi-Kawai-Kitazawa-
Tsuchiya ~IKKT ! model# @2#, which is conjectured to de
scribe type IIB superstrings nonperturbatively, is a supers
metric matrix model composed of 10 bosonic matrices a
16 fermionic matrices, which can be obtained formally
taking the zero-volume limit of 10D super SU(N) Yang-
Mills theory.1 This model is particularly suitable for th
study of spontaneous symmetry breaking~SSB! of Lorentz
invariance,2 since it is manifestly invariant under SO~10!
transformations, which transform the bosonic and fermio
matrices as a vector and as a Majorana-Weyl spinor, res
tively. The bosonic matrices represent the dynamically g
erated space-time. Ad-dimensional space-time is describe
by configurations withd bosonic matrices having muc

*Email address: ambjorn@nbi.dk
†Email address: konstant@physics.uoc.gr
‡Email address: bietenho@physik.hu-berlin.de
§Email address: hofheinz@physik.hu-berlin.de
i On leave from Department of Physics, Nagoya Univers

Nagoya 464-8602, Japan. Email address: nisimura@nbi.dk
1Dimensionally reduced Yang-Mills theories were first studied

Refs.@4#.
2When one defines the type IIB matrix model nonperturbativel

Wick rotation to Euclidean signature is needed. Hence by Lore
symmetry we actually mean SO~10! symmetry.
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broader eigenvalue distributions than the other (102d) ma-
trices, up to some SO~10! transformation.3 Our four-
dimensional space-time may be accounted for, if thed54
configurations~in the above sense! dominate the integration
over the bosonic matrices. It was found recently that the t
IIB matrix model is indeed endowed with a natural mech
nism that may realize such a scenario@5,6#.

The realization of our space-time as a ‘‘brane’’ in
higher-dimensional space-time has attracted much atten
as an alternative to the more conventional approach in st
theory using compactification~see Ref.@7# and references
therein!. It turned out that such a setup has many pheno
enological advantages, including possible mechanisms w
may solve the cosmological problem and the hierarchy pr
lem. However, the dynamical origin of the brane has n
been discussed so far. The type IIB matrix model enable
to investigate whether a four-dimensional space-ti
emergesdynamicallyas a brane in ten-dimensional type II
superstring theory through some nonperturbative effects.4

The spontaneous breakdown of Lorentz symmetry in m
trix models has been addressed first in the bosonic case@9#,
where fermionic matrices are omitted~for recent work on the
bosonic model, see Refs.@10,11#!. There the absence of SS
has been established by both an analytical method~to all
orders in a 1/D expansion! and by Monte Carlo simulations
The same numerical result was obtained in the 6D and 1
supersymmetric~SUSY! matrix models @12#, albeit with
some simplifications to enable simulations at largeN. The
fermion integrals are complex in general in these cases,
the simulations were carried out including only the modul

,

a
tz

3Throughout this paper, we denote the initial dimensionality byD
and the dimension after a possible SSB asd.

4A possible obstacle may be that gravitons propagate in
dimensional space-time, and hence one fails to reproduce the
served four-dimensional Newton’s law. In Ref.@8#, it was demon-
strated that this obstacle can be avoided in the case of D3-b
backgrounds due to the mechanism of Ref.@7#.
©2002 The American Physical Society01-1
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but omitting the phase. In addition, a low-energy effect
theory was used in order to further reduce the computatio
effort.

In Ref. @13# we presented Monte Carlo simulations of t
4D version of the type IIB matrix model, which is a supe
symmetric matrix model obtained from the zero-volum
limit of 4D super SU(N) Yang-Mills theory. We were able to
study the model withN516,24,32,48 without any simplifi-
cations. These values ofN turned out to be sufficiently large
to extract the largeN behavior of the space-time structu
and to reveal the largeN scaling for a number of Wilson loop
correlators.

Recently, it has been reported for the 4D SUSY model
to N58 that the space-time is observed to be o
dimensional, if one selects configurations with large ext
from the ensemble@14#. In theD-dimensional SUSY models
in general,D54,6,10, configurations with large extent a
suppressed only by the power2(2D25), independent ofN
@15#. Therefore, the observed anisotropic configurations m
play some role in the largeN limit, and such effects may als
be relevant in other SUSY models, including the type I
matrix model.

In this paper, we reconsider the issue of SSB of Lore
invariance in the 4D SUSY model. If we adopt the conve
tional criterion based on the moment of inertia tensor, th
the space-time appears one-dimensional, as suggested b
observation in Ref.@14#. This would mean that the SSB doe
occur at largeN. However, this conclusion depends on t
definition of the order parameter, as we shall see. Thus
have to address the question which criterion for the SSB
Lorentz symmetry is actually physical.

We recall that in the interpretation of the type IIB matr
model as a string theory, the Wilson loops are identified w
the string creation operators@16#. Physical observables—
such as scattering amplitudes—should be extracted from
relation functions of Wilson loops, which were observed
have well-defined largeN limits in D54 @13#. We therefore
propose a ‘‘physical criterion’’ of SSB using Wilson loops
a probe, and we study it by Monte Carlo simulations of t
full 4D SU(N) SUSY model. As a result, we find no trend
SSB up toN548.

II. THE 4D TYPE IIB MATRIX MODEL

The model we investigate is a supersymmetric ma
model obtained from the zero-volume limit of 4D SU(N)
super Yang-Mills theory. Its partition function is given by

Z5E dA e2SbE dcdc̄ e2Sf ,

Sb52
1

4g2
Tr @Am ,An#2,

Sf52
1

g2
Tr„c̄a~Gm!ab@Am ,cb#…, ~2.1!

whereAm (m51, . . . ,4) are bosonic tracelessN3N Her-
mitian matrices, andca , c̄a (a51,2) are fermionic trace-
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lessN3N complex matrices. The 23 2 unitary matricesGm
are gamma matrices after Weyl projection; they can be gi
for example by

G15 is1 , G25 is2 , G35 is3 , G451. ~2.2!

This model is invariant under 4D Lorentz transformation
whereAm transforms as a vector andca as a Weyl spinor.
The model is manifestly supersymmetric, and it also ha
SU(N) symmetry

Am→VAmV†; ca→VcaV†, c̄a→Vc̄aV†, ~2.3!

whereVPSU(N). All these symmetries are inherited from
the super Yang-Mills theory before the zero-volume lim
The model can be regarded as the four-dimensional coun
part of the type IIB matrix model.

The model is well-defined for arbitraryN>2 without any
cutoff. This was first conjectured based on numerical res
at smallN @17#, confirmed further at largerN @13# and finally
proved by Ref.@11#. Therefore, the parameterg—which is
the only parameter of the model—can be absorbed by res
ing the variables,

Am5g1/2Xm ; ca5g3/4Ca . ~2.4!

Therefore,g is a scale parameter rather than a coupling c
stant, i.e. theg dependence of physical quantities is com
pletely determined on dimensional grounds. The parametg
should be tuned appropriately as one sendsN to infinity, so
that each correlation function of Wilson loops has a fin
largeN limit. This issue has been studied numerically in R
@13#. The conclusion is that the productg2N has to be kept
constant when taking the largeN limit. The tuning ofg was
also discussed in terms of analytical arguments in R
@16,18–20#.

The integration over fermionic variables can be done
plicitly and the result is given by detM, M being a 2(N2

21)32(N221) complex matrix which depends onAm .
The matrixM is given by

Maa,bb[~Gm!ab Tr~ ta@Am ,tb# !, ~2.5!

where ta are generators of SU(N), and we consider (aa)
respectively (bb) as one index. Hence the system we wa
to simulate can be written in terms of bosonic variables,

Z5E dA e2Sb detM. ~2.6!

A crucial point is that the determinant detM is real positive
@13#. This property was demonstrated in Ref.@13#, and it had
been suspected earlier@17#. ~It also holds in other 4D SUSY
models, see Ref.@21# and second Ref. in@14#.! Due to this
property, we can simulate the model using a standard a
rithm for dealing with dynamical fermions~the so-called Hy-
brid R algorithm@22#!. In the framework of this algorithm
each update of a configuration is done by solving a Ham
tonian equation for a fixed ‘‘time’’t. This algorithm is
plagued by a systematic error due to the discretization ot
that we used to solve the equation numerically. We p
1-2
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formed simulations at three different values of the ‘‘tim
step’’ Dt and we extrapolate toDt50.

III. SSB OF LORENTZ SYMMETRY?

In the type IIB matrix model, the eigenvalues of th
bosonic matricesAm are interpreted as the space-time co
dinates@2,18,23#. We adopt this point of view in the 4D
model as well. Since the matricesAm are not simultaneously
diagonalizable in general, the space-time is not classical
extract the space-time structure we first define the space-
uncertaintyD by @13#

D25
1

N
Tr~Am

2!2 max
UPSU(N)

1

N (
i

$~UAmU†! i i %
2, ~3.1!

which is invariant under Lorentz transformations and un
the SU(N) transformations~2.3!. Formula~3.1! has been de-
rived in Ref.@9# based on the analogy to quantum mech
ics, consideringAm as an operator acting on a space of sta
As a natural property,D2 vanishes if and only if the matrice
Am are diagonalizable simultaneously. For each configura
Am generated by a Monte Carlo simulation, we maxim
( i$(UAmU†) i i %

2 with respect to the SU(N) matrix U. We
denote the matrix which yields the maximum asUmax, and
we define

xim5~UmaxAmUmax
† ! i i ~3.2!

as the space-time coordinates ofN points xi ( i 51, . . . ,N)
in four-dimensional space-time.

In order to search the spontaneous breakdown of Lore
symmetry, we first consider the moment of inertia tensor
N pointsxi . It can be defined as

Tmn5
2

N~N21! (
i , j

~xim2xj m!~xin2xj n!, ~3.3!

which is aD3D real symmetric matrix.5 TheD eigenvalues
l1.l2.•••.lD.0 of the tensorT represent the principa
moments of inertia. We take the average^lm& over all con-
figurations generated by the Monte Carlo simulation.

In Fig. 1 we plot the results for̂lm&/g againstDt at N
516, 24 and 32.~In all the figures in this section, we plo
dimensionless quantities, so that they do not depend on
choice of the scale parameterg.! As Dt vanishes,̂ l1&/g is
observed to diverge as

^l1&/g;2c1 ln Dt1c0 ~3.4!

5This quantity has also been studied in Refs.@19,12#. Alterna-
tively, one may define the moment of inertia tensor byI mn

5(1/N)Tr(AmAn), as it was done in Refs.@9,14#. We have also
measured the eigenvalues of that tensor, and the spectra are in
tative agreement with the eigenvalues that we present here@based
on definition~3.3!#.
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~wherec0 , c1 are constant inDt), while the other eigenval-
ues converge.6 We recall that the extent of the space-timeR
defined by

R25
2

N~N21! K (i , j
~xi2xj !

2L ~3.5!

was found to be divergent@13#. SinceR25(m^lm&, at least
^l1& has to diverge asDt→0. What we observe here is tha
^l1& is indeed the only divergent eigenvalue. This is cons
tent with the observation in Ref.@14#.

ali-

6We note that based on our data, a logarithmic divergence of^l2&
is unlikely, but it cannot be absolutely excluded. This slight unc
tainty is still a little stronger if we use the definitionI mn

5(1/N)Tr(AmAn) for the moment of inertia tensor.

FIG. 1. The eigenvalues of the tensor of inertiaT as functions of
the algorithmic ‘‘time step’’Dt at N516, 24 and 32. The dashe
lines on top represent the fits to Eq.~3.4!, confirming that the larges
eigenvalue diverges logarithmically in the limitDt→0. ~The other
lines are drawn to guide the eye.!
1-3



s-

-

on
b-

tiv

n

a

e
g

th
i

a
e
s
il-

t
s

-

J. AMBJO”RN et al. PHYSICAL REVIEW D 65 086001
Let us introduce the probability distribution for the di
tance of two space-time points as

r~r !5
2

N~N21! K (i , j
d„r 2A~xi2xj !

2
…L . ~3.6!

ThenR2 can be written as

R25E
0

`

dr r 2r~r !. ~3.7!

The observed logarithmic divergence ofR2 is consistent with
the asymptotic behavior

r~r !;r 23, ~3.8!

which was predicted analytically@15#. Based on this obser
vation, a modified definition for the extent of the space-tim
has been introduced in Ref.@13#,

Rnew5
2

N~N21! K (i , j
A~xi2xj !

2L 5E
0

`

dr rr~r !,

~3.9!

which turned out to be finite—as expected from relati
~3.8!. The largeN behavior of this quantity has been o
served to amount toRnew/Ag53.30(1)3N1/4, which is con-
sistent with the prediction based on the low-energy effec
theory @18#.

This motivates us to define analogously a new tensor

Tmn
(new)5

2

N~N21! K (
i , j

~xim2xj m!~xin2xj n!

A~xi2xj !
2 L .

~3.10!

Let us denote theD eigenvalues of the tensorT(new) as
l1

(new).l2
(new).•••.lD

(new).0. Due to the relation
(mlm

(new)5Rnew, all the eigenvalues are expected to co
verge. In Fig. 2 we show the results for^lm

(new)&/Ag again at
N516, 24 and 32. We carried out an extrapolation toDt
50 assuming the observableO(Dt) at smallDt to behave
as @13#

O~Dt!2O~Dt50!}~Dt!2
•u ln Dtu. ~3.11!

In Fig. 3 we plot the extrapolated and normalized eigenv
ues^lm

(new)&/(AgN1/4) against 1/N. ~This is the normalization
needed for a finite largeN limit.! We observe that they mov
closer together asN increases. Therefore we cannot reco
nize any trend for SSB.

IV. A PHYSICAL CRITERION IN TERMS OF WILSON
LOOPS

The results in the previous section reveal a subtlety in
issue of SSB in the 4D SUSY model. The crucial question
whether any signal of SSB can be probed by physical qu
tities, such as scattering amplitudes. Therefore we hav
reconsider how the type IIB matrix model is interpreted a
string theory. In Ref.@16# it has been demonstrated that W
08600
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FIG. 2. The eigenvalues of the new tensorTm,n
(new) as functions of

the algorithmic ‘‘time step’’Dt at N516, 24 and 32. The straigh
lines are the fits to Eq.~3.11!. We see that now all eigenvalue
converge in the limitDt→0.

FIG. 3. The eigenvalues of the new tensorTm,n
(new) , extrapolated

to Dt50 and normalized by the factor (AgN1/4)21. We also in-
clude the results forN548, which are obtained atDt50.002~our
statistics at other values ofDt is insufficient for a sensible extrapo
lation in this case!.
1-4
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son loops in matrix models can be identified with string c
ation operators in string theory. Hence Wilson loop corre
tion functions are the only objects with a direct physic
interpretation in string theory. So we should ask whether
signal of SSB can be probed by Wilson loops.

We recall that the extent of the space-time can be pro
by the vacuum expectation value~VEV! of the ‘‘Polyakov
line’’ @13#

P~pW !5
1

N
Tr exp~ ipmAm!, ~4.1!

where pm represents the total dimensionful~and hence
‘‘physical’’ ! momentum carried by the string.7 The VEV

^P(pW )& depends only onp5Apmpm due to the SO~4! invari-
ance. It starts at 1 forp50 and drops down to zero at som
value p̄. Then 1/p̄ is a measure for the extent of the spac
time. In Ref.@13#, it was shown that the one-point functio

^P(pW )&, as well as other Wilson loop correlators, converge
a certain function ofp in the largeN limit, if the scale pa-
rameterg is taken to be proportional to 1/AN. This means in
particular thatp̄}(AgN1/4)21. @If we set g5(N/48)21/2, as
we do in Figs. 4 and 5, we findp̄'0.7 for N516, . . . ,48.#
Therefore, the largeN behavior of the space-time exte
probed by the Polyakov line is 1/p̄}AgN1/4, which is con-
sistent with the result obtained fromRnew defined in Eq.
~3.9!.

Let us formulate the SSB of Lorentz symmetry by usi
the Wilson loops as a probe. For each configurationAm

we perform a SO~4! transformationÃm5LmnAn so that
Ĩ mn5(1/N)Tr(ÃmÃn) becomes diagonal: Ĩ
5diag(v1 ,v2 ,v3 ,v4), where v1.v2.v3.v4.0. Then
we define

P̃m~p!5
1

N
Tr exp~ ipÃm!. ~4.2!

As a consequence of the diagonalization, the VE

^P̃m(p)& (m51, . . . ,4) do depend onm for finite N. If
these functions are different even in the largeN limit, we
may conclude that the SSB of SO~4! symmetry occurs.

This method is analogous to the Ising model, where
magnetization̂ uM u& (M is the sum of spins divided by the
number!, serves as an order parameter for the SSB ofZ2
symmetry. Taking the absolute value ofM corresponds to
making an appropriate SO~4! transformation fromAm to Ãm .
Note, on the other hand, that^M &50 for any finite lattice
volume even if the SSB takes place~for infinite lattice vol-

7This momentump is identical to kphys(5k/Ag) introduced in
Ref. @13#. We take this opportunity to correct a typo in Fig. 5 of Re
@13#. The label for the horizontal axis should bek/Ag instead of
k2/g. This typo has propagated to our review articles@24,25# as
well. Figure 3 of@24# and Fig. 3 of@25# should havep instead ofp2

as the label.
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ume!. Similarly, the VEV^P(pW )& in Eq. ~4.1! depends only
on p5Apmpm, even if the SO~4! symmetry is spontaneousl
broken.

Our results are shown in Fig. 4.~In this case we just
present the results obtained atDt50.002, which appears to
be sufficiently small.! Here we setg5(N/48)21/2 and plot

^P̃m(p)& againstN at three different values of the momentu
p, all of them belowp̄. We observe no trend of SSB up t
N548. To illustrate this observation in yet another way, w
show in Fig. 5 the functionŝP̃m(p)& for N516 and forN
548. We see that the results for the four Polyakov lin
move closer together asN increases.

Finally, we clarify the relation of the above result to th
previous result~3.4!. Let us denote the eigenvalues ofÃm as
am i ( i 51, . . . ,N) and introduce the probability distributio
of the am i as

FIG. 4. The four Polyakov lineŝP̃m(p)& (m51, . . . ,4) atp
50.316, 0.447, 0.548, where we take the scaling parameterg to
beg5(N/48)21/2. The Polyakov lines become approximately equ
distant and they move closer together asN increases; hence we d
not see any signal for SSB of Lorentz symmetry.~The lines are
drawn to guide the eye.!
1-5
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f m~x!5K 1

N (
i 51

N

d~x2am i !L . ~4.3!

Then we can writê P̃m(p)& as

^P̃m~p!&5K 1

N (
i 51

N

eipam iL 5E
2`

`

dx fm~x!eipx. ~4.4!

Thus the VEV of the Polyakov line is just the Fourier tran
form of the distributionf m(x). Our observation that̂P̃m(p)&
for m51,2,3,4 approach the same function ofp at N5`
implies that their inverse Fourier transformsf m(x) for m
51,2,3,4 also approach the same function ofx at N→`. On
the other hand, our result in Fig. 1 suggests thatf 1(x)
;C(N)/uxu3 at largex, but the f m(x) with m52,3,4 have a
sharper fall-off at largex. This suggests that the coefficie
C(N) vanishes in the largeN limit ~at fixedg2N).

We can rephrase the above statement in the follow
way. Note that̂ vm&5^(1/N)Tr(Ãm)2& ~here we do not sum
over the indexm on the right-hand side! can be written as

^vm&5K 1

N (
i 51

N

~am i !
2L 5E

2`

`

dxx2f m~x!

52
d2

dp2
^P̃m~p!&U

p50

. ~4.5!

FIG. 5. The Polyakov lineŝP̃m(p)& (m51, . . . ,4) atN516
and atN548. They move closer together asN increases, in agree
ment with the proposed scenario that they coincide in the largN
limit. ~The curves were measured quasi-continuously, and we s
a few error bars as examples.!
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The logarithmic divergence of̂v1& found in the previous
section~consider footnote 5! implies that̂ P̃1(p)& has a non-
analyticity atp50 of the form

^P̃1~p!&;11C̃~N!p2 ln p1•••. ~4.6!

On the other hand,̂P̃m(p)& with m52,3,4 do not have this
non-analyticity, sincêv2&, ^v3&, ^v4& are finite. Our ob-
servation that the four Polyakov lineŝ P̃m(p)& (m
51, . . . ,4) converge to a single function ofp suggests that
the coefficientC̃(N) in Eq. ~4.6! vanishes in the largeN limit
~at g2N fixed!.

These statements can be checked by extracting the c
ficient of the logarithmic divergence in Eq.~3.4!. If we fit the
data for ^l1&/g to the expected asymptotic functio
2c1(N)ln Dt1c0(N), we find that the normalized coefficien
c1(N)/AN amounts to 2.2~3!, 2.52~7!, 1.75~7! for N

516, 24 and 32, respectively. Hence the behaviorC,C̃→0
asN→` is conceivable.

To summarize, our observation in this section implies t
the quantities

E
2`

`

dx x2@ lim
N→`

f m~x!#52
d2

dp2
@ lim

N→`
^P̃m~p!&#U

p50

~m51, . . . ,4! ~4.7!

are all finite and equal. Notice that in Eq.~4.7!, the limit N
→` is taken before setting p50. The point is that one
should first take the largeN limit of the Wilson loop to make
it actually physical, andthen its derivatives atp50 inherit a
physical meaning, too. This does not need to be true
derivatives atp50 for finite N. In fact, our results sugges
that thep→0 limit and the largeN limit do not commute.

V. DISCUSSION

In this paper, we wanted to clarify the issue of sponta
ous Lorentz symmetry breakdown in supersymmetric ma
models, which was raised by Refs.@14#. We propose a physi-
cal criterion for SSB, which we consider as a solution to t
problem. In the particular case of the 4D SUSY model, co
figurations with only one-dimensional extent dominate wh
one adopts a conventional criterion for the SSB using
moment of inertia tensor, as was suggested by Refs.@14#.
However, contributions of those configurations to physi
quantities such as Wilson loop correlators seem to
strongly suppressed in the largeN limit. Indeed, if we rely on
our physical criterion using Wilson loops as a probe, we
not observe any trend of SSB; the space-time probed
Wilson loops appears to be four-dimensional.

Let us comment on the casesD56 andD510. We recall
that in the D-dimensional SUSY models in general,D
54,6,10, the eigenvalue distribution ofAm has a slow fall-
off with the power2(2D25) independent ofN @15#. There-
fore, as pointed out also in Ref.@14#, a problem may arise
if one considers a tensor such as (I n)mn , where I mn

5(1/N)Tr(AmAn) and n>D23. The VEVs of the corre-

w
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sponding eigenvalues can be written as

^~vm!n&5K 1

N (
i 51

N

~am i !
2nL 5E

2`

`

dx x2nf m~x!

5~21!n
d2n

dp2n
^P̃m~p!&U

p50

. ~5.1!

However, one has to take the largeN limit before settingp
50, in order to have a correct interpretation in string theo
The possible divergence of^(v1)n& for finite N does not
immediately imply an appearance of the SSB of Lore
symmetry in physical quantities, as we have seen inD54.
On the other hand, the conventional moment of inertia ten
I mn ~or Tmn in Sec. III! does not have such a problem inD
56,10, since thep→0 limit and the largeN limit commute.
If one observes an SSB with the conventional moment
inertia tensor, it immediately implies an SSB in physic
quantities.

The absence of SSB in 4D SUSY model~with the physi-
cal criterion! is consistent with the conjecture that the pha
of the determinant in the fermionic partition function plays
crucial role in a possible SSB of Lorentz symmetry. Th
conjecture is supported by the following results:

~1! The bosonic model does not show SSB@9#.
~2! The SUSY model inD56 andD510 ~using a low-

energy effective theory! does not exhibit SSB if one omit
the phase of the determinant@12#.

~3! SSB does appear in then-deformed SUSY model in
D56 andD510 in the largen limit, wheren couples to the
phase of the fermionic partition function@5#.
y

l.

s

,’’
e
s
P.

08600
.

z

or

f
l

e

~4! No SSB occurs in the 4D SUSY model~where the
fermionic partition function is real positive!, as discussed in
the present work, where we do not use any simplification
the full model.

When one integrates over the bosonic matrices in the
or 10D type IIB matrix model, the phase of the fermio
integral fluctuates rapidly except for the vicinity of config
rations, for which the phase becomes stationary. In fact,
happens for anyd-dimensional configurations with 3<d
<D22 @5#. Those configurations are therefore considera
enhanced compared to the case where the phase is om
By using a saddle-point approximation, it was found th
only the dimensionalities within the above range are p
sible. Note in particular thatd54 is not excluded.
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