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ABSTRACT

The recent Gravitational Wave detections provided us with direct observations of Black
Hole merger events. The final stage of this merger, known as the ringdown, is the phase
in which the remnant Black Hole relaxes to a final stable state. This phase is notably
the simplest among all the phase of the merger. However, recent studies on Black Hole
ringdown illustrated novel challenges in extracting accurately the parameters from the
time-domain ringdown signal. In this thesis, to explore some of the challenges of this
method, we firstly apply it to General Relativity cases. Specifically, we evolve the linear
perturbation equations for the ringdown of spherically symmetric Black Holes in the time-
domain and afterwards, we analyze the results with various models.

With the continuous advancements in gravitational wave detectors, high-precision Black
Hole spectroscopy becomes increasingly feasible. Assuming that any deviations from Gen-
eral Relativity, if existent, are small, their impact on the Black Hole spectrum would also
be expected to be small. For that reason, a phenomenological extension on the level of the
linear perturbation equations was proposed some years ago. This extension does not as-
sume any specific modified theory. However, it can be mapped to modifications predicted
by specific theories beyond General Relativity, or be used in a theory-agnostic way. In
this thesis, we also examine this extension in the time domain by evolving the linearized
modified time-domain equations of spherically symmetric Black Holes. In doing so, the
Quasi-Normal Modes are excited, then extracted from the time-domain signal and com-
pared with the theoretical predictions.
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ITEPIAHVH

H mpbdogatn aviyvevorn Baputixdv Kupdtwy yac mopelye dueon nopatrienon evog YEYOVOTOg
ouyywvevone Meravov Onov. To 1elxd 6Ta0l0 AUTAC TS CUYYWVELOTS, YVWOTO ¢ ring-
down, elvon @don, xatd TNy onola 1 evanopeivaco Mehav Onr xatalyer oe pio tehixr) otadept)
xatdotoot. Auth 1 @don elvon 1) To AT} and OAEC TIC QPACELC TN CUYYWVELOTC. (26T600, TPOo-
poteg peréteg Tdve oto ringdown twv Melavov Onodv avédellay véeg ntpoxhnoelc atny axplfr
€0y WY TOV TOPUUETEWY and To yeovixd eCoptnuévo onua ringdown. Xe authv v epyactio,
YL VO AVTIUETWTIGOUUE OPLOUEVES OO AUTES TIG TEOXANCELS, apyixd e@oapuolouUe auTh Tr) Ué-
Yodo ot Tepintwoel I'evinc yetindtntag. Yuyxexpéva, eEeMoCGoUUE TIC EELOMOELS YROUUIXNG
datapoy e Yo To ringdown oganpixd cuuueteixdy Mehavay Oy oTo Tedlo Tou ypovou xal
XATOTLY VOADOUPE T AMOTEAECUATOL UE OLAPOPAL LOVTEADL.

Me 10 ouveyh mpéodo oToug aviyveutég BapuTixmy xupdtey, 1 LPniic axpeifelac @oo-
uatooxotia Mehavov Onov xadiotatar ohoéva xan mo e@ixtr. Trodétovtag 6Tl TUYOY amoX-
Moeig and ) Fevinr) yetixdtnta, av undpyouy, elval WXEES, 1) ETOEACT) TOUC GTO PACU TWV
Mehoveyy Onev Yo avapevotay eniong va etvan uixen. [o autdv Tov AdYOo, plor ouvouevoloyiny
EMEXTOOT OE EMINEDO TWV YRUUUXDY EELOWOEWY SLOTAPUY G TROTAINXE TELY Al HATOLXL YPOVLAL.
Auth n enéxtoon dev unolétel xdmolo GUYXEXPWEV TpoToToNUEVT Yewplia. {2oT600, unopel va
ATEIXOVIO TEl OE TPOTOTONCEL TTOL TPOPBAENOVTOL amd CUYXEXPWEVES Vewpleg Tépa and Tn [eviny
Eyetxotnra 1y va yenoylomoindel pe Yewpentind ayvwoxd teono. Xe authy TNy cpyooia, €&-
etdloupe eniong aUTH TNV ETEXTACT OTO TEDLO TOU YEOVOL, EEEMOGOVTUS TIC YRUUUHXOTONUEVES
TPOTIOTIOLNUEVES Y EOVIXA €apTNUEVES EELOWOELS oPouEd cUUUETEIXWY Melaviv Ondv. ‘Etot, ol
YoeaxTnelo ol TeoToL TaAdvTwong dieyeipovtar, €nelta e€dyovTal and To Ypovixd e€apTNUEVO
oo xou ouyxeivoval pe Tig Yewpntixéc npoBrédels.
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THESIS OUTLINE

This thesis is organized in two parts. Part I provides the theoretical background mainly
for the Quasi-Normal Modes and the techniques employed thereafter. Part II presents the
methods used (applied techniques), and the results obtained by them. More specifically:

Part I

Chapter 1: Introduces the key concepts and prerequisites for the following chapters, these
are the spherically symmetric Black Hole and Gravitational Waves specifically pro-
duced by a binary Black Hole system.

Chapter 2: Provides the derivation of scalar perturbations and an outline of gravitational
perturbations around a Schwarzschild Black Hole.

Chapter 3: Provides the definitions of the Quasi-Normal Modes, the properties of the time-

domain signal and various ways of computing them.

Chapter 4: Introduces the Parametrized Quasi-Normal Mode Framework for the ring-
down, which is a general and phenomenological way to extend the General Relativity
Black Hole ringdown and can be mapped to the theory-specific modifications.

Chapter 5: Provides information about the techniques which are applied in Part II, namely,
the numerical solution of the wave equation and the fitting of the time-domain ring-
down signals.

Part I1

Chapter 6: Provides information about the fitting method. Its main part focuses on the
first set or results, which involve analysis of waveforms generated by Poschl-Teller
and Regge-Wheeler potentials by adjusting the fitting window that is taken into
account. At first we treat only one limit of the window as a free parameter and as a
last application we vary both.

Chapter 7: Presents the second set of results involving the Parametrized Quasi-Normal
Mode Framework. At first we consider single modifications of 1/r powers at a time
and consequently multiple modifications simultaneously.
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GENERAL RELATIVITY, BLACK HOLES AND
GRAVITATIONAL WAVES

This Chapter provides a brief introduction to some preliminaries for the next parts of the
thesis. In Sec. 1.1 we discuss the connection of the old Newtonian theory with General
Relativity, in Sec. 1.2 we derive the spherically symmetric solution of the Einstein’s Field
Equationss and discuss about its singularities. Finally, in Sec. 1.3, we discuss about Grav-
itational Waves and specifically about a multi-messenger detection of a Binary Neutron
Star Merger, the various stages of a Binary BH coalescence and we focus on the last, the
ringdown.

1.1 INTERFACE BETWEEN OLD AND NEW THEORY

Allgemeine Relativitdtstheorie is the state-of-the-art theory of gravity that we currently
have. Its foundations were published by Albert Einstein in 1915 in the proceedings of the
Prussian Academy of Sciences [1]. Steps towards the experimental verification of General
Relativity (GR) came quite early, with the first correct quantitative explanation and predic-
tion of the perihelion precession of Mercury’s orbit in 1916, a phenomenon that Newtonian
theory could not account for. While this success was a crucial step to validating GR, as ex-
pected, it was not enough to dispel all the skepticism at the time [2].

The theory did more than just refining its predecessor. It served as a paradigm shift in
our view of gravity. Instead of treating gravity as a force, as the old theory did, Einstein’s
theory described gravity as the curvature of spacetime. This new perspective fundament-
ally changed our approach to gravitational phenomena and led to both qualitative and
quantitative advancements.

To stress out the magnitude of the shift, consider a historical parallel: the transition from
the Ptolemaic geocentric view to the Copernican heliocentric view of the solar system. By
degrading Earth from the center of the universe to just a marginal planet, this revolu-
tion had profound implications, influencing not only science but also philosophy, religion,
political thought, and the arts [2]. In the case of GR, the shift was from the Newtonian
consideration of gravity, as an instantaneous and direct force, to the view of gravity as a
curvature of spacetime where objects follow paths determined by this curvature. In the
new framework, when two bodies interact, one curves the spacetime, while the other is

guided from that curvature and vice versa.
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The old theory is described by Newton’s law of universal gravitation

Gmim,
— ), (1.1)

F=

which provides a radial inverse-square force between two particles with mass m; and
my. Due to the conservative nature of this force, it can be expressed as a gradient of a
gravitational potential ® which obeys a Poisson equation

V2® = —4nGp, (1.2)

where p is the mass density. These equations state that the action of Newtonian gravity is
instant and universal, that is, all possible observers sense space and time in the same way;
therefore, there is an absolute space and an absolute time.

The equations of motion of the new theory read

1 881G
R]ﬂ/ - ERg‘uV = CTTI’W' (13)

On the left-hand side we have the Ricci curvature tensor Ry, the Ricci curvature scalar
R = ¢" Ry, and the metric tensor g,,. Ricci tensor and scalar depend on the metric tensor,
and the metric shows how the space is deformed due to the presence of mass. On the
right-hand side, we have the stress-energy tensor T, which describes the distribution and
flux of energy and momentum in spacetime. So, objects from differential geometry that
describe the curvature are connected with the description of matter. The objective is to
solve these equations with respect to the metric tensor and therefore define the spacetime
of the system under examination.

One indispensable requirement for GR is that it must reproduce the equations of New-
tonian gravity in the weak-field and small velocity regime. The trajectory, called worldline
in the new theory, of a free particle moving in a curved spacetime is described by the

geodesic equation

dZxH i dx? dx?
et S 1.4
dr2 + 1w dt dt 0, (1.4)

where T is the proper time and I}, are the Christoffel symbols which are used to generalize
derivatives in curved spacetime and are directly related to the metric

1

Fl}/la = ngx (avguca + aagzw - aucgva) . (1.5)

In the weak-field and small-velocity regime the geodesic becomes

d2x 1

1 = —Eczwoo, (1.6)

where h is the small correction to the flat metric g, = 7, + hyy. So, in order to agree with
the old theory, it should be ggo = 1 — 2®/c2.
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1.2. BLACK HOLE PRELIMINARIES

We emphasize that while Newtonian theory agrees with GR within this specific regime,
this does not imply that the Newtonian theory is simply a subset of GR. The fact that
the mathematical equations are the same does not imply that their meaning is the same.
One stems from a theory that embeds instant action from a distance and universality of
time and space, whereas the other one is based on the equivalence principle. The Einstein
equivalence principle consists of three parts. First, it assumes the validity of the equality
between the gravitational and the inertial mass, which was already included in Newtonian
theory. The other two are related to non-gravitational experiments, stating that their out-
come should be independent of the velocity of the freely-falling frame in which they are

performed and also independent of its temporal and spatial location in the Universe [3, 4].

1.2 BLACK HOLE PRELIMINARIES

References used for this section: [5-9].

Large enough stars with masses M 2 2 — 3M, can form a Black Hole (BH) during their
collapse [10]. These BHs posses a mass and a spin, thus their behavior is described by the
Kerr solution [11]. The Kerr hypothesis states that all isolated astrophysical BHs can be
described by the Kerr solution whose only free parameters are the mass and the spin [12].
This implies that astrophysical BHs are relatively simple objects since they require the spe-
cification of only these two parameters in order to be fully described. The purpose of this
section is to provide the background for the simpler, non-rotating case of Schwarzschild
Black Hole (SBH) that is a preliminary for the next parts of the thesis.

1.2.1 Derivation of Spherically Symmetric Metric

Einstein’s Field Equationss (EFEs) are non-linear coupled Partial Differential Equations
(PDEs) coupling the ten independent components of the metric. Solving these equations
reveals how space is structured in the specific configuration being studied. We start from
the simplest possible case. That is a spherically symmetric and static spacetime which de-
scribes the spacetime outside of highly idealized objects such as non-spinning BHs and stars.
This solution was derived by Karl Schwarzschild in 1916 [13].

To begin solving the EFE, we guess an ansatz for the metric. By choosing an appropriate
coordinate system we can diagonalize the metric, so a reasonable ansatz for symmetric

and stationary spacetime ! would be

ds? = —A(r)dt* + B(r)dr® +r*d6” +r* sin” 0d¢”. (1.7)

Stationary means time independent metric (admitting everywhere a timelike Killing vector field K: g,y K¥K" <
0, which after assigning (t, x;) coordinates it becomes K = d; or K = (5;’) [7].

9
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Since this metric describes a vacuum solution, it must obey the vacuum Einstein Equa-

tion which read
Ry = Ty — 0T}y, + T, — T T = 0. (1.8)

Using the Christoffel symbols 2, one can calculate the independent components of the
Riemann Curvature Tensor, Roy, R11, R, Raz 5. By combining Rgp and Rj; we find

1
0 =BRy + ARy = 7(AB)/ = B =

= (1.9)

1
Zr
now from R,, we obtain

A+rA’:c:>A:c1<1+C72). (1.10)

We have specified the solution except for two constants. These can be obtained by the
Newtonian limit, by demanding that when gravity is weak, a particle’s motion should be
the same as if it were moving by the influence of a symmetric mass M in the Newtonian

theory. By this demand we get

A(r) - 2 GM
2 = 1-— 2, (1.11)
Soc; =1and ¢ = —2GM/ 2. Finally, in natural units and expressed in Schwarzschild

coordinates, the Schwarzschild metric is

dst = — (1= ") a + (1- YTH)_l dr? + 72 (d67 + sin20dg?), (1.12)

an?

where rg = 2M is the Schwarzschild radius. This will be our concern in the following
subsection. From now on, we are going to denote the factor in front of —dt? as f(r) =
1—7r H / r.

1.2.2  Singularities

There are some peculiar features of the metric (1.12) for r = rg and r = 0. Specifically, for
r = rp, the component g1; — oo diverges, while for r = 0, we observe the divergence of
800 — ©0.

The metric is a geometric object which determines the geometry of the spacetime by
defining a distance between two events (points in spacetime). Its components have differ-
ent expressions depending on the coordinate system that we choose to use. This depend-
ence suggests that the singularities of (1.12) might be artifacts of the chosen coordinates.

They can be found on pg. 200 of [5].
Ry = A"/2B+ A’ (A'/A+B'/B)/AB — A’/rB,R;y = A"/2A — A" (A’/A+B'/B) /4A — B'/rB,Ry =
1/B—1+7r(A’/A— B'B) /2B. They can be found on pg. 200 of [5]
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Therefore, there might be two types of singularities- coordinate (nonphysical) and curvature
(physical).

An identification of these singularities can be achieved by examining a curvature invari-
ant such as the Kretschmann scalar, K1 = Ry A R*** = 48M?/r%. From this expression, we
observe that a divergence at r = 0 still exists whereas the other, for r = rp, vanishes. This
indicates that the first is a true curvature singularity of the underlying manifold, whereas
the second is due to a poor choice of coordinates in which the metric is expressed. In

60

40 A

20 A

O_

r*/M

_20 -

—40 -

_60 4

0 10 20 30 40 50
r/M

Figure 1.1: Relation between radial r and tortoise 7, for » > ry. Note that the curvature singularity
at v = 2M is being mapped to r* — —co.

simple terms, by changing the coordinate system, one can in principle get rid of the non-
physical coordinate singularities. For example, we begin from the transformation r — 7,
where 7, is given by

dr, = (1 - %H)*l dr = (1.13)

r« =t +rplog <‘rr - 1’) ,NVre (0,rg) U (ry, o). (1.14)
H

This expression maps the region outside the Schwarzschild radius from (7, 00) to (—o0, )
and the region inside ry from (0,7y) to (—c0,0). In other words, it moves the horizon to
—o0, as shown in Figure 1.1 for r > ry. This plays a very important role when we want
to work numerically on problems defined in that region and will become more obvious in
later parts of this thesis. Additionally, it serves as the basis for unveiling some structural
properties of Schwarzschild metric. This new coordinate r., is called tortoise coordinate. The

elimination of the r = r, singularity becomes obvious in the transformed metric.

ds? = — (1 . YTH) ar + (1 . %H) dr? + r2d0? (1.15)

11
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1.3 GRAVITATIONAL WAVES
1.3.1 Electromagnetic and Gravitational Waves

Astrophysical objects reveal their properties through various ways, with electromagnetic
and gravitational waves being two of the most significant [14]. These two types of waves are
fundamentally different, each probing distinct and complementary aspects of the objects
under investigation.

Electromagnetic radiation is emitted by accelerating charged elementary particles such
as electrons. Since astrophysical objects are generally electrically neutral, this radiation
typically originates from small, localized regions within the object, leading to short
wavelengths. Electromagnetic waves, provide detailed information about these localized
regions. Also, if they manage to reach the Earth by avoiding absorption or scattering from
intervening matter, it is relatively easy to detect since they couple strong enough with
electrical charges [14].

In contrast, GWs are emitted from the system as a whole, resulting in longer wavelengths.
They carry information about the global dynamics and structure of the system. Their weak
coupling to matter makes the detection extremely challenging. Once detected, though,
they have almost the same waveform as emitted from the source, as their interaction with
objects in their journey is weak [14].

An example of the synergy between these two types of waves is the detection of a
Neutron Star Binary, on August of 2017. The LIGO and VIRGO detectors first received
the Gw signal GW170817 and a few seconds later, Fermi Gamma-ray Space Telescope
captured the Gamma-ray burst GRB 170817A [15, 16]. Both signals were traced back to the
same source due to their similar localization in the sky. Following these, after ~ 11 hours,
the One-Meter, Two-Hemisphere, collaboration made an optical observation[17]. The optical
data, pinpointed the source to the NGC 4993 galaxy located 40 Mpc away from the Earth,
a distance that was consistent with the GW estimation.

Figure 1.2 shows the detection of GW170817 and its electromagnetic counterparts. In
the left panel, time-frequency plots from LIGO and Karga illustrate how the dominant
frequencies ( indicated in yellow ) of the GW increase with time as the binary Neutron Stars
inspirals inward. The upper right panel displays an ordinary gamma-ray burst detection
at ~ 229 eV and the bottom right panel, shows the optical observation, by comparing am
image taken four months before the GW detection, with one captured ~ 11 h after it.

While combining electromagnetic and gravitational wave observations, part of the so-
called multi-messenger astrophysics, has proven to be an enlightening approach, not all
astrophysical systems emit electromagnetic counterparts. Such a system is the Binary Black
Hole Coalescence, which lacks electromagnetic emissions and whose final stage of evolu-
tion is the topic of this thesis. Now, let us discuss the GW generated by these systems.
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Figure 1.2: Multi-messenger detection of a Binary Neutron Star System.

1.3.2  Stages and Regimes of Coalescence

Gravitational Waves (GWs) are sourced from various astrophysical processes which can be
generally split into two large categories: high and low frequency [18]. Since the frequency
of a GW is inversely proportional to the mass of the source, high frequency waves come
from light systems and low frequency from more massive ones. High frequency waves
can be traced back to supernovae, caused from non spherical collapses of stars, rotating
Neutron Stars due to potential small mountains on their surface or small ellipticity that
breaks their spherical symmetry, tidal disruption of a Neutron Star that spirals on the
field of an other compact object, during the accretion of a white Dwarf to a Neutron Star

[18]. Low frequency waves are radiated from more massive non-spherical systems and
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are a target group for the LISA detector that will be online in 2035 [19] and focus on the
frequency range between 0.1 mHz — 1 Hz [20].

The binaries of the three possible combinations of Neutron Stars and BHs, also belong to
one of the two categories depending on the mass of the compact objects. They all consist
of the three main stages that are going to be discussed, but with enormous differences on
the corrections that have to be included in the waveform in order to describe the process
properly. Specifically, systems including Neutron Stars are always more complicated to
model, since additional phenomena and properties should be taken into account, such as
the internal structure of the neutron star and the aforementioned tidal effects. Also, the
complexity increases if the objects are rotating and increases even more if the spins are not
aligned and instead, are precessing.

We are going to focus on binary BH coalescence since all the others are beyond the scope
of the thesis. It consists of the three stages shown in Figure 1.3 and each stage or different
regime of masses and separations is treated with different techniques and methods, as

shown in Figure 1.4. The three phases of coalescence are the following

a) Inspiral: This is the earliest stage of the evolution, where the two compact objects have
small velocities and large separation, which is gradually shrinking due to loss of en-
ergy to GW radiation. As we can see in the blue box of Figure 1.4, the Post-Newtonian
analytic approximation is used as a tool to model the waveform on large separations.
Within this method, the EFE are expanded around the Newtonian limit in powers
of the small parameter € ~ v/c. Each power n, incorporates a new phenomenon in
the waveform model, for example, n = 2 includes orbit precession, n = 3 includes
spin-orbit coupling, n = 4 spin-spin coupling and GW emission appears for n > 5.
[22-24].

b) Merger: This is the intermediate stage of the evolution. Starts when the separation

distance is smaller than the Innermost Stable Circular Orbit and ends when the final
remnant is formed. Nonlinearities dominate this phase, and the tools that are used
to tackle it are many, as seen in Figure 1.4. Numerical Relativity, a purely numerical
treatment of EFE which works better for small and intermediate mass ratios and
gravitational self-force perturbation theory, which is employed in large mass ratio
regime and takes into account the impact of a small object in its own motion while

moving in the field of a massive object [25].

¢) Ringdown: This is the last stage of the evolution where one remnant BH is left. Ex-
cited from the previous stage, the final object settles exponentially to equilibrium
emitting GW in the process. The produced signal is sufficiently described from the
complex frequencies called Quasi-Normal Modes (ONMs). We discuss about them
more analytically in Chapter 3.

From the techniques shown in Figure 1.4, the Effective One-Body formalism can produce
full waveforms and covers a wide area of the parameter space. Initially introduced from
Buonanno and Damour in 1998 [26], this method maps the relativistic two body problem
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Figure 1.3: Top: Stages of the general relativistic two-body problem. Middle: Estim-
ated gravitational-wave strain amplitude from GW150914. The peak is
reached at the point of merger. Bottom: The effective black hole separa-
tion in units of Schwarzschild radii Rg and the effective relative velocity
of the system ( LIGO Scientific Collaboration, Virgo Collaboration, Ob-
servation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev.
Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc]. Published under Creat-
ive Commons Attribution 4.0 License. ) [21].

onto that of a test particle moving in an effective metric, thus providing the waveform in a
non-perturbative manner.

1.3.3 Ringdown

The ringdown of a BH can be sufficiently described by an infinite sum of discrete complex
frequencies

h(t) ~ 2 Aémne_i(MwantJ"aném),

{mn

where M is the BH mass, n > 0 is the overtone number, ¢ > 0 is the angular number and
|m| < ¢ is the azimuthal number, fully describing each frequency. This set of frequencies

Wey is called the ONM spectrum. The spectrum carries information about its emitter, and
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3 -
@ 10°F Post-Newtonian th 3

Effective one-body

Perturbation theory.
gravitational self-fore

Figure 1.4: Regimes of validity for various methods to tackle the general relativistic two-body prob-
lem. (© A. Buonanno, B.S. Sathyaprakash in: "General Relativity and Gravitation: A
Centennial Perspective"; Cambridge, University Press (2015). Reproduced with permis-
sion of The Licensor through PLSclear) [27]

in our case, if the no-hair theorem holds, it completely describes the properties of the BH,
which are its mass, M ,and angular momentum, | [28].

The importance of the ringdown phase lies in its ability to offer valuable opportunities
for testing GR [28, 29]. However, measuring only the fundamental mode (n = 0), is not
sufficient to fully determine the angular momentum, J, and the mass, M of the object. This
is because different types of objects may have fine-tuned parameters that coincidentally
yield the same fundamental mode. On the other hand, if we measure two or more modes
from the same object, we can perform a consistency check for GR [28]. By comparing these
multiple modes to theoretical predictions, we can verify if they correspond to the same
pair of | and M values, as predicted by GR. If there is inconsistency, its source could be
either that GR is not the correct description of gravity or that the object is not isolated and

there is concentrated mass around it that alters the spectrum.



BLACK HOLE PERTURBATION THEORY

In this chapter, we outline the procedure for deriving the equations that govern small
perturbations around a Schwarzschild Black Hole (SBH). We will break the process down
into five steps - the first four are related to the mathematical setup, and the last one to the
detailed and lengthy calculation. Before diving into the full metric perturbations, however,
we begin by tackling a simpler, toy problem: the evolution of a scalar test field on top of a
SBH background. This problem serves as a useful starting point, as it leads to an equation
that is structurally similar to that for the metric perturbations. By deriving the equation
for the scalar field case we will gain intuition for the more complex scenario that follows.
Specifically, in Sec. 2.1 we derive in detail the wave equation that governs the scalar
perturbations and in Sec. 2.2 we outline the derivation of the linearized gravitational per-

turbations around a spherically symmetric spacetime.

2.1 SCALAR PERTURBATIONS

In this section, we aim to study the behavior of a test field on a Schwarzschild background.
By test field, we mean a field that does not influence the underlying spacetime geometry;
instead, it evolves according to how the curved spacetime dictates. To simplify the problem,
we will consider the case of a massless, spin-zero field, thus a scalar. The equation of
motion can be derived by extremizing the action

S= /dx4\/—gL[‘I’,8¢] = /dxﬁ/—gg”"ay‘ffav‘l

where Y is the scalar field and g is the determinant of the metric g,,,. By varying this action
with respect to ¥, we obtain the equation of motion, which is the Klein-Gordon equation

in curved spacetime [4]
OY =0= V,V*Y =0 =

Jl_igay (V=28"3,¥) =0. @1)
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General Spherically Symmetric Background

Instead of deriving the equations directly for the Schwarzschild background, we can start
from a more general spherically symmetric metric which has as a specific case the Schwar-
zschild. The metric, its inverse and its determinant have the structure

guw =diag (—A(t,r),B(t,r),r*,r*sin?0), (2.2)
g =diag (—1/A(t,r),1/B(t,1), 1/7%,1/(r? sin® 0)), (2.3)
g =—rtsin?0, (2.4)

where if we want to retrieve the Schwarzschild one we can substitute A(t,7) = A(r) =
1—rp/rand B(t,r) = 1/A(r). Now we further expand (2.1) using the general metric

2 i ot 2 o0 T 20700 H0 26in@oh¥ =
rzsin98“ (r sin0g" 0;Y + r°sin0g"" 9, Y + r°sin6g"" 0o ¥ + rsinfg 8¢T> 0

If we expand the summation on u we obtain
d 8 ! o 1? ! d ! dg 0 8
—0; tT + ﬁ r\ T E r‘If + m (Sln9 Q‘F) ule;T =0.

Assuming spherical symmetry, we split the temporal-radial part of the solution from the
angular, ¥ = ¢(t,7)Y(0,¥)

r? attl,b zatA atl,b or (Vzarll]/B) 1 1 . 1
0(0+1) —0(0+1)

the equation was further split into two terms. The first (radial) depends only on t,r and
the second (angular) on 6, ¢. Therefore each one of them should be constant.

The solution of the angular part, which if further separated leads to a Legendre equation
for the 6 variable and to a simple harmonic oscillator equation for the ¢ part, are the well-
know spherical harmonics Yy,,. For the radial part, we can make some first steps without
assuming any particular structure neither for A nor B. Initially, we treat them as general
as possible, allowing us to derive a broad form of the radial equation. Once the general
expression is obtained, we can specify them to match the Schwarzschild metric.

In particular, the radial equation becomes

Ap =0. (2.6)

0tA 2A  Ao,B I(I+1
_attll] + 7atll] + arrl/) + < > ar — ( :2_ )

B B2

Now we want to transform the spatial coordinate. When we will specify A, B to the Schwar-
zschild metric this transformation will help us to eliminate the fictitious singularity that

arises from spherical coordinates. In the most general case, it is

or*

5 =T(t). 2.7)
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Using this we can transform the derivatives

oar*
oryP :ya*lp =T(t,7)0.1p,

and

Arrp =0, (0,9) =
=0,T(t, 1) + T (t,7)20,s1p.

By substituting this transformation into the radial equation (2.6) and by grouping term

with same derivative we obtain
A 2A J,B (0+1)
é/ﬂ>m¢—72A¢:O (2.8)

A 2
—atth + Er a**ll) + (Barr + Er -

We observe that the radial equation is nearly a wave equation with a potential and an extra
friction-like term with the first-order derivative which we aim to eliminate. In particular,

we can perform a generic decomposition of the ¢ function, for example
Yt r) = g(rult,r),
and then substitute to (2.8). At this point we will have an equation with respect to r*
containing both u(t,r) and the arbitrary function {(r). Thus, we can impose a condition

on {(r), which will cancel the first order derivative term.
Following these steps, we have

Ossx P =C sl + U0 { + 20,10+ (.

By substituting in (2.8) we obtain

o+ %rz (st + 4D C + 20,12, (‘;a,r + %r - a’fAr) (01t + 1ds) —
0(0+1
— ( o )A¢ =0=
AT? AT?0,0 A AT 9,B 0.0 Ao, T
2
a*52/‘1?.—a*garBAHA;a’%"g—wrj]')A):o. 29)

{ rB { B?

If we demand the coefficient of d,u to be zero, we have a differential equation with
respect to {(r), assuming that A, B and I" are known. If we solve it, we obtain the correct
transformation which cancels the unwanted first order term and we obtain a wave equation

with a potential, for the function u(t,r).
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Specification to Schwarzschild Metric

Specifying all the above to the Schwarzschild metric, we have

A(r) =f(r) =1~ P (2.10a)
1 1
or* 1 1
5 =L(r) = A0~ F0) (2.10¢)

Using the last relation (2.10c) we eliminate the coordinate singularity that arises in spher-
ical coordinates at r = ry. The new spatial coordinate r* is the tortoise coordinate which
was introduced in (1.13). The remaining part to fully specify the equation is to obtain {(r).
This is achieved by imposing the condition that vanishes the coefficient of the first-order
derivative term of the equation (2.9)

AT20,0 A AT 9,B
3 4 +§arr+2ﬁ— B2 Al =0 =
2§ AA2 +2r+A a7 =0 —
o 9.l A _ d.r-a
%?4‘7 =0
9,0 1
— 4+ -=0=
¢
70,0 + ¢ =0 =
(rg) =0=
1
o) =7

r

We are able to compute the coefficient of theu term in (2.9):

0. f Ad, T a*fgr_a*fa,BArJrArZa**f_£(£+1)
f B f B f B? B f r?

:_f(_%&%%)+rAa,(Aar(1>)_Al<l;1>
:A<_2§‘+“<_A>_Af<€+1>>
:< _

4 0 zhaf

T 72 72

0
A _;ﬁ( d,A +%_A£(€+1)
72 T r2 r

2
—_A <’H + g(“l)), 2.11)

73 r2

and finally, equation (2.9) becomes

u 0% ru\ (L(l+1) ry
_at2+ar*2_(1_r>< > —|—r3>u_0 (2.12)
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This equation governs the radial part of the solution for scalar test fields in SBH, also
known as master equation. We will now follow the procedure for the metric perturbations

around SBH and as we will see, the master equation the we find is quite similar.

2.2 GRAVITATIONAL PERTURBATIONS

References used for this section: [9, 30].

The question that initiated the study of metric perturbations of Schwarzschild Black
Hole (sBH) was whether the spherically symmetric solution of the Einstein’s Field Equa-
tions (EFE), now known as SBH, is stable [31]. It is important to emphasize that if the SBH
was found to be unstable under small perturbations, the arguments supporting the exist-
ence of the objects that this solution implies, would have been weakened.

However, in 1957, T. Regge and ]J.A. Wheeler proved that the SBH is stable under small
perturbations. In their seminal work [31], they derived the equation governing the perturb-
ations that have odd parity transformation. Later, in 1970, EJ. Zerilli, derived the equation
for perturbations with odd parity transformation [32, 33]. The time gap between these
two derivations may serve as a small indicator of the complexity of some steps of these
calculations.

In this section, we will outline the procedure for deriving these equations, while provid-
ing some calculations when they are feasible by hand in a reasonable length and offering
turther insights. The main steps for this procedure are the following five:

Step 1: Find a solution, g, to Einstein’s equations, serving as the background space-
time

Step 2: Express a new metric in small, perturbations, around the background metric
Sy = g_;w + hpu/ + O(hZ),

Where ‘h‘w/’ <K ’gyy’
Step 3: Find a good basis to describe the perturbation h,,
Step 4: Choose an appropriate gauge to simplify the equations

Step 5: Plug into Linearized Finstein’s Field Equations

Steps 1 & 2

The first two steps have already been already done. For the first one, we assume spherical
symmetric system and we obtain the SBH solution that we derived in Section 1.2.1

guw =diag (—A(r), B(r), 1%, r*sin?0), (2.13)

A(r) :Bgr) - 1—775.
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The second one is just a matter of notation
S = G+l + O(H?), || < |G|,

where hy,, is the perturbation metric. From now on, the goal is to find the equations that
govern the behavior of the small perturbation on top of our background solution. The next
two steps are crucial for simplifying the final equations.

Step 3: Expand into Basis

The idea of choosing an appropriate basis to simplify problems, is already familiar from
various areas of physics such as Quantum Mechanics and Electrodynamics. By aligning
the choice of basis with the symmetry of the problem, we can often decouple different
aspects of the solution, making the problem more tractable.

For example, in the solution of the hydrogen atom, we tried to take advantage of the
spherical symmetry of the problem and expressed the wave function as a sum of a radial
function multiplied with spherical harmonics. The spherical harmonics are the basis of
the angular part of the wave function, whereas by solving for the radial part, we find the
associated Legendre polynomials as its basis [34].

Similarly, in electrostatics, we consider a simple example of a conducting charged shell.
The electric potential outside the shell, satisfies the Laplace equation. Due to spherical
symmetry, again, we expand the solution to a sum of spherical harmonics, multiplied by
a factor of the form (constant) x (powers of r). By imposing the boundary conditions, we
could obtain the constant of the radial part of the solution [35].

The takeaway from these examples is that in problems with spherical symmetry, spher-
ical harmonics naturally appear in the solutions. By imposing boundary conditions, we
can determine all the unknown pieces of the expansion. Of course, these are not novel or
profound points, but let us try to specify them to our case.

The difference in our expansion from these examples is that they refer to scalar quantit-
ies, whereas our case involves tensors. Our task is more complicated. We should not only
find a basis for each element of the perturbation tensor %, (which is a function), but also
a convenient basis for the tensor components themselves. So, we can think that the basis
that we seek consists of two parts - basis for the tensor and bases for each tensor element.
In that process, we are going to need vector and spin-2 tensor spherical harmonics.

A general way to construct spherical harmonics with spin s, is by coupling the standard
scalar spherical harmonics Y, (6, ¢) with the spin function x.s,, using the Clebsch-Gordan
coefficients [30]. The resulting spin-weighted spherical harmonics can be expressed

14 s
YiE0,9)= Y, Y (stsalaljjz)Yur.(6,0)Xss., (2.14)
ly=—0S;=—S5

when s = 1 we construct vector spherical harmonics and when s = 2 we construct tensor
spherical harmonics. The Clebsch-Gordan coefficients, couple the angular momentum and
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spin states, |¢/;) and |ss.), respectively, to create a new state with total angular momentum
|jjz)-

The perturbation tensor £, being symmetric, has 10 independent components. To take
advantage of its spherical symmetry, we can restrict ourselves to the submanifold of the
SBH which has t,r constant, leaving only the angular dependence. On this submanifold,
different components of h,, transform differently under rotations. The final expression
contains 3 scalar elements (hgg, ho1, h11), 2 2-dimensional vectors (hoy, h1,, for &« = 2,3) and
one rank two 2-dimensional tensor (h,z for &, B = 2,3). This structure is a consequence of
our choice for the spin function )X, and the final linear combinations of spin-2 spherical
harmonics Yf]f There are different possible bases that we can use. One common and con-
venient choice in General Relativity is the Zerilli tensor harmonics, particularly used in

perturbation theory for spherically symmetric spacetimes like Schwarzschild [30].
The scalar ones, are the following three

10 0 0 01 0 0 00 0 0
00 0 0 1 0 0 0 01 0 0
tltfn = Yim, tllipi = Yim, sz,S = Yim- (2-15)
00 0 0 00 0 0 00 0 0
00 0 0 00 0 0 00 0 0
The vector are the following four
0 0 3 9y 00 0 0
00 0 0 0 0 9 9
th = Vi, thl = N R (2.16a)
« 0 0 O 0 = 0 0
x 0 0 0 0 « 0 0
0 0 (1/sinB)dy —sinfdy 0 0 0 0
0 0 0 0 0 0 (1/sin0)dy —sin69,
ty = Vi, Bl = ( 12 o |y,  (216b)
x 0 0 0 0 0 0
x 0 0 0 0 0 0
and the tensor are the remaining three
000 O 0 0 0 0 0 0 0 0
000 O 0 0 0 0 0 0 0 0
tlj;,(l) = Ylmr t]EnZ; = Ylmr tIByS =
001 0 00 W X 0 0 —(1/sinf)X sin6W
0 0 0 sin%6 0 0 X —sin?6W 0 0 * sin 60X,
(2.17)

where X = 2dgdy — 2cotfdy, W = dgdg — cot0dg — 1/ sin? 80404 and the asterisks refer to
symmetric parts. We can split these tensor harmonics into two categories regarding their
parity transformation %

0 —0—-m, ¢—¢+m. (2.18)

The scalar spherical harmonics transform with even parity transformation, PY;, =
(—=1)"Yy,,. When we extend this to tensor harmonics, each component of the tensor picks
an additional (—1) factor for each derivative d;. This leads to both odd and even parity

Yl m
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components. The components with b = {Bt, B1, B2} are odd and also called axial and the
components with ¢ = {tt, L0, TO, Rt, Et, E1, E2} are even and also called polar. We can now
write the perturbation metric separating the temporal-axial from angular part and also
split it into axial and polar counterparts

= XY (1) (8, (8, 0) =

a {m
=L L k() (8) | (©0)+ LT M) (£ (6,0). (2.19)
b Im ¢ Im

(hodd)yv (heven)}w

In this expression there are three unknown temporal-radial functions for the axial part
of the metric and seven for the polar. These functions are to be determined by the EFE.
This clear separation into axial and polar contributions not only aids in understanding the
structure of the perturbation metric but also indicates that polar and axial solutions are
independent and do not couple and mix with each other.

Step 4: Gauge Fixing

As Regge and Wheeler write in their 1957 paper: “Different waves can represent the same
physical phenomena viewed in different systems of coordinates” [31]. By this, they mean that EFE,
do not have a unique solution. Instead, the solution depends on an arbitrary coordinate
transformation. This is analogous to gauge invariance in electrodynamics, where Max-
well’s equations remain invariant under the gauge transformation V. — V + 0;® and
At — AF — 0'®, describing the same electrodynamics [35]. By imposing a gauge con-
dition on ®, we can completely determine the solution in a unique way. The choice of
gauge is optimized on the context of the specific details of each problem, with the aim of
simplifying the equations as much as possible.

Similarly, the EFE are gauge invariant under local infinitesimal coordinate transforma-

tions of the form:
xt — Xt = x4 & (x), (2.20)

where ¢* is a 4-vector. Under such transformations, the EFE describe the same gravity. This
reduces the number of independent metric components by four.

Quantities that stay numerically invariant under (2.20), are called gauge-invariants. In
contrast, the metric itself, including its perturbative part, is not a gauge invariant, because
it transforms as:

h;n/<x) = hyv<x) - (Dygv - Dvéy)- (2.21)

If we expand the second part of this equation in terms of the Zerilli tensor harmonics, by

writing ¢# in vector harmonics and computing its covariant derivative, then we can impose



2.2. GRAVITATIONAL PERTURBATIONS

four conditions on &, and thus on ), components. The expansion of the transformation

4-vector ¢ consists of two parts: £ which is a scalar and ¢, which is a 3-vector
= Y (e )=
{ m=—{
- Z E (gfm t ¥ Yémr [gzm(tl T’)ng(?)i + Cgm(t/ T’)aing + ggm(tl 1’) (i; X v)lylm} éi/>

m=—/{

(2.22)

where Einstein’s convention is not used on i’s 1. If we examine the above relation for its

parity properties, we can observe that each term with a derivative or é; picks a (—1) factor.

Terms with ¢%,¢* and {F correspond to the polar part ( even parity ) of &# whereas the
term with {® corresponds to the axial part ( odd parity ). So we can split this vector in two
gu = éfxial + é’Zolar'

For the axial part of the ¢ 4-vector, we have

axzal Z Z éém (0 0,— acp/ sin 989) Yém (223)

(=1m=—/(

Using the Christoffel symbols for the background metric to compute the derivatives of
(2.21), it becomes

(i) = s~ L0 (t52), ~ 5 (08— 220 ) (#) + Lk (#2)

Im
(2.24)

Now is the time to fix the gauge in the axial term, which will provide a single gauge
condition. The Regge-Wheeler (RW) gauge is chosen with the objective of eliminating terms
that involve higher order angular derivatives. In the above equation, if we take into account
the definition of tensor spherical harmonics in equations (2.16, 2.17), the coefficient that
needs to be eliminated is the one of the term tP2. This corresponds to the RW gauge

condition

o = 0. (2.25)

The same procedure should be performed for the polar part.

1 It should be noted that in equation (2.22) the index ¢ on the first summation does not start from the same
value for all the terms. For example, it starts from ¢ = 1 for { E and g B terms, since they are constructed from
terms with total angular momentum 1 whereas in the rest start from ¢ = 0.

2 They can be found on pg. 200 of [5].
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When we write the axial and polar part of the final perturbation metric, we observe that
the conditions for the RW gauge are the following

hop = 0, (2.26)
hgp = hoypsin® 6, (2.26b)
ohip = —sinfdg (M sin@), (2.26¢)
Ohyy = —sin 00y (hygsin@) . (2.26d)

These relations also provide an easy way to check at any time if we work with RW
gauge. After all the steps, the final form of the axial and polar parts of the metric have the

following form

e}
o

WPt (1/(sin6)dgy hB! sin 6y,

0 0 HhBl(1/sinf)o h ., Sin 00
sy = Y Yl (tlm) =y im( )9 o |y,
b=Bt,B1 ¢m Im * ok 0 0
* % 0 0
(2.27a)
hﬁfm hqu 0 0
x hi0 0 0
(hpolar)w/ = 2 Zh tpm = 2 bm ng (2.27b)
c=tt,LO,R,TO frm om 0 0 hl° 0

0 0 0 sin? QhZTrg

Step 5: Linearized EFE

The final step is the most tedious, involving many calculations that we are going to skip
here. As someone at the AEI once remarked, "It might be a good exercise for the soul" when
I mentioned I was attempting to do this calculation by hand. We begin by computing the
EFE up to first order with respect to the perturbation metric /,, and then substitute its
expansion in Zerilli tensor harmonics from equation (2.21) and its polar counterpart.

We start from the EFE in vacuum

Guw =G + AGuy = 0 =
ARy, =0,

where A denotes the change ( up to linear order ) of the corresponding quantity with
respect to the background SBH. Now, we can directly use Palatini’s identity, which reads

ARy = AT, — A%, (2.28)
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with

1_ 1 _ _ -
ALy, = Eg‘” (hypw + Hoyu e = hpy) — Ehm (Zypw + Zyw — Gy - (2.29)
The result of this procedure is a set of ten equations, three axial ( denoted with - ) and
seven polar ( denoted with + ). From these, due to gauge fixing, only six are independent
(two axial and four polar). After some manipulations (additions and redefinitions) we are
left with the following two wave equations

2 x+ * 25+ *
(‘a e )> ~ fVE (@ (1) =0, (230

where f(r) =1 —ry/r and r* is the tortoise coordinate (2.7). This equation is called Regge-
Wheeler equation for axial potential

v =(1-") (6(“ D_ 3’:3H> , (2.31)

r r?
and Zerilli equation for polar potential

AR 4 3A%rgr? + A2 (A +2)r° + 913,
N r2(Ar 4 3ry)? ’

V" (r) (2.32)
where A = /({4 1) — 2. We should stress that only perturbations with ¢ > 2 lead to
gravitational waves. This is because GW are produced by oscillating quadrupole moments
and higher, where as oscillations with ¢ = 0,1 refer to spherical and axial symmetric
oscillations respectively. Perturbations with ¢ = 0 refer to a small change of the BH mass
and with ¢ =1 to a small increase in BH angular momentum.

Despite the substantial increase in complexity, it is noteworthy that the RW potential is
quite similar to the one describing scalar perturbations as given in equation (2.12). Actually,
it is also similar with the potential emerging from electromagnetic perturbations, and all
of these potentials can be written in a compact way:

V(r) = (1 - LH) <W ) q- sz):{j) , (2.33a)

r r2

0, scalar perturbation
$=1931, EM perturbation (2.33b)

2, axial perturbation

The quantity ®, of equation (2.30) does not appear directly in the metric, but is connec-
ted to it. For example, regarding the axial part

A(r)

O (t,r) = — nBL(t,7) (2.34)

Im
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and regarding the the polar part

AW iy (2.35)

1
q)Jr T0O
(t:7) hin (1) 4 S R+ 15 o

~ Ar+ 157 q
After all, the description of the radial perturbation on top of a Schwarzschild BH reduces to
two 1-D wave equations with potentials. These two potentials have very similar qualitative
and quantitative characteristics, which is clear even from their plots in Figure 2.1. We
are going to discuss some of their properties, similarities, and consequences in the next
chapter, but just to give a short preview, they have the same asymptotic behavior, similar

maximum value, and position, and produce the same spectrum.

0.25 A ] :
— Axial
0.20 - Polar
—— Scalar
__0.15 1
* 1]
i, 1]
0.10 - -
~exp(r*) :: ~ 00+ 1)/r*?
0.05 - i
]
1]
0.00 !
-30 -20 -10 0 10 20 30 40 50

rrin M

Figure 2.1: Potentials for perturbations with different spin and parity, i.e. scalar, axial and polar
with £ = 2. The position of each peak is indicated with the vertical dashed lines. For all
of them is around r* ~ 3M.

Using equations (2.30) we can determine the evolution of any initial perturbation by
numerically integrating it in the time domain, which was initially done by Vishveshwara in
1970 [36]. This method also offers a straightforward, though not rigorous, way to practically
verify that initial data with compact support do not lead to instabilities as shown in Figure
2.2. As a small parenthesis, it is worth noting that the time domain signal consists of three
parts, an initial transient one which depends on the initial conditions, a middle one which
dominated by exponentially damped oscillations, and the late-time part characterized by
a power-law tail. We will discuss these properties further in the next chapter.

A bit better argument regarding the stability, but still quite naive, was given again by
Vishveshwara in 1970 [37]. He assumes just imaginary frequency w = i, which results
in a time dependence of the form ~ exp(at), leading to exponential divergence with time.
If this assumption leads to inconsistencies, there cannot exist solutions with imaginary

frequencies and thus, finite initial data can only produce bounded solutions.
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Figure 2.2: Time evolution of equation (2.30) with Gaussian initial data as seen from an observer at
fixed position r* = 100M

The asymptotic behavior of the solution, he states, is ® ~ exp(£ar*) at spatial infinity,
r* — +00, and at the horizon, ¥~ — co. To preserve asymptotic flatness, we have to choose

the negative sign for spatial infinity,
Do ~exp(—ar’),

and to avoid divergence at the horizon in tortoise coordinates, we must choose the positive
sign, which asymptotically leads to ®,. — 0. Since all the potentials (2.33), (2.32) are
positive, by substituting the temporal part in the wave equation, we obtain

dZCDE—Lr)

— 5 = @+ VEr) "

We infer that the second derivative d*®. ,p,. will be positive for all of these cases. There-
fore, the finite solution at spatial infinity cannot be matched smoothly to the finite solution
at the horizon. To match with the asymptotic expression for r* —, the solution should

behave as
P_ ~exp(—ar®),

which diverges. This divergence can be related to the metric via the equation (2.34)

r _

A(r)qD’“ ~ = Vo) exp(—ar®) — 4o0.

—0o0

WBl (r — +o00) = —

Such a divergence contradicts the assumption of /1, being small. thus ruling out the possib-
ility of an exponentially growing solution for the axial sector of the perturbation equations.

The fact that initial data with compact support do not lead to an exponentially growing
solution, but instead, to bounded ones was shown rigorously in [38]. Now that we are con-
fident about the sane and non-explosive behavior of our SBH under a small perturbations,
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we can study its time evolution, but before doing so, let us discuss some properties of the

equation also in the frequency domain.

Chapter Summary

For spherically symmetric Black Holes we discussed:

¢ the derivation of scalar and gravitational ( axial and polar ) perturbations,

¢ scalar and gravitational perturbation are described by a wave equation with
qualitatively similar potentials, with peaks ~ 3M and same asymptotic beha-

vior,

¢ all these three perturbations are stable and do not diverge as a function of time,
indicating that the background spherically symmetric spacetime is stable.

* The time domain signal consists of the transient phase, the oscillating phase

and the power-law tail.




QUASI NORMAL MODES

Time and frequency domain study are the two ways of examining the properties of equa-
tion (2.30). Each approach has its advantages and disadvantages and can be used to reveal
different properties of the Black Hole (BH) ringdown.

A time-domain study of the linear equation reveals the dynamic evolution of an initial
wave packet and the response of the BH to it. In this way, it raises questions regarding
the the number of overtones that can be fitted, or how well we can extract the parameters
that describe the signal, or when the linear signal is described well by superpositions of
Quasi-Normal Modes [39-41].

In contrast, a frequency-domain study is useful for defining the Quasi-Normal Modes
(ONMs)s and investigating the intrinsic properties of the object [42].

The significance of ONMs lies in the fact that they encode the identity of the underly-
ing object. If the Kerr hypothesis holds, knowing the ONM spectrum allows us to extract
information about the object’s mass and spin, and consequently fully determine its para-
meters [12].

Specifically, in Sec. 3.1 we provide intuition about ONMs by comparing them to Normal
Modes (NMs) and in Sec. 3.2 we provide definitions about the ONMs. In Sec. 3.3 we provide
details about the time domain study, which is the one employed in this thesis and in Sec.

3.4 we outline some common methods that are used to compute ONMs.

3.1 NORMAL MODES

We shall start by providing a bit of intuition about ONMs, even before formally defining
them. To simplify the explanation, let’s start by removing the "Quasi" and discuss about
NMs. We encounter them in all sorts of physical systeks, from simple mechanical systems,
to vibrating strings, to crystal lattices, thus they serve as a good ground point.

We stick to a vibrating string, since it is closer to our problem. The equation that de-
scribes this system both in time and in frequency domain (after a Fourier Transformation) is

To*®(t,x) *P(t x) ET

T S = 0= (3.1a)
d*e(x) _ Hp4
2 Y ?CD(x). (3.1b)

where T is the tension and p the density of the string.
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By imposing Boundary Conditions (BCs) to equation (3.1b), for example Dirichlet, New-
man, mixed, we define an infinite number of distinct eigenvalues of the operator dz/dx?,
which correspond to the NM, denoted as w;,.

Additionally, by specifying Initial Conditions (ICs) for equation (3.1a), that is, values at
t = 0 for the solution ®(t = 0,x) and its derivative 0;®(t = 0,x), we can express the
general solution of the equation as a sum of NMs

O(t,x) = i et d, (x). (3.2)
n=0

We should highlight the fact that the NM spectrum emerges from the intrinsic proper-
ties of the underlying system which fully describe it. In the case of the 1-D string, these
properties are the BCs, the tension, the density, and, in extension, any potential that could
be applied to it [43].

However, there are fundamental issues associated with the kind of problems where the
spectrum is known but the parameters describing the source are to be found, also known
as inverse problems. For example, the spectrum of a 2-D oscillating membrane does not
correspond to a unique shape, rather, a given spectrum can be traced back to an infinite
number of different membrane shapes. This is implied by the phrase "Can one hear the
shape of a drum?" [44].

In contrast, the amplitudes c, do not reflect fundamental properties of the system; in-
stead they are a consequence of the ICs and indicate how much a specific mode from the
spectrum is excited. Therefore, if one wants to study the system’s identity and properties,
one should study equation (3.1b) and if one wants to understand how these properties
evolve over time, one should study equation (3.1a).

The NM expansion provides a complete set of functions, implying that at any time t, the
solution can be reproduced by summing over NM for all x. In addition, the eigenvalues
wy are real, which means that there is no energy escaping from the boundaries or dissip-
ation, which corresponds to an idealized system. In a more realistic situation some form
of dissipation would occur, for example, friction between the string and the mechanism
holding the boundaries. This would introduce damping to the modes, causing w, to be-
come complex numbers. The damping could be explained by microscopically examining
the interaction between the string and the boundaries. These complex modes are called
Quasi-Normal Modes (ONMs).

3.2 QUASI-NORMAL MODES DEFINITION - FREQUENCY DOMAIN

Intuitively, from the previous section, we know that the ONMs are the complex frequencies
of a system, having both oscillatory (real) and dissipative (imaginary) parts, that poten-
tially fully characterize it. Similarly to NM, they are said to be the fingerprints of the
underlying system and specifically in our case of the BH.

There are different ways to properly define the ONMs. The most common one is through

the frequency domain of equation (2.30). Generally speaking, one can transform time do-
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main to frequency domain with many different transformations. The two most commonly
used in ONM literature are the Fourier Transformation and the Laplace Transformation [42, 45].

An other definition involves scattering amplitudes.

Definition I: Fourier Transformation

The Fourier Transformation'of (2.30) leads to a Schrodinger-like equation

d2d7 (r)

2 T (W= VE) & () =0, (33)

The limits of the potentials at the horizon and in the region of spatial infinity are zero,
V5 (r* — too0) — 0. This leads to a harmonic oscillator equation

d2CI>zE(r*)

o2 T W@ (r*) ~ 0. (3.4)

As a result, the possible physical solutions are

OF ~etT 5 oo, (3.5a)

(D;t ~e T s oo (3.5b)
These correspond to outgoing waves at spatial infinity and ingoing waves at the horizon 2.
Had we taken the opposite signs, it would imply incoming waves from infinity or outgoing
waves from the horizon, which means that the horizon has reflectivity. The first is non-
physical, while the second is non-physical in classical terms.

If we impose (3.5) as BCs on equation (3.3) we obtain a boundary value problem whose
eigenvalues are the complex frequencies w = Re(w) — ilm(w), the Quasi-Normal Modes.
We note that in order to avoid exponential growth, which we excluded in section 2.2, we
expect Im(w) > 0.

The fact that they are complex is a consequence of the complex BCs [30]. This complex
nature indicates that there is dissipation in the system, leading to energy loss. The dissip-
ation cannot be traced back to a microscopic mechanism, as could for mechanical systems,
so the relaxation of an oscillating BH to equilibrium is its intrinsic property.

An important property of the spectrum emerging from the two gravitational potentials
is that the potentials are isospectral, meaning that they have exactly the same ONM
spectrum. It was firstly found by Chandrasekhar in 1985 [46]. In mathematical, terms this
implies that if the even-parity equation (3.3) can be written as L*®* = w?®7, then the
odd-parity one can be expressed as L~F(®~) = w?F(®~), where F we denotes that the
new eigenfunction is not directly ®~ but a function of it. Therefore, the two potentials

We define the Fourier Transform as qut (w,r*) = qut (r) = [ @zt (t,r*)e~'w!dt. Alternatively, we may obtain
(3.3) by simply substituting q)zi(t, r*) — e“"“i)[i (r*) into (2.30).

This is even more clear if we multiply with the corresponding time factor e~*!. The spatial infinity term
becomes ~ et which implies outgoing waves and the horizon term becomes ~ e W+ which
implies left moving, thus ingoing waves.
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posses the same set of eigenvalues which they correspond to different eigenfunctions [30,
47].

However, from this definition a problem rises. We can express (3.5) more compactly
as CIDEt ~ @l = ptiRe(w)[r"| . o+ Im(w)[r"|  Therefore, as we take r* — =00, the solution
diverges. Does this divergence imply that each ONM carries infinite energy? The answer
is negative. The reason is that ONMs, as can also be seen in Figure 3.1, are localized
to a finite and small region of space. They could occupy all space, thus diverge, only
if they had existed for all time . That is, because each ONM excitation from the initial
pulse happens at a specific and finite time interval and also the excitation signal decays
exponentially in time [42]. To take into consideration the initial pulse we should turn to
Laplace Transformation.
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Figure 3.1: The evolution of an initial Gaussian profile propagated towards both directions. We
observe that the divergence of the ONMs coming from the e*"(@)|”"[ term as implied by

equations (3.5), is suppressed when we add the time dependence e*"(@)(I"|=) and the
total solution remains local in space and finite.

Definition II: Laplace Transformation

The Laplace Transformation 2also leads to an ordinary differential equation, although it takes
into account the Initial Conditions of the wave equation, providing a more robust way to

define the ONMs. The transformed equation reads:

3 The Laplace Transformation is defined as <i>'ljE (s,7*) = <i:'ljE (r) = Otoo q:.li (t,r*)e~stdt.
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d>d(s, r*)
d?"*2

oD (t, r*)

(=2 = V) 5 r) = —s(t )iy~ |
t=0

(3.6)

I(s,r*)

where s = ¢ + iw. This procedure reveals a lot more novel points and details than the
previous one, delivering for that reason more insights and deeper understanding to the
problem. We will only stick to the extremely main points.

The solution of the inhomogeneous equation (3.6) can be formally expressed in terms of
the Green'’s function G(s, r*,r*/)

d(s,r*) = / I(s, 7 )G(s, 7", r* )dr*. (3.7)

The crucial step is to invert the transformed solution and find ® from & [42]. If T has
no singularities inside the chosen contour of integration, then the ONMs are defined as
the poles of the Green’s function. By applying the residue theorem, we observe that these
poles contribute to the inverse transformation, thus define the solution

1 +oo ! !
d(t, ") =5 %dse“/ I(s,r*)G(s,r*, v )dr* =

—00

:i ;Res (eSt /J:o I(s,r*)G(s, r*,r*/)dr*/, sq) . (3.8)
Since J is analytic within the curve of integration, the only term that contributes to the
summation of equation (3.8) is the Green’s function.

The contribution to the inverse integral comes from three main sources, as we discussed
with Figure 2.2: (a.) the directly transmitted wave from the source to the observer, primarily
related to the IC, (b.) the BH response to the IC, which is dominated by the ONMs, and (c.)
the backscattering of the signal due to the asymptotic behaviour of the potential. This,
causes a late-time power-law tail that we will discuss later [48].

Definition III: Scattering Amplitude 11

This definition of ONMs is more closely related to the time domain, which is the focus
of this thesis. At spatial infinity and at the horizon |r*| — +co, the potential vanishes.
Therefore, the solution can be expressed as a sum of all possible frequencies, similar to
approaches in Classical Field Theory and Quantum Mechanics.

If we begin with an initial wavepacket at spatial infinity, part of it will be reflected while
another part will be transmitted due to the potential barrier. Consequently we have the
following asymptotic solutions

O(t, 1) ~Ag(w)e " + A, (w)et e, r* — 400 (3.9a)
O(t,r*) ~Ar(w)e ™", = —o0 (3.9b)
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The scattering amplitude, defined as the ratio of the final reflected amplitude over the
initial amplitude in a region of space where the potential is practically absent, is given by

_ A (w)
Ap(w)

S(w) (3.10)
This quantity can be defined due to the conservation of probability |Ag|? + | A,|? = | As|%.

Taking into account the BC from equations (3.5), there should be Ap(w) = 0 and sim-
ultaneously A,(w) # 0. It is important to note that Ap(w) cannot be equal to zero for all
frequencies, thus the ONMs are the discrete frequencies that satisfy this condition. In other
words, the ONMs correspond to the poles of the scattering amplitude.

3.3 TIME DOMAIN

The time evolution of linear perturbation equations provides valuable insights to the study
of oscillating BHs. This method typically involves analyzing the scattering of an initial
Gaussian wavepacket, evolved according to a wave equation, after its interaction with
various potential barriers. These barriers correspond to different types of perturbations, as
discussed in Chapter 2.

Vishveshwara first used this method in 1970 [36], where he presented an expected result,
that if the initial Gaussian is too narrow it penetrates the RW potential whereas if it is too
wide, it is fully reflected and the reflection coefficient approaches one.

The main limitation of this method is its inability to robustly extract the overtones. This
is due to their significantly larger imaginary part than the fundamental mode (2 3 times
larger for the first overtone and even larger for the others). As a result they die a lot faster
(at least > €® times), and the majority of the time-domain signal, especially for late times
after the peak, is dominated by the fundamental mode. However, different techniques
yield varying number of extracted overtones and the discussion on how many modes one
can extract from the ringdown signal is still ongoing [40, 41].

To start further exploring this method, which is the method that we implement in
this thesis, we write again the wave equation together with its outgoing BC and its IC

*DL(t,r*)  PDF(t, 1)

_ + *)
oF 3772 Vi(r)@=(t,r") =0 (3.11a)
@i N e+iw(r*—t)’ r* N +
(BC):q OO (3.11b)
OF — e W) oo
(1C) 1{ @Zt(t =0,1) = h(r) (3.11¢)

Most usually, the IC are chosen as follows: Gaussian profile for the initial function, h(r*) =
A -exp (—0.5(r* — u)?/0?) and for the initial derivative either g(r*) = 0 which splits the

Gaussian into two or g(r*) = £0;h(r*) which correspond to advection equations, that
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cause the Gaussian to start moving either to the left or to the right, depending on whether
the sign is negative or positive, respectively.

To study the problem and obtain useful information, we need to extract the time-domain
signal. We consider a fixed position and record the waves that pass through this location.
In other words, we place an observer at x,,; = R and examine the data that the observer
sees, as illustrated in the upper panel of Figure 3.1. The observer captures the impact of the
potential on the initial data. It is, therefore, important to position the observer sufficiently
far from the potential, ideally at spatial infinity, so that the effect of the potential on the
waves has ceased.

The recorded signal can be seen at the bottom panel of Figure 3.1. As evident, it can be
divided into three phases: the transient phase (gray shaded), the damped oscillatory phase
(green shaded), and the late-time power-law tail (red shaded). It is important to note that
contributions coming directly from the initial data (without interaction with the potential)
can contaminate the signal. However, these contributions can be mitigated by applying an
advection equation as Initial Condition to the time derivative, as discussed earlier.

Among the three phases, the first one is insignificant - it depends only on the initial
data and does not impact the subsequent phases of the signal. This phase is where the
oscillations build up and it terminates at the peak. The second phase is expected to be
described, either partially or fully, by the ONMs. The last one follows a power-law whose
exact form depends on the initial data and the asymptotic form of the potential. We will
now elaborate on these points in more detail.

A question that arises from the above is whether the ONMs form a complete basis which
can be used in superposition to fully describe the time-domain signal. Completeness has
many definitions but based on one provided in reference [50], it means that the time-
domain signal can be expressed as a sum over the ONMs: Y, ¢, f (r*)e~“n!. The indications
we have so far, however, are against completeness. At the transient part, the oscillations
are building up and reasonably, ONMs cannot describe parts of the signal in which they do
not exist, so we should exclude this part and discuss about the completeness for the other
two.

First of all, we note that ONMs are infinite in number which is a necessary condition to
form a complete basis [42, 45, 51]. However, in reference [50] certain connections between
the completeness of the ONM spectrum and the properties of the potential are proposed.
One of them is that the potential is everywhere finite and at |r*| — +oco vanishes rap-
idly. By "vanishes rapidly" practically is implied that it possesses no power-law tails and
mathematically is meant that it should be decaying at least exponentially fast

—+o0
/ e |V (r)|dr* <40, Va > 0. (3.12)
0

The second connection they provide, is that if the potential’s spectrum is not complete, it
can be made complete by introducing a small discontinuity on the potential.

The reason for the incomplete description of the linear BH ringdown from the ONMs lies
in the presence of the power-law tail at late times. Price first described their form [52].
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Figure 3.1: Top: Schematic explanation of the study in the time domain (inspired by the reference
[49]). Bottom: Time-domain signal for Axial potential as seen by the observer. The dif-
ferent regions: transient (gray), ONM dominance (green), and late-time tail (red) are also
shown.

Their source is the asymptotic behavior of the potential. If the potential does not decrease
fast enough, some back-scattering of the waves is present and produces the tails according

to the power-law
O(t,r* = R) ~ ¢~ HPHD), (3.13)

where P = {1if 0;P(0,7*) = 0 and 2 otherwise } and ¢ is the multipole number. This be-
havior is the same for scalar and gravitational fields. Furthermore, there are more general
studies that relate the asymptotic behavior of the term accompanying the centrifugal one
(~ 1/(r*)?), which for RW potential is ~ 1/(r*)3, to the late-time behavior of the signal
[53].

All gravitational potentials shown in equation (2.33) do not satisfy equation (3.12) mean-
ing their post-peak signal cannot be completely described as a superposition of ONMs.
Therefore, they do not constitute a complete set. Nevertheless, we can make a weaker
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statement, that the signal, excluding the transient part, can be approximated quite well by
the QNMs [45]

N
q)(t, = R) _ Z anewn(t—r*) < Ce((—gN+1+€)t),
n=0

where C is a constant. So, ONMs can approximate the extracted signal at sufficiently late
times.

The ultimate goal of the time domain analysis that we perform in the next chapters,
is to efficiently solve the inverse problem with minimal assumptions. The data seen by
the observer contain some ONM frequencies. These frequencies come from a specific
potential and thus from a specific object, which in our case is a SBH. If we know these
frequencies, we know the potential and thus the object. So, if we calculate the frequencies,
we determine the object, since different objects produce different frequencies.

The point in doing this analysis in the time domain is that the procedure is the closest
toy-mimicker of the procedure used to extract frequencies from experimental data, or
numerical relativity waveforms. In fact, there is ongoing discussion on the starting time of
validity of the linear ringdown, namely whether it can describe well the early post-peak
times and the number of modes that we can extract from a given waveform [39—41].

Specifically, in paper [41] the authors present Figure 3.2, which shows the mismatch
as a function of the starting time of the fit. They fit linear ringdown models (damped
sinusoids) to a waveform generated from numerical relativity simulations. The mismatch
(y-axis), is a quantity defined later in the thesis, in equation (B.12), and practically shows
the discrepancy of a given signal with the fitted model. A smaller mismatch indicates
good agreement between the two. The x-axis shows the starting time after the peak of the
signal that is included in the fit. For example, a value of zero on the x-axis means that to
perform the fit they included a window of the signal starting from the peak and ending
to a constant value.

Notice that, in all cases the mismatch reaches a plateau. By including more and more
overtones into the fit (up to seven), the authors obtain better and better mismatches, the
starting time of the plateau gradually moves at earlier times. For seven overtones (N = 7),
the plateau starts exactly at the peak. Based on this, they claim that the post-peak regions
of ringdown waveforms can be properly described only by the linear ringdown model,
provided that an appropriate number of overtones is included into the fit. Furthermore,
they claim that the starting time of validity for the linear ringdown is as early as the peak.
Their claim was further supported by the fact that they could recover the mass and spin
of the remnant Kerr BH even at the peak of the waveform.

In paper [40], a similar analysis is performed with the explicit comment that ’the
higher overtones lead to very small mismatches by merely overfitting the waveforms’.
Practically, their point is that focusing only at the mismatch can be misleading. In linear
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Figure 3.2: Mismatch as a function of the staring time of the fit. The fitted waveform generated by
numerical relativity evolution and the fitting models refer to damped sinusoids with N
overtones, note that their convention about N differs than the one used in this thesis
which indicates the total number of the fitted modes ( M. Giesler, M. Isi, M. A. Scheel,
and S. A. Teukolsky, “Black Hole Ringdown: The Importance of Overtones,” Phys. Rev. X,
vol. 9, 041060. doi: 10.1103/PhysRevX.9.041060. Published under Creative Commons
Attribution 4.0 License )[41].

perturbation theory, the amplitude of each mode is constant. So by claiming that one
found a mode in the signal, one should provide modes with constant amplitude. However,
working with the same waveform as in reference [41], they find that the amplitudes
for the overtones higher than the second, remain constant within 10% only for a short
range of starting times of the fit, thus making it difficult to claim that these modes were
found. They further state that higher overtones than the second, do not contribute to the
parameter extraction and that beyond this, all the higher overtones just fit away poorly
understood physics related to an evolving background spacetime, time variation of the

ONM amplitude due to initial data and nonlinear effects.

3.4 HOW TO COMPUTE QUASINORMAL MODES

After years of ongoing research on BH perturbation theory and ONMs, numerous methods
for computing the spectrum have been developed. The historical pattern is the usual. Some
researches propose the main foundational idea and subsequently others make more accur-
ate and efficient versions. Given that gravitational potentials lack analytic solutions, the
methods are semi-analytic at best, completely numerical, and even involve substitutions of
the gravitational potentials with simpler alternatives that are easier to handle.

Each method serves a different purpose and highlights different aspects of the problem.
For example, if one wants to robustly compute high overtones it is not wise to choose the
extraction from time domain [39]. On the contrary, if one wants to study the dynamical
evolution of the perturbations which, for beyond-GR cases, might reveal unexpected types
of modes, time evolution is ideal [54]. Here, we will outline the most basic and famous
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ones. A summary table of the current status of each method can be found on page 20 of
[29].

3.4.1 Frequency-Domain Integration

The direct integration of RW and Zerilli equations in the frequency domain (3.3) is com-
monly known as Shooting Method. In the context of ONM calculation, was introduced by
Chandrasekhar and Detweiler [55]. The idea is to make an initial guess for a frequency
value, then start from a large value of r., where the potential is small and the asymptotic
solution is ~ exp (—iwt) and integrate backward to ~ 3M, close to the peak of the po-
tentials. Similarly, start integrating forward from a negative value of r, up to the same
point.

If the initial guess of w leads to a vanishing Wronskian of the two solutions at the com-
mon point, it means that the two functions are linearly dependent, therefore eigenfunctions
of the boundary value problem and the initial frequency is an eigenvalue, so a ONM. If the
Wronskian does not vanish, the initial guess is updated and the process is repeated from
the beginning.

This method contains some numerical pitfalls. For example, it becomes unstable for
large values of |r*|. For large positive r*, the solution, whose asymptotic behavior is ~
exp (—iwr*), becomes contaminated with contributions from the other boundary where
~ exp (+iwr*), which diverges exponentially. Consequently, in reference [55], the authors
integrated the Ricatti equation, which was found to be more stable and is the product
of the field redefinition ® — exp (1’ Ik a CI>dx>. Their method was stable only for slowly
damping modes with |Im(w)| < |Re(w)].

3.4.2 Time-Domain Integration

The time-domain study was firstly performed by Vishveshwara [37]. It is the method that
we use in Part II of this thesis and was also discussed in the previous section 3.3. The wave
equation (3.11) is solved numerically, an observer records the solution in a fixed position
and finally various models are fitted the time-domain recorded signal. From these fits, we
try to obtain the ONMs.

3.4.3 Continued Fraction

This method was used for the first time by Leaver in 1985 [56], to compute the ONMs of
Kerr BH and is the most accurate method available to date [57]. In brief, the solution is
expressed as a series of powers of r. The coefficients of different powers are connected via
recurrence relations whose exact form is determined by the underlying potential. These
coefficients are correlated to the eigenvalues of the equation, thus by computing them one

knows the ONM spectrum.
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3.44 WKB Method

The Wentzel-Kramers—Brillouin (WKB) method is a widely spread technique for approxim-
ating solutions to linear differential equations. In the context of ONMs it was introduced
in 1985 by Schutz and Will [58]. Its utility is not limited only to computing the ONMs
but also provides useful insights to the inverse problem. Specifically, give a spectrum, the
WKB allows us to extract information about the potential and particularly for its properties
around its peak.

The starting point of the method is to consider an ansatz ® ~ exp (ZZ":O 5(n=1)5u (x))
Then the GR potential is divided into regions that are separated from the turning points
of the potential Q(r) = w? — V(r). In each region, the ansatz is a different function and
the matching is being done at the turning points by Taylor expanding Q(r). In addition,
the method works better as the turning points approach each other and at first it was
developed only for potentials with two turning points.

For example, the first-order approximation contains only one term at the exponent and
the approximation of the frequencies is [58]

i1+ 1 _deVl(r) 12
r=ro 2 d]"*Z
where r( is the peak of potential.

The results for the fundamental ONM of a SBH deviate ~ 7% for the real part and ~ 1%

(Mwy)? =~ VO (r)

, (3.14)

for the imaginary part of the fundamental mode. As we increase n, the approximation gets
worse, since the turning points of w, — V(r) go further away [42]. Including more terms in
the ansatz increases the order of the method, leading to more accurate results. For example,
WKB up to the sixth order is provided in [59]. Their result for the fundamental mode for
the SBH deviates ~ 0.03% and < 0.01% for real and imaginary part respectively.

3.4.5 Inverted Potential

If we know the bound states of a potential, can we map them to the ONMs of its inverted
counterpart? This approach, was firstly followed by Ferrari and Mashhoon [60, 61].

Their argument goes as follows. If the potential barrier V depends on a set of parameters
p, the ONMs w and the solution @ will also depend on p. So we have V(r;p), w(p), and
®(r; p). Let us consider a generic transformation r — —ir and p — p’ = 7(p) that leaves
the potential invariant V(r; p) = V(—ir; p’) but alters the spectrum Q(p’) = w(p) and the
solution ¢(—ir; p') = ®(r; p). Consequently, if we transform equation (3.3) accordingly, we
have that ¢ obeys the same equation, but governed by the inverted potential

d?¢
dr+2

+(Q*=V)¢p=0, (3.15)

so ¢ is the solution of the corresponding inverted potential, which is a potential well and
Q) are its bound states. This means that if one knows - analytically - the bound states of a
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potential, one is able to map them to the ONMs by applying the inverse transformation of
the parameters.
In reference [61], they worked with the PT potential

Vo
2 7
cosh” a(r* —rf)

VpT(T*) = — (316)

where V > 0 is the maximum height, rj is the location of the maximum and « determines
the width. The PT potential well, admits analytic solutions for its bound states [62]

1 1 V\V?
O =« (— (n + 2) + <4 - Au@) , forA=-1, (3.17)

where n denotes the overtone number. It can be mapped to the barrier through the trans-
formation p’ = {Vp,a, 17§} = p = {Vo, —in, 1§}

1\ 1
w= Vo—sz +in n—l—i (3.18)

We should note that the real part of the frequency is the same for all overtones and that,
intuitively, the spectrum is independent of the location of the potential’s maximum ry but
only on its the width and height.
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Figure 3.3: Left panel: The PT matched with the Rw Right panel: Waveform that emerges from the
PT potential. Note the absence of power-law tail.

The initial goal was to approximate the GR potentials. In Figure 3.3 In order to do so we
should match three parameters. The first one is to fix the location of both maxima at ry.
Afterwards, we should match the values of the maxima

VO :VGR(T’S), (319)

and also the second derivatives at the maximum rg in tortoise coordinates

dZVpT . dZVGR
dr+2 s dr+2 s
2
v,
—2042V0:d OR (3.20)

dr*Z
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An intuitive explanation of this matching is that according to the WKB approach the modes
are created around the peak of the potential and depend on its properties in that point, as

seen in equation (3.14).

i/

Chapter Summary

In this chapter we discussed
* Different definitions of ONMs, as eigenvalues of a boundary value problem, as
poles of the Green’s function and poles of the scattering amplitude.
¢ Differences between time-domain and frequency-domain.

¢ The study in time-domain, the different parts of the time-domain signal in
greater detail, the incompleteness of ONMs, their stability.

¢ Various methods of computing the ONMs, such as the direct integration, the
time-domain integration, the continued fraction, the WKB and the inverted

potential.




PARAMETRIZED FRAMEWORK

General Relativity (GR) has successfully passed numerous major tests by predicting as-
trophysical phenomena such as the perihelion precession of Mercury, the gravitational
deflection of light, the existence of BHs and GWs [21, 63]. However, as many of GR’s pre-
dictions have now been verified, the focus has shifted towards performing high-precision
tests to explore its limits. On one hand, on large scale, where discrepancies have already
been noticed, and in the strong field regime, where discrepancies are under examination
[63].

One approach to challenge GR is by testing it against modified theories of gravity. These
theories are being made by questioning Lovelock’s theorem [64], either by questioning the
number of dimensions, the number of fields, the order of equations of motion or relaxing
the equivalence principle [64, 65]. Each of these modifications leads to slight deviations
in the predicted phenomena that can potentially be empirically measured. Consequently,
such deviations, if present, are expected to yield small deviations to BH solutions and as a
result the ONM spectrum.

In each top-down modification of GR, one should perform highly intricate and repetitive
calculations in order to derive the ONM spectrum. However, a bottom-up, theory-agnostic
modification has been introduced, initially for non-rotating cases [66, 67] and more recently
extended to rotating cases [68]. This approach, known as the Parametrized Quasi-Normal
Mode Framework (PF), allows to model all possible modifications of the ringdown at once.

This Chapter presents the PF. Specifically Sec. 4.1 and Sec. 4.2 provide the appropriate
motivation and definition, respectively. In Sec. 4.3, we present two examples that illustrate

its application and mapping to various cases beyond Schwarzschild Black Hole.

41 MOTIVATION

The two body problem of coalescing BHs is of great interest to GW research. The Gws are
emitted during the inspiral and the merger carry information about the system’s proper-
ties such as the BH masses, spins, distance, eccentricity of the orbits [65]. The post-merger
phase, the ringdown, consists of a remnant oscillating BH. This ringing BH emits gravita-
tional radiation, rich in multipolar structure, until it relaxes exponentially to the final sta-
tionary solution. This phase can be adequately described, as we have discussed in Chapter
3, by the ONMs.
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Assuming that GR is the correct theory of gravity, the ONMs should depend solely on the
mass and spin of the remnant BH [12]. Consequently, a straightforward test of GR could
be performed by checking the agreement between the measured and the predicted ONM
frequencies. If the fundamental mode is measured, we can calculate the mass and the spin
of the BH and if an overtone is also measured, we can test the consistency of its spectrum.

Possible discrepancies with the spectrum predicted by GR could indicate that it is not
the complete or correct theory of gravity. This would not be entirely unexpected, as GR
alone has not provided a full explanation for large-scale phenomena such as dark matter
and dark energy. Current research in this direction is quite vivid, as can be seen in [64, 65].
If one follows a theory-specific top-down approach by modifying the action, the path to
uncovering the imprints of these modifications on the spectrum becomes long.

First, comes the identification of a healthy theory. This is being done by questioning
Lovelock’s theorem which states that EFE are the only second-order local equations of
motion for a metric tensor derivable from the Einstein-Hilbert action in 4D [69]. As is evid-
ent, there are myriad ways to alter, extend or break these five assumptions: increase the
order of EFE, couple the metric with additional fields of all spins, relax the Equivalence
Principle (EP), increase the dimensions. Each of these new constructions must be complete
(explain the outcomes of all experiments), self-consistent (providing unique, falsifiable pre-
dictions), relativistic (reproduce Special Relativity in the absence of gravity) and reproduce
the correct Newtonian limit.

Secondly, in the context of any new gravitational theory, it is essential to find BH solu-
tions, as we did for GR in Section 1.2. It is important to note that the solution we found
assumes spherically symmetric and stationary object within the simplest theory, repres-
enting the simplest possible and unrealistic case. However, even within GR the rotating
solution, which is the most realistic, is significantly more complicated as will potentially
be the analogous derivations in alternative theories.

The real challenge lies in the step of calculating the linear perturbation equations. The
complexity of this process became evident in the thesis, where we dedicate an entire
Chapter 2, just to outline the steps for the simplest case of perturbations on top of a SBH.
Repeating this process, as well as the more complicated counterpart of rotating BHs, for
every alternative theory of gravity remains a difficult and ongoing area of research. The
status of current calculations can be found in [29].

4.2 DEFINITION

The approach introduced in [66, 67] follows an inverse, bottom-up, and theory-agnostic
methodology, allowing for the modeling of all possible modifications simultaneously. Since
we are interested in studying the linearized perturbation equations of SBH, we should
directly modify them. This type of phenomenological modification is commonly referred
to as Parametrized Quasi-Normal Mode Framework (PF). The working hypotheses for the
validity of this framework are:

(a.) small deviations from GR,
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(b.) separable linear ringdown equations of the underlying theory,
(c.) conservation of asymptotic flatness,
(d.) non-spinning black hole solution.

This phenomenological modification consists of terms of 1/r powers added to the radial
ringdown potential. Its most general definition contains N coupled fields (scalar, vector,
or tensor) ® = {®;},i =1,--- ,N, around a spherically symmetric and static BH and was

introduced in the frequency domain

d [/ ,.d®(r) » B
fa <f ar )+[w —fv]®(r)=0 4.1)
where f =1 —rg/r, ry is the radius of the event horizon, w is the complex frequency and
V is the potential matrix. In this thesis, we will only work with up to two fields, so from
now on ® = (¢, ¢) and V will be up to 2x2 dimensional matrix. Under the assumptions

(a.)-(d.), the parametrized, power-law modification of the potential matrix reads

Vij =ViR + 6V, (42)

5V = Y ovR — —y o0 (THAT 4.3

) k_;) ij ”%{ kg(:)az] ( r ) ( )

where VéGR) is the GR potential and JVj; is the modification to the GR potential. Firstly,

we should note that diagonal terms (i = j) correspond to self-interaction terms, whereas
non-diagonal terms (i # j) couple different fields. The diagonal GR scalar and tensor
potentials are given in equations (2.33) and (2.32). It should be noted that in the uncoupled
case isospectrality between RW and Zerilli potentials holds under very specific and fragile
conditions for the corresponding amplitudes a;; and thus is most commonly broken [66].

The modification is described by the power k as well as its corresponding amplitude
(k)
if
a condition for the amplitude of each different power of modification by demanding the

a;.” which in general is complex and can be dependent on the frequency w. We can find

potential’s value at its maximum to be much smaller than one. Each maximum is located

at
8,6V = 0= ryar = ru (1+1/K),
therefore
(8 1w k
(5‘11] - :k+1zxz] (k—I—l) <<1:>

1 k
o) <(k+1) <1+k> , (4.4)
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thus, the smallness of the modification can be captured and re stricted by the above condi-
tion.

The solution of (4.1) corresponding to VI?R potentials is sufficiently described by the
frequencies w, which are the eigenvalues of the boundary value problem with outgoing
boundary conditions at spatial infinity and ingoing at the horizon. Small deviations from the
GR potential will lead to small deviations from the GR frequency. Thus, we can Taylor expand
w around " up to quadratic order

i /(s) 4ij 1 ij
w = wy + (xg()d(]k) (w) + ocg)wq(}f)d(]k)(w)d?f)(w) + —a(k)aé?e,gjp(w) +0(&®)  (45)

7
where Einstein’s convention is being used. The most important aspect of this equation is
that the coefficients d and e are universal, which means that they do not depend on the
amplitudes of the modification, but only on the potential of the underlying theory and its
spectrum w. Their values differ from scalar to tensor fields and also for different overtones,
but once we find them, we can use them to study deviations with varying a’s. Values up
to quadratic, ignoring the possible dependence on frequency, have been calculated from
direct integration of equation (4.1) ( shooting method ), as well as from the continued
fraction method [67, 70].

We should also mention that, in a later work, the PF climbed one step higher [71]. The §V;;
modifications on the level of master equations were mapped to the metric. That is, given a
metric that can be written as the Schwarschild metric with some corrections expanded in

inverse powers of r, one can quickly compute its spectrum.

Time Domain of the Parametrized Quasi-Normal Mode Framework

In this thesis, we extend the framework in the time domain. In doing so, we assume that
the w? term of equation (4.1) comes from a second time derivative and also that there are
no other frequency dependent terms. Their presence would contaminate our time domain
wave equation with terms containing time derivatives of different order than two. The case
with maximum number coupled fields that we are going to study, will be two, for which
the wave equation becomes

<_§t22 +f§r <f;>>¢(t,r)—fV-¢(t,r):0, (4.6)

where we set Vi, = V1 = 0 when we study uncoupled fields.

We can work with the PF in the time domain in two different ways: mapping it to specific
theories as done in Section 4.3, and test its limits by arbitrarily picking the amplitudes, one
at a time or all of them simultaneously, as done in Chapter 7.
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43 EXAMPLES
43.1 Example I: Uncoupled Case

Up to now, the one-liner description of the PF is that it approximates perturbations on top
of beyond-GR stationary and spherically symmetric solutions using as base the GR perturb-
ations. However, a more inclusive description would be that it approximates spacetimes
beyond Schwarzschild. This includes both modifications of GR and also the extension of
Schwarzschild spacetime to others that are GR solutions and for example contain charge
or small spin or charge [66].

We will focus on the extension to Reissner-Nordstdrm BH, which is spherically symmet-
ric and stationary charged BH just to illustrate in detail how the PF is being mapped to
extensions of the RW potential. The linearized axial perturbations for this metric obey the
equation

frN % <f RN di@) + [w® = fanV] @(r) =0, where @7)

=12 (1) -5,

Ven = (l+1)  drpr- 3(rm+ro) VAL =1) (0 +2)ryr +9(ry +7-)2/4

r2 rt 2¢3 r3

where the two horizon radii are r» = M 4+ M+/1 — (Q/M)?, from which the internal
one r_, has no physical significance since the outer one r,. excludes any commu-
nication with its interior. We note that for small values of the charge |Q|] < M,
the multiplying factor of the potentials can be written as fry = f(r)Z(r), where
f(r) =1 —ru/r)and Z(r) = (1 — (Q*/2M)/r). Here the horizon ry is not equal to 2M,
but ry = ry = 2M — Q*/2M + O(Q*). If we redefine the field as ¥ = /Z(r)® , we obtain
an equation of the form (4.1)

d [ do r\ ",
f5 (fdr)+ <1—rH) W= f(V_+6V)|®=0, (4.8)
with
ol L (AEOr N rd 15 rHy
5V_2erO r%( 3 rH><r) +r%{ 2ry (r)’ (4.9)
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Figure 4.1: Errors of the rF fundamental mode predictions, compared to the exact Reissner-
Nordstrom. Data taken from [66].

if we compare with equation (4.3), we find that there are only three terms that modify
the potential from a SBH and their amplitudes are dependent on the parameters of the

extension of axial RW potential

a0 :2a)(2):;, (4.10a)
H

L3 _At6 ;r 6:H, (4.10b)

@ :;:H (4.10¢)

Now, the modfication on the frequency based on equation (4.5) can be written

-\ (2

WRN-PF = <1 — 7’) <wo + dotl(o) + d3a(3) + d411(4)> . (4.11)
rH ryg

We can define quantities, A, and A;, to quantify the accuracy of the ONM predictions

obtained from the PF in equation (4.11) by comparing to the frequencies of the correct

Reissner-Nordstrém potential. These quantities are defined as the following percentage

A, = |Re[wrn-pr — wer]/Re[wpy — wer] — 1|, (4.12)
where wgy is obtained by solving the exact master equation for Reissner-Nordstérm BH
and similarly for the imaginary part. The result is shown in Fig (4.1) We observe that as
the Q over M ratio becomes larger, the PF approximation deviates more and more from the
exact values reaching up to 11% for the real and ~ 4% for the imaginary part. We can also
observe that the imaginary part is better approximated than the real part.
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4.3.2  Example II: Coupled Case - dynamical Chern-Simons gravity 171

We will now show an example of mapping the PF to a beyond-GR theory. The dynamical
Chern-Simons (dCS) gravity is a modification of GR that, additionally to the gravitational
tensor field, contains a scalar field coupled to it with via the curvature. So, related to
the assumptions of Lovelock’s theorem, it questions the number of the fields. Dynamical
means that the scalar field, 6, is changing over time [64]. This new CS! term is parity-
violating and shows up in many branches of physics like particle physics, string theory
and loop quantum gravity [72]. The action of dCS in vacuum is

8 = 8gn + 8¢ + 8cs, (4.13)

where the Einstein-Hilber term as usual is
SEH = K/d4xw/—gR,

where x = (1671) 1, g is the determinant of the metric tensor and R is the Ricci scalar. The
part containing the kinetic and potential terms of the scalar field is

S0 5 [ dxy/=g (8" (7,0) (Vo) +2V(6)

where B is a coupling constant, V,, is associated with the metric ¢"¥ and the potential
V(0) is set to zero. The original version of dCS was not dynamical since it assumed a non-
dynamical scalar field chosen "a priori" which served as a background. This can be done
by setting B = 0. Finally, we have the Chern-Simons term, which couples the scalar field
to the Pontryagin density *RR

1
Ses =5 / d'x /g0 'RR, “RR="R', R 15, "R ,* = ~elgRY,

where « is the CS! coupling constant and euvap the Levi-Civita symbol. This last term
induces a parity violation coming from the Pontryagin density. By parity we mean purely
spatial. Also, we should note that the 6 field is actually a pseudo-scalar, since its parity
transformation is P[0] = —#.

Conveniently, the Pontryagin density term vanishes in spacetimes with spherical sym-
metry. The EFE are reduced to [54]

16 =0. 4.15)

So, the scalar field is constant and consequently the Schwarzschild metric is also a solution
to dCS without any corrections.

However, linear perturbations on top of the SBH are not the same as GR, since the scalar
field is also perturbed and provided that it is coupled to the gravitational field, it affects
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it, and vice versa. To obtain the linear equation, a procedure similar the one described in
Chapter 2 should be done assuming that the scalar and gravitational fields are of the same
order[73]. It was found that the dCS axial and polar perturbations are decoupled and that
the scalar field is coupled with the axial perturbations, therefore the spectrum of the polar
perturbations is the same as GR. The perturbation equations that we get are two coupled
wave equations [67]

_PO(t, 1)  PP(Lr7)

Py 5~ Vu(n)®(tr) = V(Y (), (4.16a)
?Y(t,r*) ¥ (t,r") i .
PY? 52— V)Yt ) = Va(r)e(t,r), (4.16b)

where ® = @, is the axial gravitational field, ¥ is part of the scalar field after some
transformations of the form § = Y"Y“"e~i“! /r and the potentials are given by

V11 :Vi, (417&1)
1 144720(0+1) /rp\8
Voo =V, 4+ —— =), 4.17b
22 scalar 1’%{ ‘BT}L_I ( r ) ( )
1 12 (C+2)! /r\5
Vip =Vo1 = - T —, (4.17¢)
r%i\/Br%{ (ﬁ—Z!(}’)

where V™ and V., are given in equation (2.33).

We should define a parameter 4 = B~1/2r,;> which is larger when the coupling increases.
Any modification will be a small deviation from GR. So it is reasonable to assume small
values from %. For small 4 (equivalently large ), the additional potential terms are small
corrections on top of GR. Thus we can use the PF to approximate the frequencies. The
amplitudes that map the PF to dCs are

aS) =31144m0(0 + 1), (4.18a)

(£ +2)!
(e =2)r

ag) :ag) =129/

(4.18b)

We have two classes of modes that are both contained in the oscillations of both perturb-
ations. Tensor-led modes stem from small deviation of the gravitational ONMs and accord-

ingly for the scalar-led modes [54]. Tensor-led modes are given from

2
_ | _(£+2)!
w = wo +e(33) (127 nE£_2§!> , (4.19)

and the scalar-led

0+ 2)!
W = wo + 245 144T0(0 + 1)F + e(gg) (14470(0 +1)72)" + el 2] (127 nM) .
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Figure 4.2: Real and imaginary parts of tensor-led (left) and scalar-led (right) fundamental QONMs
in dCs gravity. The solid lines are PF approximations whereas the bullets are computed
from direct integration ( R. McManus, E. Berti, C. E B. Macedo, M. Kimura, A. Maselli,
and V. Cardoso, “Parametrized Black Hole Quasinormal Ringdown. 1I. Coupled Equations and
Quadratic Corrections for Nonrotating Black Holes,” Phys. Rev. D, vol. 100, 044061 (2019),
arXiv:1906.05155 [gr-qc]. Published under Creative Commons Attribution 4.0 License. )

[67].

In Figure 4.2 we see a comparison of the fundamental / = 2 mode as calculated from the

PF and from direct integration of equations (4.16). We can comment that as the parameter

7 becomes larger, the discrepancies between the approximations and the exact calculations

grows.

Chapter Summary

work.

a spherically symmetric BH.

charge.

In this chapter, we discussed the following key points:

¢ The motivation and definition of the Parametrized Quasi-Normal Mode Frame-

¢ The PF is a bottom-up and theory agnostic modification to the GR ringdown of

¢ It captures all 1/7 modifications simultaneously.

¢ [t can be extended to ringdown cases within GR that include small spin and
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NUMERICAL TECHNIQUES

From this Chapter we initiate the more technical discussion regarding the employed tech-
niques. Specifically, in Sec. 5.1 we present the numerical method we applied to solve the
equations and in 5.2 we discuss about the algorithm used to fit the various models to the
numerical solutions. The methods, namely the way that these techniques are applied, are
presented in the beginning of Part II of the thesis.

5.1 SOLVE THE EQUATIONS

References used for this section: [74, 75].

We are going to discuss the evolution of one single field, as described by the perturbation
equation around a Schwarzschild Black Hole (SBH). This equation, as we have already
seen, is a wave equation with a potential, which dictates the time evolution of an intial

wavepacket.

5.1.1 Uncoupled Case: Staggered Leapfrog Method

The most general way in which we can write the wave PDE for t € [0,t¢],7* € (—o0, +00),

is the following.

— 9 D(t, 1)+, D(t, 1) = V(r

~—

O(t,r*) =0, (5.1)

®O(t=0,r*) = h(r*)
0:P(t =0,r") = g(r"),

(IC) : (5.2)
(D(f, o _Oo) ~ eiw(t+x/c)

(BC) : .
(I)(t/ r* — _|_oo) ~ ezw(t—x/c),

(5.3)

where ®(t,7*) is the field we are evolving, V(r) the potential which governs the evolution
and c the velocity which from now on we set equal to one.

Note that the spatial derivative is in tortoise coordinate r*, whereas the potential is given
in the standard radial coordinate 7. This means that in every step of the numerical scheme,
we must perform the mapping r* — r.

We know the map r — r* analytically from equation (1.14), although its inverse, al-
though also analytical, is given by not such a trivial function, the Lambert W function. In
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addition, the outgoing boundary conditions are imposed for |r*| — co, which cannot be
explicitly implemented in numerical schemes. So now, let us discuss how we discretize the

main equation and adress the aforementioned issues.

Discretization of the equation

The numerical scheme that we employ to solve the equation is called the Staggered Leapfrog
method [75]. First, to discretize our domain, we create a rectangular mesh, which consists
of N; temporal and N, spatial points. This discretization approximates the initial PDE
with a set of algebraic equations with finite differences. The distance between each point
is equal and is denoted by At and Ar*.

At:(tf—o)/Nt N ti=0+jAt i=0,--,N;

Ar* = (r;_r;k) /Nr* r;'k:r;'k—’_iAr*r i:O/”"N”*

(5.4)

We observe that the spatial coordinate does not take values over the entire IR; its domain
is restricted. Now that we have defined a grid whose limit for small At, Ar* is identical to
our initial continuous domain, we can define the discretization of equation (5.1).

We approximate the second order derivatives using centered finite differences!of second
order both in time and space. After some calculations we obtain the equation

o =200l R (o, +ol - 20]) ~aPelv, 69
fori=1,---,Ny—1landj=2,---,Nt

where we define QJ{ = ®(t;, 1), V; ;= V(r;) and CFL = cAt/Ar* is the Courant-Friedrichs-
Lewy (CFL) parameter, through which we can define a stability criterion for the method. It
is important to note that this equation does not cover the whole domain and that informa-
tion for the values j = 0,1 and i = 0, N;+ is given by the Initial and Boundary Conditions
respectively.

The exact way in which previous temporal steps are used to propagate the solution to
the next temporal step is visualized in Figure 5.1. The stability criterion for the free wave
equation is also depicted in Figure 5.1. The diagonal dashed lines are the characteristic
lines of the wave equation ( r* & ct = const. ). The solution at a certain point (¢,7*) should
only depend on the information coming from the interior of the domain defined by these
lines. On the contrary, in the discretized problem, the solution at the point (t;,7;") depends
on a different domain, which is given by the interior of the lines with slope CFL = cAt/Ar*
( gray solid lines in the figure ). If the numerical domain of dependence is smaller than the
analytical domain of dependence, which translates into CFL > 1, then the numerical solu-
tion is unstable. Intuitively, this happens because the numerical solution ignores necessary
information from the previous points that lie between the two domains. If the numerical
domain of dependence is larger than or identical to the analytical, CFL < 1, then the nu-

1 Each second order derivative is discretized as dxy f(x) = (f(xiz1) + f(xi_1) — 2f(x;)) / Ax?
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merical solution is stable. We should also note that, as CFL approaches to 1, the solution
approximates better the analytical one.

We emphasize that the above criterion refers to the free wave equation. When we in-
troduce the potential this criterion changes since the potential should be resolved well.

Therefore we choose resolutions which yield much smaller than one CFL.

=ty
(0,j+1) ’ ’ (Nye,j+1)
® ®
‘¢ ‘¢ ‘. .‘ ‘ . .
©0,7) (L) (2)) (Np+ =2,) (N —1,7) (N, f)
o )
0,j—1) (Np,j—1)
® ® ® ® ® ® ® ® ®
t=0e® o o ® ® ® ® ® ®
r*=r} D = h(r), 0P = g(r) r=rj

Figure 5.1: Equation (5.5) shown schematically. Staggered Leapfrog Stencil (Center), with outgoing
BC (left and right), initial conditions determining the first two steps (lower green) and
CFL criterion (triangle in shadow).

Initial Conditions

The Initial Conditions required for the wave equation are two: one for the field and one for
its time derivative. They determine the first two steps of the scheme. The initial condition
for the field also plays a role on how the ONMs are excited, even though it does not affect
the actual values of the frequency. Throughout this thesis, we adopt a Gaussian as initial
condition for the field

P(t=0,r")=h(r)=A-exp <_(r*2;2;4)2> . (5.6)

The initial condition for the derivative, determines the initial movement of the Gaussian.
For example if we take an initially static field, 0;®(0,r*) = ¢(r*) = 0, the Gaussian will
split in two. However, in order to excite the QNMs we want to direct it towards the po-
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tential, which its usually placed to the left of the IC. We can achieve this by imposing an

advection equation for the derivative
0P(t=0,r") =g(r") = —coxy®(t = 0,r"), (5.7)

which by using (5.6) becomes

9D (t = 0,r") = g(r*) = — c(’*(;”) LB(t=0,r). (5.8)

The discretized version of equations (5.6) and (5.8) is

e —u)?
DY =h; = A-exp <—( 12027’[) ) ’ (5.9a)

ol — @Y (rf — 1) o
P ge ey, (5.9b)

where h; = h(r}) and g; = g(r}).

At this point, we should note a subtlety. We have already mentioned that from the IC, we
can compute the first two steps of the numerical evolution, which serve as starting points.
It is obvious that from (5.9a), we obtain the first step for j = 0. However, one could be
naive and compute the second time step, for j = 1, by solving (5.9b) for ®}. This is not
correct. We must also consider the effect of the potential on the evolution to j = 1.

The correct approach is the following. We introduce a phantom point at j = —1.
"Phantom" because it does not play a further role in the evolution and it is not a part
of the grid. Now we can express the Finite Difference of the IC given by the equation (5.8)

between j = 0 and j = —1. By substituting j = 0 into the main equation (5.5) we obtain

o -t (rf ="
zAtz =gi=—c¢ 10-2 i/ (5.10&)

1=20) — @'+ CLF? (@), + @) ; —297) — AV - D). (5.10b)

If we eliminate the phantom term CIDi_l, we obtain the correct value for the second time
stepj =1

O = Y + At - g; + CFL? (D) | + D) | — 207) — ALV, - D). (5.11)

As a final note, including the potential, only matters when we place the ICs close to the po-
tential. If our initial Gaussian is far away from the potential influence, taking into account
for the calculation of the first time step will not have such an impact.

Boundary Conditions

In principle, the Boundary Conditions should be outgoing, as shown in equation (5.3).
However, since we generally do not know the frequencies that our solution contains, we
can cannot apply this relation directly. Instead, we can achieve purely numerical outgoing
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BCs by imposing two advection equations at the boundaries of our grid. These equations
will transport the quantity they receive out of the numerical domain. The equations read

01D (£,1%) +¢a, D (¢, ") =0, at r* =ry, (5.12a)
P (t,1") — o @ (t,1") =0, atr" =77 (5.12b)

Due to numerical errors, these boundary conditions cannot be exact. As a result, there
will always exist a reflected fraction of the field, contaminating the signal. To mitigate
the impact of these reflections on the numerical solution, we not only impose outgoing
boundary conditions, but also place the boundaries of the numerical domain in such a
distance that the reflections will not have the sufficient time to travel back to the observer
and interfere with our desired results.

The discretization of the advection equation on the boundaries is being done with the
upwind scheme. The intuitive advantage of this scheme, for example from central differ-
ences, is that the solution on the next time step depends only on points that are located
in the direction from which the advective quantity comes. For example, if we want to find
the solution on point (s, js + 1), it will depend only on points with i < i; if the velocity is
directed to the right and on points with i > i, if the velocity is directed to the left. This is
shown schematically in Figure 5.1. In terms of discretization, we have

@)t =)+ T (30— aw) 1 o)), (5.13a)
i+1 ' CFL ' ' +1
ot =o), — L (30, —a0), ol ), (130

where we have used first order approximation for the time derivative and second order for

the spatial derivative.

Coordinate Clarification

To complete the description of the numerical scheme for the uncoupled case, we have
to clarify a final point in equation (5.1): the fact that the derivative is given in tortoise
coordinate r*, whereas the potential, in the usual r of the Schwarszchild coordinates. The
transformation r* — r is simple and is given by equation (1.14). The inverse transformation,
that is, finding r* for given r, is not so obvious. One could do it by numerically solving the
equation at each time step, but this would be expensive and not accurate enough.

However, an analytic function which inverts equation (1.14) exists, is called Lambert W
function and is defined by the relation

we’ =z = w = Wi(z), (5.14)
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where w,z € C and k € IN. Now, if X,Y € R, then the inversion becomes

Wo(X), X >0,
Yoy =X =Y = 0(X) (5.15)

Wo(X) or W_1(X), —1/e<X<0.

Thus, when Lambert W function is real-valued, it can be seen as the inverse function of
xe* and thus is also called product logarithm function. The equation that relevant to our case,
can be written in the form of (5.15). From equation (1.13) we have

exp (=) =L 1
P YH _VH

if we define X :=exp (r*/rgy—1) > 0and Y :=r/ry — 1, we obtain

(r*—rH> (rH—r> r—7ry
exp - exp =
rH rH H y

and finally

As a result, from (5.15), we have

r=rg+ryg-Wo <exp <r* — 1>> . (5.16)

rH

Now, for each r*, we have analytically its corresponding r.

5.2 FIT THE FUNCTIONS

The solution of the wave equation is a scalar function which takes a different value at each
point in space and time. If we fix the spatial position, namely setting an observer at at a
constant point in space, this observer records a signal in the time domain. This setup is
shown schematically in Figures 3.1 and 5.2.

Figure 5.2: Simplified explanation of the study in the time domain. The signal
is extracted by fixing the position of an observer and recording the
data seen.



5.2. FIT THE FUNCTIONS

To fit the various models to the time-domain signal obtained from numerical solutions,
we employ the curve_fit function from PYTHON'’s scipy library. This function, minimizes
the Sum of Square Error Function (SSE) with respect to the model’s parameters

n

S(6) = Zl (f(xi0) — y1)?, (5.17)
iz
where y; are the numerical data, f is the model, 6 € RK is the parameter vector where K is
the dimension of the parameter space. The x; are the points in the domain.

This PYTHON function, uses by default the Levenberg-Marquardt (LM) algorithm to
optimize the SSE function [76]. The LM is an iterative method which requires an initial
guess for the parameters, 6 = 6, to start. Each step moves the previous values of the
parameters 6 by a small amount x, so that 8 becomes 6 + x. By Taylor expanding the
function f(x;;0) around 6, we obtain

fxi;0+x) = f(xi;0) + Jij - x + O(x%), (5.18)

where the Jacobian is J;; = of(x;;0)/06;. Setting the derivative with respect to x equal to
zero, yields

(7 +11) x =" (y = f(x,0)), (5.19)

where p > 0 is the damping parameter introduced by Levenberg. This parameter controls
the step size of each iteration, so that for steeper regions of the function the change is
chosen smaller and inversely for flatter regions the step is chosen larger to accelerate
convergence. In each step a linear system of equations should be solved in order to obtain
the approximation of the parameters.

In the following Chapters (6) and (7), we work in parameter spaces of dimension 3 to
10. This makes the SSE function susceptible to many local minima which potentially might
lead the LM getting stuck in one of them and missing the global minimum. To improve

this a bit, we carefully choose the initial guess, as we discuss in the next Chapter 6.

Chapter Summary

In this chapter, we discussed the following points:

® The central in time and in space numerical scheme we use (staggered leapfrog).
* The implementation of the nonreflecting BCs through an advection equation

* The way we impose an advection equation as Initial Conditions for the deriv-
ative to prevent the direct propagation of the initial Gaussian to the observer.

® The application of an advection equation as Initial Conditions for the derivat-
ive to prevent the direct propagation of the initial Gaussian to the observer.

¢ The fitting algorithm employed.
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APPLICATIONS & RESULTS I

In this chapter, we present the first set of results, focusing on cases related to GR. The high-
level explanation of the procedure is the following: we generate ringdown waveforms by
numerically solving the linear perturbation equations with GR-related potentials. After-
ward, we employ different models to fit these waveforms and extract their parameters
by systematically adjusting the portion of the waveform included in the fits (the fitting
window) to evaluate how it impacts the parameter extraction.

More specifically, the potentials we use are the Poschl-Teller (PT) potential, matched to
the Regge-Wheeler (RW), as well as the RW potential itself. The models employed contain
different number of modes, with some also including the power-law tail. The results here
partially reproduce those in reference [39], with an extension to incorporate models that
include tails.

The structure of this Chapter is that we first present the methods used to produce the
waveforms and fit them with the various models in Sec. 6.1. Then we apply them and
examine the impact of the starting time of the fit on PT generated waveforms that are not
contaminated with a late-time power-law tail in Sec. 6.2 and in Sec. 6.3 we study the RW
generated waveform to also see the impact of the tail. Finally, in Sec. 6.4 we treat both ends
of the fitting window as free parameters.

6.1 METHODS

A common method for studying wave equations of the form (3.11) with a potential V, in
the time-domain, involves first solving them numerically and then analyzing the results.

The step regarding the solution was discussed extensively in Chapter 5. We use the
Leapfrog scheme, which is a finite difference scheme, central in time and space, for a grid
with resolutions At = 0.01 and Ar* = 0.02. The chosen initial data is

(r*—p?

P(0,r") =Ae 22, (6.1a)
9;®(0,7") =0,.P(0,r%) (6.1b)

for A ~ max {V}, y = 30M and ¢ = 1M. The second condition (6.1b) forces the Gaussian
to become ingoing, thus to move only towards the potential.

The Boundary Conditions are imposed as outgoing. However, since outgoing Boundary
Conditions are implemented numerically, their implementation is imperfect, introducing

numerical errors. To mitigate possible contamination of the signal due to reflections from
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these imperfect boundary conditions (6.1b), we set the domain boundaries far enough from
the region of interest.

The resulting numerical solution is time and space dependent. In order to extract the
time-domain signal we place an observer at the fixed position of R = 100M and we study
the recorded signal. This location is chosen sufficiently far from the light ring, ensuring
that the recorded waveform has ceased interacting with the BH potential and is nearly in
its final form. Although the ideal position would be at spatial infinity, this is not feasible

due to the increasing numerical cost.

In general, the recorded signal can be divided into three parts: the main bulk, sufficiently
described by the ONMs, the initial transient regime where the modes have not yet fully
developed and and the late-time power-law tail. The two latter contributions influence the
extraction of the parameters. A first and naive indication for this, is shown in Figure 6.1,
where the blue line is the extracted signal and the others refer to different fitting models
including one damped sinusoid (yellow line), the power-law tail (red line) or both (green
line). Observe that when the power law tail is included the result of the fit almost coincides
with the recorded signal especially at late times of the ringdown. Let’s try to quantify this
better by specifying exactly the fitting procedure and the fitting models.

0 : :
\n | l
= 2 | ATAPN ! tf_tpeak:
= i‘lg‘ \in :
o \A 1
S -—4- ARESERRAT i
' 13T 1
Il !I H - |
L 6] e |

% I . -
= 81 ¢=2 | i
§ o] ot
= —— N=1 tail : |
- = tail | ]
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t—tpeakinM

Figure 6.1: The waveform extracted by numerically solving equation (2.30) with RwW potential with
multipole number ¢ = 2 is shown in the blue line. Also some fitting models are shown
containing N = 1 mode (yellow line), N = 1 mode and tail (green line), tail alone (red
line). The fitting window for the first two is indicated with the gray shaded area, starting
at fo — tpeak and ending at fr — fpeqx, Where foeqx is the time at which the waveform
takes its maximum. For the tail-only model, the fitting window is located at the final
50M. Here we see the extrapolation of the fitting results beyond their fitting windows.

A. The fitting models

The goal of this Chapter is to study how the portion of the waveform included in the fits
impacts the parameter extraction. For that reason, we employ and compare different kinds



of analytical toy-models to extract the main features of the produced linear waveform.

6.1. METHODS

These models are either Theory Agnostic (TA) or Theory Specific (TS) and may also contain

the Price power-law tail [52]. In the models we also vary the number of modes included

from, N =1 to N = 2. A summary of all the models is given in the Table 6.1.

The TA models make no assumptions for the ONM frequencies included in the waveform

and each mode, n, requires four free parameters in order to be modeled. On the contrary, TS

models assume certain values for the ONM frequencies that are included in the waveform.

The details of each model are described below

(i)

(ii.)

®IA: This is a TA model, that makes no assumptions for the QNM frequencies
and includes N modes:

N-1 4

OTA(t — Focal) = Z A, e (@) (t=tpeat) | gipy (Re(wzf\)(t — tpeak) + gb,l) ,
n=0

t € [to, tf]. (6.2)

The parameters that describe each mode are four, the complex frequency w, =
Re(wy) —ilm(wy), the amplitude A, and the phase ¢,, leading to 4N parameters

in total.

®I5: This is a TS model, which incorporates assumptions for the frequencies and

includes N modes:

DL (£~ tpeak) ZAe*”“’ ME=tpea) - sin (Re(cwpf*) (M) (= tpeak) + 1)

t e [to ty].
(6.3)

The assumption of the underlying frequency appears in the model through the
injection of a frequency w,’ and a mass M. Specifically, we use the fact the
product of the frequency times the mass is constant and in that way we can treat

the mass as a free parameter

) Lo Miti=1
wgs . MTS :w;”] . MM s

in
Wy J

MTS’

wp®(M) = (6.4)

where the injected mass is set to one.

The parameters that describe each mode are two, the amplitude A, and the phase
¢n. Additionally, the mass MT°, serves as a global parameter that describes and
controls the values of the frequencies for all n as shown in (6.4), leading to 2N + 1

parameters in total.
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(iii.)

@%A’t: This is the same TA model as before, that makes no assumptions for the

frequencies and includes N modes, but now we also take into account the late-

time power-law tail:

CDTA t peak Z An eilm " “hpeald) . sin (Re(wEA)(t - tpeak) + (Pn)
+ Agait(t = i) ), t € [to, ] (6.5)

The parameters that describe each mode are four, the complex frequency w, =
Re(wy) — ilm(wy), the amplitude A, and the phase ¢, and additionally we have
two extra parameters to model the tail, Ay, t41, leading to 4N + 2 parameters
in total. For our case with ¢ = 2 and non-static initial data, from equation (3.13),

the exponent for the tail is —7.

@{Is ~!: This is the same TS model as before, which incorporates assumptions for

the frequencies and includes N modes, but now we take into consideration the

power-law tail:

CD peak Z Ap eilm i) (M) (= Fpeak) sin <R€(w;{5)(M)(f - tpeak) + (Pn>
o+ Agair(t = trag) "), te [to, tf] . (6.6)

The explanation regarding the frequencies and the mass is the same as before.
The parameters that describe each mode are two, the amplitude A, and the
phase ¢, and additionally the mass is global parameter for all of the frequencies.
We also have two additional parameters to model the tail, Ay, t,i, leading to
4N + 1 + 2 parameters in total. For our case with ¢ = 2, the exponent for the tail

is —7.

Model Description Number of free parameters Tail | Legends in plots
oA N free frequencies 4N no N TA
@15  only fixed frequencies 2N +1 no NTS <TS >
@' N free frequencies AN +2 yes N TA tail
@7 only fixed frequencies 2N +1+2 yes | N TS < TS > tail
Table 6.1: < TS >= {PT: Poschl-Teller, GR: Regge-Wheeler}, N: Number of modes. The models

taking into account the power-law tails refer only to the GR waveforms.

In general, TS implies that the assumptions for the frequencies could come from any

possible theory. However, in this chapter we focus specifically on the Rw and PT potentials.

Accordingly, we make two distinct assumptions: the modes for each waveform correspond

either to the Regge-Wheeler potential of equation (2.31) or to the Poschl-Teller potential of
equation (3.16). Regarding the PT potential it should be noted that we matched it to the RW

with the

method described in the subsection 3.4.5. The exact values for the former modes
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are taken from [77] whereas the others can be computed analytically via (3.18), after the
potential matching.

To highlight it again, for each waveform we use two TS models. For the one we assume
the correct frequency and for the other we intentionally inject the wrong. In total, we
employ six models when we study the PT waveforms which do not contain the power-law
tail, since it is not produced by the PT potential, and twelve models when studying the Rw
waveforms.

A way to measure the performance of each model is to compare its parameters with
known values, whenever possible. In our case, we can apply it for two parameters: for the

mass My;;, extracted from the TS models

_ |Mgip — Miyj

oM
Miyj

, (6.7)

where M;,; = 1, and the frequency

Sew = ‘wi - Cdi,theory’, (6.8)

’wi,theory|
where wj seory is theoretical value of the complex frequencies corresponding to the under-
lying potentials which is always known.

B. The fitting procedure

To fit the models to the numerical data, we use PYTHON’s scipy library and specifically
the curve_fit function, which employs the Levenberg-Marquardt algorithm to minimize
the Sum of Square Error Function, as defined in equation (5.17). For further details see
Sec. 5.2. The curve_fit function takes some arguments that require special attention. For
example, one should provide a priori the boundaries for the parameters. If the boundaries
are too narrow, some of the parameters may get constrained by them and thus prevent the
optimization algorithm from finding the global minimum. To avoid this, we ensure that

the boundaries are wide enough.

All models require a predefined fitting window which starts from tp — tpeac and
ends at tf — teq This is why, in the definitions of the models we have t € [to, t¢]. To
determine the fitting window we should specify the starting and ending times. These
limits are not strictly defined [78] and for example the choice of t; is related to the still
ongoing discussion regarding the time of validity of the linear ringdown with respect to
the full waveform extracted from numerical relativity simulations [39-41].

The choice of the ending time is more straightforward at first glance. One could say that
if we did not want to study the effect of the power-law tail, we could choose an ending
time that does not include it, as is done in [39]. To be more precise, it is not that the
tail is absent in the early waveform, but rather that the ONMs dominate over it. Observe,

for example, that in Figure 6.1, the contribution of the extrapolated tail is ~ 2 orders of
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magnitude smaller than that of the ONMs. However, in the following Sec. 6.4, we treat the
end time as a free parameter and we see that its impact on the extracted parameters is
not so important. This means that for fixed starting time #¢ — fpeak, the extraction of the
fundamental mode’s complex frequency remains more stable as we vary the ending time
tr — tpeak, compared to when we vary the starting time instead..

On the contrary, the starting time of the fitting window ty, is a bit trickier. There are
different approaches to choose it [78]. Here it is treated as a free parameter and to quantify
these implications on the performance of the models we define the following quantity

M =1 — <®signal/ q)fit> (6 9)
\/<q>signal/q>signal> <¢fit/ q)fit>
where
tf
<q>signul(t)r chit(t» :/t chz'gnal(t) '¢fit(t)dt~ (6.10)
0

which is called Mismatch. As the fitted model ®y; approaches the produced waveform
®Diona1, the mismatch approaches zero, which implies that a good fit leads to very small
mismatch. Therefore, by changing tj, we study how much the models match with the

generated waveform by examining the mismatch. !

Finally, for each t;, we need to provide an initial guess for the parameters in order
to initiate the optimization algorithm. If this initial guess is close to the actual minimum
of the Sum of Square Error Function, the algorithm converges faster to it. So if we make a
good initial guess we can speed the process. If we make an extremely bad initial guess we
might get stuck on a local minimum and obtain biased parameters.

Assuming that the extracted parameters improve as ¢y increases, since the transient part
of the waveform is more and more excluded from the fit, we employ the following pro-
cedure, which is shown schematically in Figure 6.2. For the first t; we have no previous
parameters to rely on. So we draw the initial guess randomly from a uniform distribution,
covering the allowed range of parameters. For the subsequent ¢, based on our assumption
that the parameters improve, we replace the uniform distribution with a truncated Gaus-
sian. This adjustment allows us to place more weight on certain regions of the parameter
space. This Gaussian is cut at the borders of the allowed parameter range and its mean
value is located exactly at the parameters that were extracted from the previous ¢, fit. The
width is set to 25% of the range of each parameter. In that way, we speed up the process
by starting from a guess that is relatively close to the minimum.

Finally, we repeat the fit for each t at least 50 times, depending on the model, each one

with random parameters drawn from the truncated Gaussian, in order to make sure that

There is a possible pitfall in the above. Best-fit functions that differ only up to a constant factor, give the same
mismatch, since this factor is canceled out. Therefore, we could have a nearly zero mismatch but wrong best-fit
parameters.
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the optimization algorithm is not stuck on a local minimum. From these fits, we select the

parameters that correspond to minimum mismatch M.

\_/ \_/\/\/’

Step 0 Step k —1 Step k

Figure 6.2: The fitting procedure shown schematically. The first step corresponds to the smallest
starting time. The initial guess is drawn from a uniform distribution covering all the
parameter space. The fitted parameters are depicted by the bullet. The k step corres-
ponds to a larger starting time and uses information from the k — 1 step. Specifically,
the fitted parameters of k — 1 step (bullet) serve as the mean of the truncated Gaussian
distribution from which we draw the initial guess for the fit at step k (blue square at
step k).

We remark that, as extensively discussed in [40], a small mismatch is not a panacea; it
may also lead to overfitting. The authors show that by including up to N = 8 modes in
various models, the mismatch is very small, even close to the peak. This seemingly positive
result, hides the fact that the robustness of the extracted parameters deteriorates for higher
overtones. Consequently, while the fit appears accurate, it may actually be an artifact of
overfitting.

6.2 POSCHL-TELLER POTENTIAL

The initial application focuses on the study of waveforms generated by the scattering of a
Gaussian to the Poschl-Teller (PT) potential. We perform the fits using TA and TS models, six
different in total, defined in equations (6.2) and (6.3) respectively. For the TS we consider
frequencies originating either from the PT potential (correct ones) or the RW (incorrect
ones). The fits are repeated for different starting times ranging from fy — fpeax = —20M
to 50M with step 1M and we plot all the extracted parameters as function of the starting
time.

The performance of each model is shown in Figure 6.3, where we plot the mismatches
for different starting times of the fit. In the pre-peak region - where the modes have not
fully formed yet - all mismatches are large, indicating that the damped sinusoids cannot
accurately describe this region of the waveform, as anticipated.

Two general trends can be observed: the mismatches decrease as starting time increases
and the mismatches of models with N = 2 are smaller than their N = 1 counterparts. The
tirst trend can be attributed to the fact that at late enough times, the transient content has
vanished and the high overtone content has decayed resulting in the fundamental mode
dominating over the signal. The second trend is due to the larger parameter space which
provides greater flexibility.

Notably, both Theory Specific models perform similarly at early times. The TS GR mod-
els performs worse than the TS PT only at late times, after 30M for the N = 1 model and
20M for N = 2 model, where they plateau at almost a constant value of ~ 1075.
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Figure 6.3: Mismatches between the fit and the PT generated waveform, as a function of starting
time of the fit for the six models, each one containing up to N modes.

Finally, the N = 2 TA model seems to perform slightly better than its TS PT counterpart
at very late times. A possible explanation for this could be attributed to its larger parameter
space, which provides greater flexibility and enables it to better capture the numerical er-
rors, which should be present for such small mismatches [39]. Given the small mismatches
obtained, we can infer that our models can fit the waveform reasonably well. From now
on, the focus shifts to the quality of the parameter extraction.

We start from the mass, My;;. As shown in the top panel Figure 6.4, all TS PT models

approach to the value of 1 and the TS GR models approach a value close to it but not
exactly 1. Therefore, TS PT models that assume correct frequencies approximate better the
injected mass, whereas the performance of the TS GR models plateaus on a wrong value
at ~ 10M and ~ 30M for model containing N = 1 and N = 2 modes respectively. In the
bottom panel we show the relative error of the extracted mass computed from equation
(B.10) and we see that its value for TS GR models plateaus whereas for TS PT keeps
improving. The somewhat unexpected of these plots is that the TS GR models, which
contain the wrong frequency, recover the mass more accurately at early times as shown in
the bottom panel.
The next parameter we discuss is the recovered frequency w = Re(w) — ilm(w).
Note that the PT spectrum has the same real part for all the frequencies. The results
for real and imaginary parts are shown in the top and bottom panels respectively of
Figure 6.5. The first observation is that for early times and especially before the peak, the
predictions deviate a lot from the expected values which are shown with black lines. The
convergence to the expected values starts after the peak and especially for late enough
times all the models find the correct frequencies, except for the TS GR ones (see the inset
which zoom in late-time region).

Again, models that are TS converge faster than TA but the latter approach closer to the
correct frequencies (see Appendix A and Figure A.2). Additionally, the fundamental mode
extracted from models containing two modes converge faster than models containing one
mode.

In linear perturbation theory, each mode has constant amplitude and phase. There-
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Figure 6.4: Results for the extracted mass as a function of starting time of the fit, using PT waveform
and TS fit models with N = 1,2 modes. Solid lines refer to models with N = 1 mode and
dashed lines to models with N = 2 modes. Top panel: Value of extracted mass. Bottom
panel: Relative error of the extracted mass computed with respect to the injected one
which is equal M;,; = 1.

fore, to claim that a mode is found in a signal, its amplitude and phase should also be
robustly extracted. These parameters are not as fundamental as the frequencies themselves
since they depend on the Initial Condition used to produce the waveform. Though, the
stable extraction of the frequency alone, does not guarantee the finding of the mode. In
Figure 6.6 we plot the amplitudes for the fundamental mode Ay and the first overtone A
(see Appendix A and Figure A.1 for the corresponding plots for the phase). The amplitude
for the fundamental mode is extracted in a stable and constant manner at late times from
all the models, certifying the convergence of the mode. However, for the first overtone,
the amplitude becomes constant only for very late times only for TA and TS PT models
and for the TS GR diverges, which means that this specific model failed to find the first
overtone of the signal.

A final general comment can be made, on the fact that TS GR models predict wrong
frequencies quite well and robustly. This means that if we did not know the correct un-
derlying spectrum of the waveform and we assumed that it came from a GR potential we
could possibly be satisfied with the results if we did not have many models to compare.
Therefore, this could serve as a toy-example for biased model. For wrong assumptions,
that is GR frequencies for a PT waveform, the extracted parameters were stable, though

wrong.
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Figure 6.5: Results for the extracted frequencies from a PT waveform as a function of the starting
time of the fit fo — f,cax. Top panel: Real part of w. Bottom panel: Imaginary part of w.
Solid lines correspond to models containing N = 1 mode and the two types of dashed
lines correspond to models containing N = 2 modes. The black lines correspond to the
expected values. Specifically of the imaginary part, the lower black line refers to the
fundamental mode and the upper to the overtone. The inset windows show the stable
extraction of all modes from all models at late enough times.
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Figure 6.6: Amplitudes of the modes as a function of the starting time of the fit for the PT waveform.
Solid lines correspond to models containing N = 1 mode and the two types of dashed
lines correspond to models containing N = 2 modes.
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6.3 REGGE-WHEELER POTENTIAL

The second application is a repetition of the previous calculations but for the RwW potential.

The main difference between the two cases, is that the RW has different asymptotic behavior
which leads to a late-time tail. As we will discuss, this deteriorates the extraction of the
parameters. Possible solutions for this could be to include the tail in the models or to
exclude the tail from the fitting window. As we will see in more detail in Sec. 6.4, the first
works whereas the second does not.

We use all the TA and TS specific models defined in equations (6.2), (B.8), (6.3) and (B.9),
with included modes N =1 or N = 2 and we also take into consideration the tail. In total
we employ twelve different models. As before, for the TS ones, we consider both the correct
GR frequencies and the wrong PT ones and we repeat the fits from fp — fyeax = —20M to
60M with step 1M.
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Figure 6.7: Mismatches between the GR waveform and the sults, as a function of the starting time
of the fit. Top panel: Shows models with one mode. Bottom panel: Shows models with
two modes. For both panels, the solid lines refer to models that do not include the late-
time tail and dashed lines to models that include it.

First come the mismatch plots in Figure 6.7, which yield similar behavior as before,
indicating the agreement between the fitted function and the numerical waveform. All
models with N = 1 mode (solid lines at the top panel), perform quite similarly. Observe
the minimum around #p — fpeak = 10M and the ascending behavior afterward. We did not
observe such a behavior for the PT waveform, so it can be attributed to the late-time tail.
Indeed, when we model the tail (dashed lines at the top panel), the mismatches decrease
from two to four orders of magnitude (depending on the model) and at the same time no
ascending tendency is observed.
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Similar is the behavior of the N = 2 mode fits. The difference here is that they reach
the minimum mismatch earlier than their N = 1 counterparts, since they capture better
the first overtone that is present earlier at the waveform and has decayed in later times.
The indication from the mismatch plots is again, that the models fit quite well the signal
and from now on we discuss about the relation of small mismatch with the quality and

stability of the extracted parameters.
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Figure 6.8: Results for the extracted mass as a function of starting time of the fit, using GR waveform
and TS fit models with N = 1,2 modes and tails. Top panel: Value of the extracted mass.
The black line indicates the injected mass M;,; = 1. Bottom panel: Relative error of the
extracted mass with respect to the injected mass which is equal to M;,; = 1. At both
panels, the solid lines refer to models that do not include the late-time tail and dashed
lines to models that include it.

We now turn to the extracted mass, shown in Figure 6.8, bringing us to the new point
where the improvement provided from the modeling of the tail becomes more clear. In the
top panel we plot the extracted mass My;; as a function of the starting time of the fit and
on the bottom panel, its relative error. Note that models without the tail (solid lines both
in top and bottom panels) oscillate around a certain value. The TS PT ones with the wrong
frequency, find a wrong value with relative error ~ 102, whereas the TS GR that contain
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the correct frequency, oscillate around the correct value of 1, with approximately one order
of magnitude smaller relative error.

This oscillating plateau, even for the model containing the correct frequencies, is in
contrast with the corresponding Figure 6.4 for the PT waveform. The difference is due to
the presence of the power-law tail that limits the continuous improvement of the mass
value at around fy — fpeak 2 10M to 20M for different models.

However, when we explicitly model the late-time tail (dashed lines), we observe even by
eye at the top panel that the extracted mass stabilizes around the wrong value for TS PT
models and around the correct value from TS GR ones. From the bottom panel we see that
in fact, regarding the TS GR the oscillation of the relative error is smaller by two orders of
magnitude.

Also, the general trends are that models with two modes and models with tails reach
their “final-state’, either oscillating or constant, faster than models with one mode and
models without tails. The extraction of the mass overall, is quite reasonable, since it does
not diverge, it is stable and additionally, the different results between different models
can be reasonably explained.

At this stage, we must elaborate on a point that, once observed, could be classified
into the 'not even wrong’ category. Specifically, two of the models employed are TS PT

with a tail. That is, in a theory-specific model, whose spectrum is assumed to emerge from

a tail-less potential, a late-time tail is included. Conceptually, this is completely incorrect.

However, there is an explanation for that and it offers something of value.

If we momentarily neglect the tail-less character of the PT spectrum and consider these
injected frequencies simply as two frequencies that are different from the ones included
in the signal, what we observe is an interesting point. The combination of the tail with
the wrong frequency improves the fit by decreasing the mismatch as seen in Figure 6.7
and stabilizing the extraction of the mass as seen in Figure 6.8. So the correct modeling of
some parts of the signal leads to more stable results, even though wrong frequencies are
assumed.

We now discuss the extraction of the frequencies shown in Figure 6.9, where in the
left and right column we see the complex frequencies of the fundamental mode and first
overtone respectively. There is also its counterpart, Figure 6.10, which shows the relative
errors of the complex frequencies defined in equation (B.11). This discussion illustrates
again the improvement that comes along with the modeling of the tails and also exposes
the problematic features of some models.

Regarding the fundamental mode (left column), all TS PT models, predict a wrong value
with ~ 2% relative error and all the others approach the correct values with at least one
order of magnitude smaller relative error. Note that frequencies from the models without
the tail (solid lines) oscillate around a certain value. The exception is the 2 TA model,
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Figure 6.9: Results for the extracted frequencies as a function of starting time of the fit, using GR

waveform. The black lines at the main axes and the black arrows at the insets indicate
the expected values. The black arrows on the insets show the expected values. Left
column: Real and imaginary parts of the fundamental mode. Right column: Real and
imaginary parts of the first overtone. At all panels, the solid lines refer to models that do
not include the late-time tail, and the dashed lines to models that include it.

which stabilizes the extraction of the fundamental mode (see the yellow line on the inset
of Figure 6.9 and Figure 6.10).

The first overtone frequencies (right panel) are extracted in a stable manner for the TS
models (again wrong value for TS PT and correct for TS GR). This is due to the fact that
they are the ration of the assumed frequency over the extracted mass, which is robustly
extracted with different accuracy depending on the model. However, the TA model is

extremely unstable and does not recover the overtone at all (yellow line).
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Figure 6.10: Relative errors of the extracted frequencies defined in equation (B.11), as a function of
the starting time of the fit. Left panel: Fundamental mode results Right panel: First
overtone results

If no further plots were shown, one could infer that all the TS models can robustly
extract the first overtone from the signal. Figure 6.11, shows the extracted amplitudes as
a function of the starting time. On the left panel we show the results for the fundamental
mode, Ao, which has similar behavior with the other parameters. The models that neglect
the tail oscillate at late times around a certain value, models that include the tail stabilize
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the extraction and models including the overtone also stabilize the extraction, but less.
Additionally, the TS PT models, yield slightly different value from all the others.

On the right panel of the figure, we see that none of the amplitudes for the first overtone
is robustly found. All of them deviate to large values at late times. Thus we cannot safely
infer that we detected the first overtone in this specific produced signal with the procedure
followed. If we compare with the corresponding results from the PT waveform where only
the 2 TA model failed to detect the overtone (Figure 6.6), we can trace the reason of this
difference back to the power-law tail. Similar results for the phases can be found in the
Appendix A at Figure A.3.
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Figure 6.11: Amplitudes as a function of the starting time of the fit. Left panel: Fundamental mode
results. Right panel: First overtone results.

Finally, we discuss whether the extraction of the tail was robust or not and we
present relative results in Figure 6.12. Both its amplitude and its pole, were found to have
similar behavior. For early times, up to t) — tpeax ~ 10M, the parameters are quite unstable
meaning that its contribution to the signal is not so large compared to other contributions
such as the transient phase and the higher overtone content at the early post-peak times.
That is reasonable since the tail is a late-time effect of the linear ringdown.

However, after fo — tpeak ~ 20M for the N = 1 mode models and ty — fpeax ~ 10M
for the N = 2 mode models, we observe either an oscillating behavior around a certain
value or a convergence to a constant value, respectively. An intuitive explanation for this
difference could be that the N = 2 mode models capture better the oscillating part of the
signal therefore leaving a signal which contains a more clear form of the tail.

In the first paragraph of this section we talked about an other solution to improve the
oscillating behavior of the extracted parameters. This was to decrease the end time of the
fit window in order to exclude the tail from the fit. From the Figure 6.12, we can infer that
this might not work, since the tail was robustly extracted from ty — tpeax ~ 10M to 20M
depending on the model.

However, this might be a pitfall since the tail extraction might depend on the initial data
which is something that we do not examine in this thesis. Additionally, it could be that
if we keep including more and more modes in the models, we extract the tail parameters
robustly even around, or before the peak. This would mean that the late-time tail exists

in these early-time regimes of the ringdown. Therefore, there is no point in shrinking the
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end time to such early times, before 10M or 20M. This would include just a small portion
of the signal leading to small mismatch and large relative error.
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Figure 6.12: Tail parameters as a function of the starting time of the fit. Note that we modeled the

tail as Ay (t — tyzi1) ~7. Left panel: Tail amplitude in log scale, Right panel: Tail pole,
its location is found ~ 50M prior to the waveform peak.

6.4 IMPACT OF THE FITTING WINDOW END TIME

To conclude this chapter, we examine the sensitivity of the extracted frequencies to the
boundaries of the fitting window. Specifically, we fit a waveform generated by the RwW
potential and perform the fit by using only one model containing the fundamental mode
without a tail. We treat both limits of the window as free parameters by varying them in
the ranges shown in Figure 6.13. The green area represents the range of the starting time
to and the red area the range of the ending time of the fit, . We ensure that they do not
overlap, meaning that the ending time never comes earlier than the starting.
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Figure 6.13: Shows the ranges of the two ends of the fitting window treated as free parameters.
The range of the starting time is shown in green shading, ty — tpeak € [—20,50] and the

range of the ending time in red, f7 — f,cax € [60,170]. The black vertical line indicates
the peak of the waveform.

First, as usual, we show a mismatch plot in Figure 6.14. On the vertical axis, we plot
the end time of the window and on the horizontal axis the starting time. Both of them are

with respect to the waveform’s peak. The color scale represents the mismatch value, where
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yellow indicates a large mismatch and purple indicates a small one. By picking a constant
ending time, observe the oscillation of the mismatch similar to the behavior seen in the
previous Chapter in Figure 6.7. In contrast, if we pick a constant starting time and follow
a vertical straight line, there is no oscillation visible on the figure. Therefore, the range of
the ending time of the window that we pick, seems to have little impact on the mismatch.
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Figure 6.14: Results of the mismatch by letting both ends of the fitting window free. The horizontal
axis shows the starting time fp — fpeak and the vertical line the ending time of the fit
tf — tpeak, both relative to the waveform'’s peak. The color scale reflects the mismatch
values on a logarithmic scale, with yellow being large and purple being small.

Next, in Figures 6.15 and 6.16, we present contour plots with a similar structure to 6.14,
but instead of the mismatch we show in color the relative error of the real and imaginary
parts of the fundamental mode. To further illustrate the apparent independence of the fit’s
end time, next to each contour plot, we show some slices of it.

In the top panel, we show slices with constant end times ff — fpeax and in the bottom
panel slices with constant starting time ) — fyeak- Observe in the top panel that the curves
related to different end times (distinguished by different colors) almost overlap with each
other and that they vary as a function of #y. Similarly, in the bottom panel, the curves
corresponding to different starting times (depicted with different colors) reach a constant
value after a certain 5 — f,cqx but a different one for each fo — fpeak- This behavior suggests
that, for the waveform generated from this specific initial data, the choice of the end time of
the fitting window has small impact on the accuracy of mode extraction. The variation in
tr — tpeak neither significantly improves nor deteriorates the extraction of the fundamental
mode.

Finally, we provide some general comments on the figures above. The negative values of
to were excluded in order to improve the readability of the colormap and since no modes
are present in that region yet, this exclusion is not of great importance.

Also in the bottom right corner of Figure 6.14 there is a purple region indicating very
small mismatch. This results from the fitting window being very narrow (~ 10 — 20M). For
that reason the fitting model can closely match the signal but fails to accurate capture the
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Figure 6.15: Results for the relative error of the real part dRe(wy), Left panel: The colormap on
the corresponds to the relative error, with purple being small and yellow being large.
Right top panel: Slices of the colormap with ending time ff — f,cqx constant. Right
bottom panel: Slices of the colormap with starting time fp — f,eax constant.
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Figure 6.16: This figure has the same layout as Figure 6.15. Relative errors of the imaginary part
dIm(wo).

modes. This can be observed in the same region of Figures ?? and 6.16 where the contour
is distorted and the relative errors relatively large.

FUTURE WORK

Something that is not examined in the above is the correlation of each mode’s excitation
with the parameters of the initial Gaussian. It is intuitive to expect dependence on the
amplitude and the width. For example, if we pick an amplitude much larger than the pick
of the potential, possibly the Gaussian would be barely affected by the presence of the
potential. Also, as Vishveshwara showed [37], a very narrow Gaussian fully penetrates the
potential and a very thick is totally reflected. Therefore it is expected that they will also
excite differently the ONMs. However, it would be interesting to examine if the ONMs are
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excited differently when we put the Gaussian in the region where the potential is not very
small, namely around its peak and also change the initial condition for the derivative.

Also it would be interesting to examine if we can control the excitation of the modes or
the tail if we prepare more complicated initial data.

Chapter Summary

In this chapter, we discussed the following key points:

¢ Various models to fit the generated waveforms, which can be either Theory Agnostic
or Theory Specific and may include the late-time tail.

e The fitting procedure of varying the starting time of the fit and selecting the best-fit
results by optimizing the mismatch.
* Application to the Poschl-Teller potential, from which we can infer
— Stable extraction up to N = 2 modes from all the models, except for the 2 TA.

— The choice of an incorrect frequency in the Theory Specific models yields stable
but inaccurate extraction of the mass.

- Including one overtone improves the obtained mismatches and the convergence
of the parameters of the fundamental mode to their final value.
¢ Application to the Regge-Wheeler potential, from which we can infer:

— The late-time tail induces oscillations in the extracted parameters at late times, if
it is not included in the model,

— Modeling the tail stabilizes the extraction of parameters

- Inclusion of one overtone stabilizes the extraction of the parameters of the fun-
damental mode.

— The first overtone was not extracted in a stable manner from any of the models.
— The parameters of the tail showed an oscillatory behavior for late times only for

the wrong TS PT models and were stable otherwise.

¢ It was observed that allowing the end time of the fitting window to be a free parameter
neither improves nor deteriorates the accuracy of the extracted frequencies.
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In this chapter we present the second set of results, focusing on the phenomenological
extension to GR ringdown, also known as Parametrized Quasi-Normal Mode Framework
(PF). Similarly as before, we generate linear ringdown waveforms but on top of the GR
potential, we add modifications of 1/r powers and we extract the parameters by fitting
damped sinusoids with tails. First, in Sec. 7.1, we consider modifications just on the axial
perturbations, adding one modification at a time and afterward in Sec. 7.2, we add many
modifications simultaneously, testing in that way the limits of PF at the time-domain.

7.1 SINGLE MODIFICATION AT A TIME

In the first application we add a single inverse power of » modification to the axial GR
potential. The scalar and polar modifications behave qualitatively the same. Single modi-

fication in equation (4.6) means that the potential becomes

V(r) = VOR(r) + —a® (LH)k. (7.1)

e r
Therefore the modification is totally controlled by two parameters, its amplitude a*) and
the exponent k, for which we consider k = 2,...,7. The objective is to sketch the connec-
tions between these two parameters and the properties of the waveforms which, if treated
inversely, lead to the properties of the underlying potential.

The method we follow is the same as the one presented in Section 6.1. In brief, we
generate a waveform coming from the same initial data but from the modified potential,
we extract the time-domain signal by fixing the location of an observer and we fit the
Theory Agnostic model of equation (B.8), containing one damped sinusoid and a tail. We
perform the fit for different starting times, for each one we repeat at least 100 times and
we keep the optimum fit that provides the smallest mismatch. The reason we include the
tail in the fits, can be traced back to Section 6.3. There, in all figures the blue solid lines
refer to the N = 1 TA and the blue dashed lines to the N = 1 TA tail model. The N =1
TA tail model provides more accurate and more stable results.

Additionally, in Appendix B, we present some Figures of the same analysis but for a
model including only the fundamental mode without the tail.

As a first indication for the success of the fits, we show in Figure 7.1 the mismatches
as a function of the starting time. Different powers of k € [2,7] are shown in each panel
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and different values for the amplitudes, a¥) € [~1.5,1.5] are shown in the colorbar. The
behavior of the mismatches is similar, except for the k = 2 with negative amplitudes where

we observe some outliers.

24
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Figure 7.1: Mismatches between fit results and the generated waveforms of the same initial data, as
a function of the stating time. Each panel shows different power of k and the colorbar
indicates the value of the amplitude varying from ab) =15 (blue) to +1.5 (red).

From now on we turn to the quality of the extracted parameters. In Figure 7.2 we present
the best-fit results for the fundamental ONM as a function of the modification’s amplitude,
wo(a)). Specifically, different panels refer to a different power k and different markers
refer to two different starting times fg — fpeax = 10M and 30M. The red line corresponds the
perturbative theoretical prediction at quadratic order as calculated in [70]. With the gray
shaded region, we show the difference between the linear and the quadratic predictions
and in that way indicating the systematic error coming from the incorporation of the
quadratic correction on top of the linear.

Note that the extracted ONMs agree with the prediction for the late time points (blue
circles). The only disagreement can be seen for negative values of «>). The most probable
reason is related to the vertical black dashed lines. These lines come from equation (4.4)
and indicate a rough estimate of the largest value of each a¥), under which the PF is sup-
posed to be accurate. The lines for k > 4 are beyond the limits of the axes. This upper
bound shows the region that the framework should work. It does not mean that it will not
work beyond it. We observe that in general, the framework works even beyond these lines
with the only exception this small range of (2.

Note that for the given range of amplitudes, the change of the real part becomes smaller
as k increases. This is intuitive, since larger k brings smaller modification to the potential,
thus smaller deviation on the real part. On the contrary, the behavior of the imaginary part
is not the same and in fact is the opposite, large k alter it more from the GR value than
small k do.
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Re(wg)

Im(wo)

a? PIE) a® a'® o'®) o

to — tpeak : 10 ® 30 ——  Perturbative Predictions

Figure 7.2: Results for the extracted frequencies as a function of the amplitude a(¥), for two start-
ing times indicated by two different blue markers. Top panel: real part. Bottom panel:
imaginary part. Each vertical panel refers to a different power k € [2,7]. Red lines: quad-
ratic perturbative predictions Gray errorband: systematic error coming from the quadratic
correction on top of the linear. Vertical dashed lines refer to the upper bounds of the amp-
litudes, under which the framework should be accurate. These lines are not shown for
the last four k’s since they are outside of the range of amplitudes.

In Figure 7.3 we have a plot with the same structure as 7.2, where we show the relative
errors ( given in equation (B.11 ) between the extracted and the predicted frequencies as
a function of the modification amplitude, §|w|(a®). Different colors represent different
starting times of the fit.

Observe the two behaviors of the relative error. The first is that it is reduced as the
starting time increases, which was already observed at the GR case of previous chapter (
specifically see Figure 6.10 ). The second tendency is that the smallest relative errors are
obtained in the proximity of a(¥) ~ 0, where the modification is small. This implies that
the PF works better in that region, since its predictions are closer to the ones extracted from
the time evolution. That is expected, since small amplitudes yield smaller deviation from
GR so the condition (4.4) is more effectively fulfilled.

The next two Figures ?? also have the same layout and show the amplitude and phase
of the fundamental mode as function of the amplitude of modification a®) (left ) and the
amplitude and pole of the tail ( right ).

Observe that the amplitude and phase of the mode are modified differently. For negative
a®) the amplitude decreases and the phase increases with respect to its GR value (at a(K) =
0) and inversely for positive amplitudes. Also, their difference from the GR value (a*) =0
) is mitigated as k increases. That is expected because, a certain value of a¥) introduces
smaller modification for a large k than for a smaller one.

On the right figure we see that for a given modification amplitude, the tail parameters
are the same for all the powers of k except for k = 2. The reason for this disagreement
is that the exponent for all the tail fits was kept constant and equal to —7. However, the
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Figure 7.3: Relative errors between the extracted frequencies and the quadtratic predictions of the
PF. This figure has the same structure as Figure 7.3. Each different color shows a different
starting time.

k = 2 modification alters this exponent as a function of its amplitude, thus we employed
the wrong model for this power of modification and we did that for the sake of comparison
between all the different modifications. Observe that for all the other values of k the same
tails are found robustly.

The next Figure 7.5 has the purpose of illustrating the parameters” deviation of the GR
value. Again, each column refers to different k € [2,7] and the horizontal axes are the
amplitudes. On the vertical axes we plot in different colors the fitted parameters over their
GR counterparts. We observe that for the smallest k (largest modification), the parameters
change the most. Then, for ascending k, the modification is shrinking in the same manner
for the three parameters, Re(wy), Ao, ¢o. The imaginary part, shows a different behavior
and its modification is larger for larger k.

The solid lines shown in the previous figures, emerge from fitting on the points of same
color. The fit uses cubic polynomials f(a¥)) = B- <0c(k))3 +7- (tx(k))z +4- (rx(k)) + €. Fig-
ure 7.6 shows these coefficients as a function of k for all the parameters of the fundamental
mode. As we see, the cubic coefficients B are almost zero for all the parameters and k.
Also, for all the parameters, except for the real part, the quadratic coefficient y is non-zero
and for all of them the linear coefficient J is non-zero. Meaning that for the amplitudes of
the modification that we chose, the correction to all the parameters is quadratic whereas
for the real part is linear. That is the reason why in Figure 7.3 the relative error of the real

part is smaller than the corresponding of the imaginary.
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amplitude and vertical axes show the ratio of the fitted parameters over their fitted GR
counterparts. Each color depicts a different parameter and each symbol an other starting
time of the fit. The solid lines are the result of the cubic polynomial fitting on the points.
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Figure 7.6: For each curve of Figure 7.5 we fit a cubic polynomial Fa®)y =pB- (uc(k)) + - (uc(k)) +
d- (tx(k)) + €. The coefficients of these fit are shown in this Figure, showing that for the

range of modification amplitude «%) € [~1.5,1.5], all the parameters admit quadratic
correction with respect to the GR value, except for the real part which admits linear. That
is because the coefficients of the cubic and quadratic terms are zero.

7.2 MULTIPLE MODIFICATIONS AT A TIME

As a second application we increase the complexity by adding to the Regge-Wheeler (RW)
potential multiple inverse powers of r at the same time. We introduce a parameter € €
[—0.60,0.60] that controls and correlates all the modifications. As we have already seen in
Chapter 4, the condition

a® < (k+1)(1+1/k)F = ok, (7.2)

gives an estimation for the upper bound of the amplitudes. This upper bound is differ-
ent for each k. In that sense, the parameter € refers to the percentage of the maximum
amplitude of each modification that is included in the potential, which now becomes

7 k
V(r) = VR(r) + e Y ald), (%) (7.3)
"y k=2 r

We fit the generated linear ringdown waveforms with the model from equation (6.2)
using N = 1 mode and excluding the tail. In Figure 7.7 we show in two different formats
the results for the mismatches as a function of stating time of the fit and the parameter
€ € [—0.60,0.60]. In the left panel we show a colormap of mismatch in logarithmic scale,
while in the right panel we present the evolution of the mismatch with ty — t,cax and the
colors refer to the value of €.

Observe again the abrupt fall of the mismatch up to fo — tpeax ~ 10M —20M and then an
oscillatory behavior with gradual rise. The oscillations and the rise, can be attributed due
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to the lack of modeling of the power-law tail. As we see, negative € modifications yield

smaller mismatches in general.

logio| M|

30 40 -20 -10 0 10 20 30 40 50 60

fo - tpeak in M to - tpeak inM

Figure 7.7: Results for the obtained mismatches shown in two different ways. Left panel: The ho-
rizontal axis shows the starting time of the fit t) — f,eax and the vertical the parameter
€. The colormap depicts the value of each mismatch on logarithmic scale with orange
being large and purple being small. Right panel: Mismatch as a function of the starting
time of the fit. Negative values of € are shown in blue and positive values in red.

Next, in Figure 7.8, we present the results for the four fitted parameters. All plots have
the same structure, where the horizontal axis corresponds to tp — feax and the vertical
axis represents the value of €. The colormap reflects the value of the extracted parameter.
For the real and imaginary parts, we can compare with their GR counterparts. For that,
we center the colormap so that white corresponds to the GR value, with the red and blue
indicating values larger and smaller than the GR reference, respectively. For amplitude and
phase, though, no GR reference value exists, therefore the white color has no significance.
We also show some slices of the contours either for constant € in Figure 7.9 or constant
starting time fo — fpeak in Figure 7.10. The horizontal lines on the top figure and the red
lines on the bottom figure are the theoretical predictions from the PF. The horizontal and
vertical lines from the previous Figure 7.8 correspond to the slices that we took.

In all Figures, the oscillations caused by the tails are evident. From all the parameters,
the real part is the most stable one. Clearly; it is larger than the GR value for positive € and
smaller for negative. On the other hand, the imaginary part has richer structure regarding
its oscillation and as we see there are circular regions inside of which the extracted value
is smaller than GR and the amplitude and phase behave completely different.

From Figure 7.9 observe that the theoretical predictions for the frequency parameters
deviate more as € increases and that the imaginary part deviates less. The last point is
evident also in Figure 7.10, where we see that for various starting times the imaginary part
falls closer to the theoretical line and for a larger region than the real part.
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Figure 7.8: Results for the parameters that model the fundamental mode. In horizontal axes we
show the starting time of the fit {) — e,k and in vertical the value of the parameters
parameter €. The colorbar stands for something different in each panel, Top left: Real
part, Top right: imaginary part, Bottom left: amplitude and Bottom right: phase. For
the top panel, the white color and the green arrows on the colormap, indicate the GRr
value. For the bottom panel, there is not theoretical GR value therefore the white color
has no special significance.
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FUTURE WORK

An extension of the above would be to incorporate into the models the exact form of the
tail on the part with the simultaneous modifications. Additionally, we could also study
the limits of the Parametrized Quasi-Normal Mode Framework by introducing multiple
modifications at a time but this time to pick their amplitudes independently and randomly
out of a prior range.

Chapter Summary

In this chapter, we discussed the following key points:

* Modification of the Regge-Wheeler potential with a single 1/r power at a time,
from which we can infer

— The extracted frequencies from the time-domain agree with the theoretic-
ally predicted values from the Parametrized Quasi-Normal Mode Frame-

work.
— The agreement is better for small amplitudes of the modification.

— For all parameters modeling the fundamental mode, except for the ima-
ginary part, the deviation from the GR value increases with larger amp-

litudes of the modification a(%).

¢ Modification of the Regge-Wheeler potential with multiple 1/7 powers at a
time, from which we can infer the following if the late-time tail is not included

in the models:
— The extracted parameters show oscillatory behavior.

— The imaginary part is closer to the theoretical predictions obtained from
the Parametrized Quasi-Normal Mode Framework than the real part.
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ADDITIONAL MATERIAL FOR THE EXTRACTED
PHASES AND ACCURACY OF THE

Al POSCHL TELLER POTENTIAL

In the next two Figures A.1 and A.2, we plot the extracted phase and the relative error of
the extracted frequencies as a function of the starting time of the fit for the PT potential.
We observe a jump in the phase for the first overtone of the TS models. This is due to the
fact that the prior range that we provide to the fitting algorithm for the phase is [0, 27|, so
when exceeding it, continues to the other side of the range.

Poschl-Teller

n=0, N=1TSPT -=-- n=0, N=2TSPT —:- n=1, N=2TSPT
n=0, N=1TS GR n=0, N=2 TS GR n=1, N=2 TS GR
— n=0,N=1TA -=- n=0,N=2TA —:=- n=1,N=2TA

-20 -10 0 10 20 30 40 50
to — tpeak in M

Figure A.1: Phases of the modes as a function of starting time of the fit for the PT waveform. Solid
lines correspond to models containing N = 1 mode and the two types of dashed lines to
models containing N = 2 modes.

The relative errors can also be explained. The TS GR models that assume the wrong
frequency have limited accuracy (orange lines), whereas TA and TS PT further improve
and reach their plateaus at later times. Also, the first overtone is obtained with smaller

accuracy for all models.

A.2 REGGE-WHEELER POTENTIAL

In Figure A.3 we show the extracted phases as functions of the starting time of the fit.
Their behavior is similar to the other parameters. The phase of the fundamental mode (left
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Figure A.2: Relative errors of the extracted frequencies as a function of starting time of the fit for
the PT waveform. Solid lines correspond to models containing N = 1 mode and the two

types of dashed lines to models containing N = 2 modes.

panel) oscillates for models the do not include the power-law tail and is stabilized for those

who do. The phase of the first overtone could not be recovered from any model.
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Figure A.3: Phases of the modes as a function of the starting time of the fit. Left panel: Fundamental

mode results. Right panel: First overtone results.



ADDITIONAL MATERIAL FOR THE SINGLE K
MODIFICATION

In this Appendix we present similar results with Section 7.1 but now we perform the fits
only including the fundamental mode, without the tail. At first, in Figure B.1, we show
the mismatches obtained for various powers k and amplitudes a(¥). The layout is the same
as Figure 7.1. Observe the difference here, that the mismatch have the usual behavior of
declining at first and then rise gradually for late times. This rise can be attributed to the

non inclusion of tails in the model.

logio(|M])
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Figure B.1: Mismatches between fit results and the generated waveforms of the same initial data, as
a function of the stating time. Each panel shows different power of k and the colorbar

indicates the value of the amplitude varying from ab) =15 (blue) to +1.5 (red).

The fundamental modes for all the modifications were successfully recovered with non
gradual rise of the amplitudes and phases but instead with oscillating. In Figures ?? we
show the results for the complex frequency, for the real part in the left and for the imagin-
ary in the right. The structure of both figures is the following: All horizontal axes show
the starting time of the fit o — f,.q and all the vertical axes show the amplitude of the
modification «®). Each panel refers to different power k. The colormap shows the values
of the complex frequency. White is the GR value (meaning with a¥) = 0) which is also
denoted in the colormap with a green arrow. Red color means that the extracted frequency
is higher than the GR counterpart and blue that is lower.
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Observe the oscillations of the extracted frequencies. By picking a certain value of &%),
the extraction is not stable and especially for the imaginary part where we see that even
for a specific amplitude it oscillates to greater and lower than the GR value.

a?

PYE)

a®
|

“Im(wo)

a

al®

ah

to — tpeak

Figure B.2: Left panel: Real part of the frequency. Right panel: Imaginary part of the frequency.
The layout is common for both panels. The horizontal axes correspond to the starting
time of the fit f) — #.5 and the vertical to the amplitude of the modification. The color
shows the value of the extracted frequency with white being the GR value, red larger
than that and blue smaller. The green arrow on the colormap also shows the GR value.

For direct comparison for results of Section 7.1 we provide Figure B.3, which has the
same layout as Figure 7.2. Observe that for small k, the extracted frequencies deviate a lot
from the pertrubative predictions.

0.450
0.425
0.400
0.375
0.350 -

Re(wg)

Im(wo)

to — tpeak : 10 ® 30 ——  Perturbative Predictions

Figure B.3: Results for the extracted frequencies as a function of the amplitude a(¥), for two starting
times indicated by two different blue markers. Top panel: real part. Bottom panel: ima-
ginary part. Each vertical panel refers to a different power k € [2,7]. Red lines: quadratic
perturbative predictions Gray errorband: systematic error coming from the quadratic
correction on top of the linear. Vertical dashed lines refer to the upper bounds of the amp-
litudes, under which the framework should be accurate. These lines are not shown for
the last four k’s since they are outside of the range of amplitudes.
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FENIK'H ¥ XETIK'OTHTA, MEAAN'EY OII'EX KAI
BAPYTTIK'A K'TMATA

Auté 1o Kegdhono moapéyel pio oOVTOUT EICAYWYT) OE OPLOPEVES TROUTATOVUEVES EVVOLES YOl TOL
eMOUEVA U€pT NS EpYaciag. Luyxexpiuéva, culnToUUE Tr oLYVOEST) TNg Tohandc Nevtvelog Yew-
olag pe ™ T'evinr) Eyetixdtnta, mpoyweolue otny e€aywyr| Tng oQaLpixd CUUUETEIXAC ADOTE TV
ellotoewy Tou Einstein xan avadbouue Tig Wiontepdttég tng. Téhog, oulnrolue yior To Poou-
T xopoTor xan eldwoTERa yior wioe multi-messenger aviyveuon plag Luyydveuon Auvadixol
Yuothuatog Actpwy Netpoviwy, to Sudpopa GTEBIL CLUYYWVELCTE BUUBIXOU GUGTHUNTOS

Mehavric Onrig xou ETXEVTPWVOUIGTE 6TO TEAXO G Tddlo, To ringdown.

ITAANAIA KAI NEA ®EQPIA

H Tevixr) Eyetixdtnta elvon mo emtuynuévn Yewpla tne Papdtnrtog mou dtodétoupe. O Bdoeig
e Satumainxay and Tov Alunept Atvotdy to 1915 ota mpontind tng Axadnuioc Emotnuoy
e Hpwotog [1]. BAuata mpog v netpopatiny emPBefaiwon tne Ievinre Xyetndtnroc €ytvay
Toh) Vwplg, UE TNV TPOTYN 6WOTH TOCOTXN eEHYNOT Xt TEOBAEYN TNE UETATTWONE TOu epinhiou
g Teoydc Tou Epur) to 1916, éva pouvéuevo ou dev unopoloe va e€nyroet 1 Neutovela dewpla.
Av xan auth) 1 emtuylo ATav xadopioTiny Yo Ty emixpwor e Fevinric Lyetnotnrog, onwg
ATAY AVOPEVOUEVO, BEV HTAY EXETTH Yiol VoL SLodUoeL OAN Tn duomiotion tng emoyrg [2].

H dewplo éxave xdtt neptocdtepo and amht Bektiwon tou Tpodpduou Tne. AVITpochTeuoe
war ohhory ) mapadelyuatog oty xatavonor tne Popvtnroc. Avtl vo avtetwniCel T BapdtnTa
o¢ Lo duVaT, Omeg éxave 1 makand Yewpla, N Yewpio Tou Einstein mepiéypode tn Bapltnta
OC XUUTUAOGTNTO TOU Yweoyeovou. Auth 1 véa ontixr) dAaie pilixd TNV TEOGEYYLoY Uag oTd
BopuTind QoUVOUEVAL Xa 00YYNOE TOCO GE TOLOTIXES OTO X0l OE TOCOTIXES BEATIOCELS.

I vo toviotel To péyedog auThc Tng oAy G, oG OXEPTOVUE Lol Lo TOPXT avohoylo: T1) METS-
Baon and to yewxevipwod clotnua Tou IItolepaiou 6To nhoxevtewd cbotnua Tou Konépvixou.
TroPoduilovtag ™ I'n and 10 %évipo Tou GUUTAVTOC OE €VaY TEQLPEPELONO TAAVATY), QUTH 1|
enavdotaon elye Badiéc emntwoelg, enneedloviag Oyt HOVO TNV ETUG TAKY OANS xou TN prhocopia,
N Ypnoxeio, Ty toltxh oxédn xou Tic téyvee [2].

Yy nepintwon e Fevinric Eyetndtnrog, n odhoy) ftav and 0 Nevtwvelo avtidndn tne
BapbnTog wg wog dueong xou oTvypodag S0voung, o pa dewenon e PBapdtnTag wg xo-
TUAGTNTOC TOU YweoyedVoU, OTou Tar avTixeipeva axoloutdolv dladpouéc mou xadopilovtan and
QUTH TNV XAUTUAGTNTAL 2TO VEO TAXCLO, 6TV 600 CWUATA AAANAETLOEOVY, TO €V XAUTUADYVEL
TOV YWEOYPOVO, EV® TO dAAO xardodnyeltal and auTH TNV XUUTUAGTNTO Xt AVTioTEO(.

H nohoud Yewpla neprypdpeton and tov Nopo tne Ioayxdouoc EAENC Tou Nebtwva

Gmymy
— é

F=——73"2

(B.1)
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o omolog meocdlopilel Wior oaxTvixy) BUVoUTN ToU PETUPBIAAETAL OVTIOTEOPKS AVIAOYA UE TO TET-
edywvo g andotaong HeTay 800 cwuatdiny udlog my xou my. Adyw TN cuVTNENTXAC PUONG
QUTAC TNG BUVAUNG, UTOREL Vo ExpeacTel w¢ xAion evog Paputinod duvouxol @ mou uaxoLEl

oty e&ioworn Poisson
V2® = —4nGp, (B.2)

omou p elvar ) TuxvotnTa pdloc. Autéc ol e€lowoelg dnhwvouv 6Tl 1 enldpaon e Neutwvelag
Bapltnroc elvon otiyutador xon xadohixy), dnhadr, ohot ol mavol mopatnentés avtihauldvovtat
TOV YWEO X0l TOV YPOVO UE TOV (Blo TEOTO. LUVETWS, UTHPYEL AMOAUTOSC YWEOS Xl ATOAUTOG
Yeovoc.

Ou e€lowoeig xivnong tng véag Yemplog etvou:

1 8nG

Yy apiotepr TAEUpd EYOUUE TOV TaVUOTH XouTUAGTATAC Tou Ricci Ry, Tov Boduwtd tavuoth
Tou Ricci R = ¢"' Ry xon Tov uetpind tovuoth guy. O Tavuotrc Ricci o o Boduwtoc tavuotic
eZ0PTOVTOL AT TOV YETEIXO TAVUCTY), XAl 1) LETEWXT Bely VEL T TOPAUUOPPWVETAL O YWEOC AOYW
e mapovciog udlac. Xtn 0l TAEUPd EYOLUE TOV TAVUGTY| EVEQYELUXNG-0pUNC Ty, Tou TEQL-
YEApEL TNV xoTovour| Xou TN oY) EVERYELIC XL OpUNC OTOV Yweoyedvo. 'Etol, ta yewuetpd
AVTIXEIUEVOL TTOU TIEPLYEAPOLY TNV XAUTUAOTNTA GUVOEOVTAL UE TNV TERLYPapT TNS LANG. X1dy0g
elvor vo AUcoupe auTéC TIC €ELOMOELS WS TEOC TOV PETPXO TOVUGTY XL, CUVETKOC, Vol 0plCOUNE
TOV YWROYPEOVO TOU GUCTAUATOS UTO €EETAOT).

Muar orvaryxaior amaitnon yiortn Feviery Eyetiotnta elvon 6TL Teémel vor avamapdyet TLg €EL0MOELS
¢ Nevtwvelog Bapdtnrog 610 xadeot®g aoevoic medlou xou uxpay toyuthTtwy. H tpoyid evog
eAeVUEQOL CWUATIOIOU TOU IVELTAL OE XAUTUAWUEVO YWEOYEOVO TEQLYPAPETAL UTO TNV YEWOULTIXY)

eglowon

+TMyr———— =0, (B.4)

omou T elvar o Woypovog xaw IHvo etvon ou obyPora tou Christoffel nou yenowonololvTan yia

YEVIXELOT) TOV TURUYWOYWOY G XUUTUABUEVO YWEOYEOVO ot OYETILoVToL GUECH UE T1 UETELXN

1
Fll//l(T = ngx (avgzw + aagocv - azxgwr) . (B.5)

Ye ac¥evég medlo xou pxpés TayuTNTES Yewdoutiny e&lowor yiveto

d?x 1

2

6mou h eivan 1 uxpt SLépdwon oty eninedn uetew guv = v + hyy. LUVENHS, Yo var utdpyel
oupgevia ue Ty Tohod Yewpia, Tpénet va toyleL goo = 1 — 2@/ c2.

ToviCouye 611, eved 1 Neutdvelo Yewpla cuupovel Ye TN Tevued Syetndtntal O AUTO TO GUY-
XEXPWEVO xadECTOE, auTO Bev onuatvel 6Tt 1 Neuvt@velo dewplo elvon amiodg utocivoho Trg

Fevific Syetxdtntact. To yeyovog 6TL ol podnuatixég e€lowoelg eivon (Bieg dev onuaivel 6tL €youy



xan Ty (Ot onuacta. H ula tpopyeton amd wa Yewpla mou evomuatodvel T otiyuiaio 6pdor
amd andoTACT ok TV XJoMXOTNTA TOU YWEOU X0t TOL Ypovou, evé 1 dhhn Baciletan otnv
apyY) Tne tooduvapiog. H oapyr| tooduvapiag tou Einstein amoteheiton and tpia pépn. Ipwdtov,
amodEyeTaL TNV tooTNTA TNG BopuTtinic xou Tne adpavelaxrc ualag, n onola tepthauBovotoy Hom
otn Neutdvela Yewpla. To dhha 800 oyetilovton ye tor un BopuTind TELGUATY, oVUPEROVTOG
oL 1o anotéleopd Toug Va meénel var elvon aveZdeTtnTo and TNV TayUTNTA Tou eAeUTEQA HIVOU-
UEVOU GUOTAUATOE OTO OTOLo EXTEAOUVTOL Xai eTtloNg aveEdETNTO Amd TN YEOVIXT X YWELXT) TOU

tonoVeoia oto olunay [3, 4].

BAPYTIKA KYMATA
HAEKTPOMATNHTIKA & BARYTIKA KYMATA

To aoTpo@UOLXd aVTIXEIUEVA ATOXAUAOTITOUY TIC WOLOTNTES TOUG PE BLAPOPOUE TEOTOUS, UE TNV
nhextpopayvnTxh xon T Poputier axtivofolio vo elvon dVo amd toug onuavtixdtepous [14].
Autol ot 6Uo TOmoL axtivoBoiiog eivon Vepehindne dlapopetixol, putilovtag EeywploTés xau
CUUTANEOUATIXES OPELS TWV OVTIXEWEVKDY TTIOU UEAETOVTOL.

H nhextpoporyvntiny oxtivofolion eEXTEUTETOL OmO (QOPTICUEVA OTOLYELDOY CWUATIO OTWS
T NhextedVia Tou emToyLvovTal. Kadng ta actpopuoxd avtixelpeva elvar yevixd nAextoeixd
ovdétepa, auTA N axTvoPolior cUVATWE TEOEPYETOL OmO WXEES, TOTUXES TEQLOYES OVTIXEWEVOU,
YEYOVOS Tou 00N YEl oE pxped winn xOuotoc. To niextpouory vnTixnd xOpato Topéyouy AeTToUERElS
TANEOYopRleS Yiot qUTES T ToTXEG Teptoyés. Emlomng, av xatagépouy va gtdoouy otn I'n yweic
Vo anopeo@nidoly 1 va oxedacToLY and TNV OAN Tou TapeUfdAAeTan, lvon oYETIXd €0XOAN 1|
aviyveuan Toug AoYw NG toyLenc CAANAETBpacHC Toug e Ta nhextewxd poptio [14].

Avtideta, Ta Poputind xOyota eEXTEUTOVTOL 0n6 TO GUCTNUA CUVOAXS, UE ATOTEAECUA VO EYOLY
peyohOTepa Ui xopatog. Metagépouy TAnpogopieg yior T GUVORLXY| BUVAULXY| XL T1) DoY) TOU
ovothuatoc. H actevic Toug adinieniSpoom ye tny OAN xoehotd tny aviyveuor) Toug eEapeTixd
0LOXOAY. 20TOC0, OTAY AVLYVEUTOLY, TO OTjua TOUS Slatneel oyedoy Ty (Bl pop@n Ue exelvn
oL exTEUPINNUE antd TNV TNYN, xaddc 1 aAANAeTiBpacT| TouC e dhha avTixelpeva elvon eENdyLoTn
[14].

‘Eva nopddetypa ouvepyasiag Twv 6Vo TUTwy axtivoBollag efvon 1 aviyveuor evog duadixo
ouTAuATOS 0o TéPWY VETEOVIKY, Tov Alyousto tou 2017. O aviyveutég LIGO xou VIRGO éhafov
TpwTOoL To oA PopuTixey xuudtwy, GW170817, xou Aiya SeutepdAenTa apYOTEQN TO SLACTNUIXO
TnAeoxomo axtivwy yauuo Fermi, xatéypade tnv éxenin axtivwy v, GRB 170817A [15, 16].
Ko ta 800 ofjpata evtoniotnxay and v Bio Ty Aoyw Tng nopduotag TotodETnong Toug GTov
ovpavd. Metd and nepinou 11 opeg, n ouvepyasio "One-Meter, Two-Hemisphere" xatéypoe
ontxt| nopatrienon [17]. To ontixd dedoyéva evtomoay tny mnyr otov yorolio NGC 4993, nou
Beloxeton 40 Mpc poxpid ané ) I'n, andotacn mou tav cuufoty| ue Ty extipnon tng andcTtaong
amo6 T BapuTind xOoTL.

H Ewéva 1.2, mapovoidlel v aviyveuorn tou GW170817 xou tor nhextpopayvntixd aviiotolya
OHUOTA. XNTNV dpLoTERT EMOVA, oL Ypovixég-cuyvotnteg and to LIGO xau to Kagra delyvouv

TS 0L XURLOPYES CUYVOTNTES (EVOELXTIXG UE XITELVO) TGV BapUTIXMY XUUATWY UEAVOVTOL UE TOV
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XPOVO xorddg Tor BUABLXE AOTEA VETROVIWY GTELROEBWE TANCIALoUY To €va To dAAD. XT0 pecaio
TUAUo egpavileton plar Tumixy) aviyveuvon €xpning axtivwy v ota 229 eV, eved oto 6e&i turua
TOEOVCLALETAL 1) OTTIXY TAUEATARNOT), CUYXEIVOVTOC Wid EOVOL TOU AAQUINXE TECOEQPLS UNVES TTELY
Vv aviyveuon twv BK, pe o dAAn mou AMigpdnxe 11 wpeg petd.

Evd) 0 cuvBuaouds TapaTnenoewy NAEXTEOUOYYNTIXWY Xl BUpUTIXMY XUPATWY, PEEOS TNG
Aeyopevne multi-messenger acTpo@UOWAC, OEV EXTEUTOUY OAOL TA ACTEOPUCIXA CUCTHUATA
nhextpopaywntxd ofupoata. Eva tétoio oclotnuo elvon 1 Buyywveuon Avadixdv Modewv
Toun®y, ToL BeV ToEAYEL NAEXTEOUXYYNTIXT aXTVOPBOAM Xou TO TEAXO NG 0TAdLo elvar To Véua
aTAC NS SmAwpatixhAc. Ac emxevipwlolue ota BopuTind XOUATA TOU TOEEYOVTOL om6 oUTE To

CUCTAUATAL

YXTAAIA ZYTXONEYHY

H eZéhén tov duadixwy cuctnudteny, anotekeiton and Tplo xUpta oTddla, Tar omola €Youv
ONUAVTIXES BLopopéS OTLC OLoPUWOELS TOU TEETEL VO CUUTERLANQHOLY GTNY XUPATOUORPY| YLot
Vo Teptypael 1 dtaduacta ue axplBeta. Buyxrexpuéva, To CUCTHUATO TOU TERLAUUBAVOLY VET-
povixolg aoTépeg elvon mdvta mo meplmhoxa va povtehomointoly, xodng meEnel vor Angdoly
UTOYN EMTAEOY PoUVOUEVA XAl WLOTNTES, OTWS 1) ECWTEPXT DOUT TOU Ao TEPX VETPOVIWY Xol Ol
Tohlppotaxég emdpdoelc. Emmiéoy, 1 ToAUTAOXOTNTA AUEAVETOL OV TOL AVTIXEUEVA TIEPLO TREPOVTOL
%o UEAVETOL UXOUT| TTEPLOGOTERO AV OL LOLOTERIG TPOPES Bev elvan eutuypaUlopéveS.

Ou EGTIUCOUYE 0T CLUYYWOVEUCT] DITAGY UoUEmY OTKY, xodog Oha Tot dAAN GUCTAUATA efvor
Tépa and To TEdlo TN Tapovoug BimAwuaTxAc. Atotelelton amd Ta Telot G TABIA TOL ToEOUGIALOV-
T oty Ewova 1.3, xan xdde otddlo 1| StapopeTinég TS paldV Xl AmoCTACEWY avTETWTI E-
Tl PE DLopOPETIXES TEYVIXES xou Pedodoue, 6Twe Belyveton oty Ewdva 1.4, O tpelg gdoeic tng

oLy ywvevarg elvat ol e€Ng:

a) Inspiral: Autn eivon 1 mo mpdn @don tne e&éMing, 6mou ta 800 cuunayr avixeiueva
EYOLV UXEEC TOYUTNTEG XOU UEYIAN amdOTAUOY, 1) OTOlol UEWWVETOL GTAOLXA AOYL TNG
amAELoG eVERPYELNG TEOg T BapuTtind xlpata. ‘Onwe PAEnoune 6to umie mAalolo Tng
Ewoévag 1.4, n avalutixt| mpocéyyion Post-Newtonian yenowonoteiton wg epyaielo yo
VO LOVTEAOTIONOEL TO XUUo O PEYAAEC amooTdoelc. And auth tn pédodo, ol e€lowaotlc
nediou tou Einstein avantiocovtar yopw and 1o Nevtdvelo dplo oe BUVAUELS TNS WXEHC
Topopéteou € ~ u/c. Kdde divoun n evowuatdvel €va VEO QOUVOUEVO GTO UOVTEAO TNG
XUUOTOUORYNS, Yial TOEAOELYud, 1 = 2 TepAAUPBAveL TNV UETATTWON TG Teoylde, n = 3
nepthofBdver Ty oOlevyn spin-tpoylds, 1 = 4 tnv cLleuln spin-spin xaL 1 EXTOUTA
BopuTdY xUUETLY epgavileton yio n > 5 [22-24].

b) Merger: Auty| elvan 1 evdidueot gdon g e€€AEng. Zexvd 6Tav 1 anéoTaoT Bloywelo-
uoU elvon wxpdtepn and tnv Edyiotn Ytadepr) Kuxinr Tpoyid xou teleidverl dtoav oyn-
uotileton To TEAMXO LToxeluevo. Ot un YeUUUXOTNTES xURLaEY 00V GE AUTY TN QAOT), XAl To
EQYOAE(D TOU YENOWOTOLOUYTOL YLOL VO TV OVTLETWTICOLY EVaL TOANS, OTwWS QoLVETAL GTO
Syfuor 1.4, H Aprduntued Xyetindtnta, pior xodapd aprduntins Teocéyyion Tev eElomoewy

nediou tou Einstein nou Aettoupyel xahbtepa yio puixpoic xou evdiduecoue Adyoug ualag,



xan 1 Yewplo dtatappay @y tng Poputinig Blo-00vaung, n omola yenowonoleltal oe TepLoyEg
ueydhou hoyou udlag xon Aopfdvel uTodn TV enldpaoy VS UXEOU AVTIXEWEVOL GTNY

xivnon tou evdd xveltar 6To nedio eVOC avTixelévou ueyding walac[25].

¢) Ringdown: Auty elvan 1 Teheutaio @don g €ZEMENG OTOU ATOUEVEL [Lal HOVODLIXY) UELVT|
o). Aleyepuévo and TNV TRONYOUUEVY QACT), TO TEAXO AVTIXEUEVO XATUARYEL EXVETIXG
o€ wopponio exméunovTag Boputixd xOyoata xatd tn dtadixactio. To tapayduevo orjua tepl-
YEAPETAL ETOEXWS ATO TG PLYAOXES LY VOTNTES Tou ovoudlovton Weudo-Kavovixol Tpo-

mot Takdvtwone (Quasi-Normal Modes).

RINGDOWN

H ringdown ¢don plac neptotpepduevne puehavric onic Umopel vo Teplypapel enapxme and éva

dmelpo ddpoLoua BLAXELTEY ULYUBIXDY GUYVOTHTOV:

h(t) ~ Z Agmnefi(Mwant“Hpnlm)’

{mmn

6mov M elvon 1 pdlo tne peravic onc, n > 0 xadopiler Ty appovir, xou |m| < £ eivar o
alwovdotog aprdude, TeplypdpovTag TAewS Xdle cuYVOTNTA. AUTH 1) OUABN CUYVOTATOY Wiy
ovopdleton Weuvdo-Kavovixd ®doua Xuyvothtwy.

To @doua pépet TANPOYOPIES VLol TOV EXTOUTEN, XU TNV MERIMTWOT| LIS, av Loy VEL TO Vempnua
no-hair, neptypdper TAHEWS TIg WLOTNTES plag aoTpopuUatXrc uehavic oThe, ot onoleg etvon 1 udla
™e, M, xou 1 meplotpopn e, « [28].

H onuacta tng @dong ringdown €yxeiton oty avodTnTd NG Vo TRocPEREL TONITIIES EUX-
apleg yior T doxun TG yevixig oyetixotnroc [28, 29]. Qotéoo, n yétenon wovo tng Yepehicd>-
doug ouyvotntag (n = 0) dev elvar apxety yior Vo Tpocdloploel TAREWS TIC WBLOTNTEG TOU OVTL-
XEWEVOL, OTWC 1) TEPLOTEOYY TOou, &, ot 1 wdla tou, M. Autd cuyfoaivel emedr] SopopeTinol
TOTOL AVTIXELEVWY UTopEl Va €YUV PUMULIOUEVESC TUPUUETEOUS TOU GUUTTWHATIXG Amodidouy TNV
(Ba Yepeheddn ouyvotTnTa. ATo TNV GAAN TAEUR, OV HETEHOOUUE BVO0 1) TEPLOGATERES GLUYVOTNTES
a6 TO (BL0 AVTIXEIUEVO, UTOPOVUE VO XAVOUUE ULl EAEYYO CUVETELIS YLOL T YEVIXT] OYETIXOTNTO
[28]. Xuyxplvovtag autéc Tic ToAEG cuyvoTnTeS pe Tic Yewpntixée npoliélelg, unopolue va
enaAnVedoouue ov avTloTolyoLy oto (Blo Ceuydpl oy & xou M, 6nwe mpoflAiéneton and
YEVIX OYETOTNTA. AV LUTdPYEL ACUVETELY, 1) TNYT TN Yo umopoloe va elvon eite OTL 1) YEVIXN
OYETXOTNTA OV Elval 1) WO TY Teptypay| TNne BopltnTag elte 6Tt To avtixelyevo dev elvan amopov-

OUEVO X0 UTIBEYEL CUYXEVTROUEVT Udla YURW TOU TIOL AAAOLWVEL TO QAGUOL.
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EPAPMOI"EY KAT ATIOTEA'EXMATA I

Y€ aUTO TO XEPANNO, TUPOUGLALOUYE TO TEMTO GUVOAO UMOTEAECUATWY, €6 TIALOVTAG OE TEPLTTH-
oeig mou oyetilovtan e TN yevxr) oyetixotnto. Mia cOvtoun €€iynon tng Sadcactiog eivan
n €€ig: dnuioupyolue xuuotouopéc ringdown Alvovtag oprduntixd T eElOMOES Y-
UXOV Blotapay @V e Buvopxd mou oyeTilovion Ue TN YEVIXH OYETXOTNTO. TN CUVEYEL,
YPMOUWOTOLOUUE BLUPORETING LOVTERDL YLl VO TPOCUPUOCOUUE oUTE ToL XOUOTAL Xk VoL €EQYOUUE
TIC TapoéTEoug Toug, pUIUIlovTag CUCTNUATIXG TO TURUA TOU XUUUTOS ToU TEpLAoPBAvETAL OTIG
TpOGoPUOYES (TO Tapdiupo TEOCUEUOYHC) YLol VO AELOAOYICOUUE TS ETNEEdLEL TNV XY WY TOV
TOEOUETEWV.

ITio ouyxexpéva, to duvaixd Tou yenotponoloue etvon to Poschl-Teller (PT), mpocopuoo-
uévo oto duvauixo Regge-Wheeler (RW), xodog xon n (8o 1y duvaxry RW. Ta povtéha mou
XENOWOTOLOLVTOL TEQLAUUSEVOUY BLUPORETIXG APLIUO CUYVOTHTWY, UE XATOLX Vo TEQLAOUBAVOUY
eniong v ouvpd. Ta anoteréopato €8¢ AvamaEdyoLY eV PépEL aUTA TNE avapopds [39], ue wa

EMEXTOOT YLOL VO EVOOUATMOOLY LOVTEAN TTOU TERLAAUBAVOUY OUREC.

ME®OAOI

Mia xowvy) yédodog yioo tn pehétn e€lowoewy xopatog g popenc (3.11) ue duvauixd V, ato
YEOVix6 TEdio, TEPLAUBAVEL dpyIxd TN AUGT TOUG oELIUNTIXG XAl OTY CUVEYELX TNV AVAAUCT) TGV
ATOTEAEOUATOY.

Xpnowonowolue to oyfua Leapfrog, to omolo elvan évor oyfuo TETEQUCUEVWY BLoPOpEY,
XEVTPIXO GTO YPOVO oL TOV Y®EO, Yo €va TAéypa ue availvoeie At = 0.01 xa Ar* = 0.02.

Ta emheyuéva apyixd dedouéva elvat

(r—m?

Y(0,r) =Ae 27, (B.7a)
¥ (0,7 =3¢ (0,7%), (B.7b)

vy A ~ max{V}, u =30M xa 0 = 1M. H Se0tepn ouvdixm avoayxdlel tnv I'xoouvotovy vo
yivel eloepyduevn, % €Tol va xivelton WOVo TEOg TO BUVOLXO.

O ouviixeg oplaxic Twihc (PoBC) emfBdrrovton wg e€epydueves. 261600, xong oL e€epydue-
VEC GLVITXES OpLo|C TLUTG VAOTIO00OVTOL optdunTIXd, 1) EQAEUOYY| TOUG EValL EANTNS, ELGEYOVTAS
aprdunTed opdhuota. o vo yetpidoouye tny miovr) UOALVOT TOU CAUATOC AOY L AVUXALCEWY
amo auTES TIC EAALTELS oplaxéc cuVITixeES ToTOVETOUUE Tol OpLal TOU TESOU PXETA Uaxpld amd TNV
TEELOY Y| EVOLAPEROVTOG.

H npoxintovoa aprduntixy hdon e€optdton and to yedvo xou to yweo. Ia vo e€dyouye to
CHUL 0TO YEoVIXO Tedlo, TomoveTolue évay Tapatnenty| ot otadepr| Véon R = 100M xon ye-

AETAUE TO xaTorypa@ouevo ofuc. Autr n tonovecia €yel emAEYel AEXETA Yaxpld and TOV dox-
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TOAO POTOS, BlaoPUNLOVTAC OTL TO XATAYEAUPOUEVO XU EYEL GTUUUTHOEL VoL GAANAETUOEE UE TO
BuVaULXO TNS UeAaVAC oTrg xau ebvon oyed6Y TNy TeEAT| Tou Yop@r. Av xai 1 Wavixr| Héon Hu
ATOY OTO YWEIxd AMELRO, aUTO BEV elvol PXTO AOY® TNE ALEAVOUEVTS aptdUNTIXAC damdvng.
Ilevixd, To xotaypapouevo ohua UTopel vo yweloTel oe Tplo UEpN: TO XEVTEPXO UEEOC, TTOL TEQL-
YEAUPETAL ETUPAWS OmO TOLUG ONM, TO dpEYIXO UETHBATIXG GTABLO OTOU OL GUYVOTNTES BEV EYOUV
avamtuyVel TApwe xon TV 0uEd TOL YOUOUL BUVOUNG O UEYdAoUg Ypovous. Ou 6o teleutaleg
oLveELoPopEC ennEedlouy TNV eCaywyY| TV Tapauéteny. Mia mpdtn xou anhf évdeln yi autd
patvetan 670 Lyfua 6.1, 6mou 1 umhe ypouun eivon To e€ayOUEVO GHUN Kol Ol GAAESC ovapEQOV-
ToL O OLdpPopd LOVTEAN TEOCUPUOYHC TOU TEpLAoBdvouy uio Tahdvtwon ue amdofBeon (xitpivn
Yeoun), TNV ouped vouou duvaung (xoxxuvn yeauun) 1 xou ta 0o (tpdoivr yeouun). Hapatnerote
OTL 0Ty ouUTERLAAUPBAVETAUL 1) OLEA VOUOL BUVOUNG, TO ATOTEAECUN TNG TEOCUQUOYHC OYEOOV
CUUTITITEL UE TO XUTOYPAUPOUEVO GNUA, EWBXE 0TOUG UEYAAOUS Ypovous. Ag mpootadicouue va
TOCOTIXOTIOLACOUNE aUTO XahOTEPa TEOaBLoPilovTag axEBMS T Bladlxacior TEOGUPUOYHS Xou To

HOVTEAA TEOGOPUOYTC.

TA MONTEAA

O otdy0c autol Tou xePaaiov elvor VoL UEAETACEL TS TO TUNAHA TOU XUPATOS TOU TEpLAUPBAvVETON
TNV TPoCupUOYT emneedlel TNV eaywyY| TapauéTewy. ot Tov AdYo autd, YENCULOTOLOUUE Xou
oLYXEIVOUPE BLaPOEOUE TOTOUC AVAAUTIXGY HOVTEAMY Ylal VoL €8 YOUUE Tol X0PLOL YAEAXTNELO TIX.
TOU TEOYOUEVOL YRouuxol x0uatog. Autd to povtéha elvon eite ayvwotixd yovtéha (Theory
Agnostic (TA)) eite e€edixeuvuéva povtéla (Theory Specific (TS)) xou unopel eniong va nepthop-
Bdvouv tnv oupd véuou divoune tou Price [52].

Ta yovtéha TA dev xdvouv UTOVEELS YLal TIC oLYVOTNTEC ONM Tou epthapBdvovton 6To xoua
xan xdde tpémog, N, anoutel T€coeplg ehellepe MapaUETEoug Yia vo poviehomolniel. Avtideta,
To HOVTERA TS UTOVETOLY GUYAEXPUIEVES THIEC Yo TI LY VOTNTEG ONM oL TEpLAoBdvovToL

670 x0ua. Ou Aentouépeleg xdie LOVTENOU TEQLYPAPOVTOL TORUXATE.

i) WTA: Autd elvor éva povtého TA, To omolo dev xdver UTOVECELC YIa TIC GUYVOTNTEC
N Y Y X

ONM xan tepthaBdvel N tpdmoue:
TA - Im(wIA) (t—t TA
YAt — tpeak) _ Z Ao m(wy ™) (E=tpeak) . gin (Re(wn )(t— tpeak) + (PH) , te€ [to, tf} .
n=0

O mopdueTpor mou mEPLYEdpouy xde TEOTO elval TECCEPLS: 1) ULYadLXY|) CUYVOTNTA
wy = Re(wy) —ilm(wy), To Thdtoc Ay xou 1) @don ¢, 0dnydvTac o€ cuvohxd 4N

TUEUUETPOVC.

(i) ¥EP: Auté efvon éva uoviého TS, 10 0Tolo EVORPATOVEL UTOVEGELS VLo TIC GUYVOTNTES

xan epthaSdvel N tpémouce:

N-1
].]:J'}\}S(t _ tpeak) — Z Ane*Iin(Wzs)(M)(tftpeak) . Sll‘l <Re(wzs)(M)(t _ tpeak) _|_ (P”> , t c |:t0/ tf] .
n=0
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H vunddeon tng ouyvotnrag cugaviCetor oto yoviého péow tng emPolnc plag

T o wog pdloc M. Suyxexpuéva, yenoulonololpe To yeyovic

in
CLUYVOTNTOG Wy,
OTL TO YWOUEVO TNC oLYVOTNTOC PE TN Wala elvan oTodepd, xaL UE AUTOV TOV TEOTO

unopolue va Yewpricovue T udla wg eheLUeRT ToUEAPETEO:

. inj
] s Mi=1 w
wp® - MP =w,” - M — w.*(M) = —=,

omou 1 emPorhouevn wdla opileton 6To €va. Ol TUPAUETEOL TOU TEPLYPAPOUY XAVE
Te6TO elvor BU0: To ThdToC Ay xou 1) 9dor ¢y Emmiéov, n udla MTS hertoupyel o¢
(oMUY TOPGUETEOS IOV TEPLYPAPEL Xk EAEYYEL TLC THES TV CUYVOTHTWY Yol OAaL

Ta N, Onwe gaivetar oto (6.4), 0dnynvToag oe cuvolixd 2N + 1 topauéteoue.

(iii.) ‘I’}\}A_t: Avuté elvan 0 (610 pOVTELO TA OTWC TEONYOUUEVWS, TO OTOlO BEV XAVEL UTO-
VEoelc yia TIC ouyvoTNTES Xt tepthopBavel N tpomoug, ahhd Tédpo AopBdvouue unddn

xa TNV ovpd:

N-1
_ Im(ewTA) (t— )
T~ tpea) = Y Ane ) sin (Re(co]) (F = tpea) + ¢
n=0
+ Apit (E = trai) "), t e [to, tf] . (B.8)

O mapduetpol mou meptypdpouy xdlde TeOTo elvon TECOEELC: 1) ULYadIXH| CLUYVOTNTO
wp = Re(wy) — ilm(wy), 1o TAdToc Ay xou 1 9don ¢, xou emnhéov €youue 500
TUPUUETEOUC YLaL VO LOVTEAOTIONGOUUE TNV 0Led: Aygir, trail, OONYOVTAC GE GUVOAXA
4N + 2 nopapétpouc. o Ty nepintmon pog pe £ = 2 xau un otatixd apyixd dedopéva,
amd v e&iowaon (3.13), o exdétng yioe Tnv oupd elvar —7.

(iv.) ‘I’IT\]S_t: Avuté elvon to (Blo yovtéro TS OTWE TEONYOUREVWS, TO OTOIO0 EVOWUNTWVEL
uro¥éoelc Yl Tig ouyvotnTeg xou mepthopfdver N tpdmoug, ahhd T Aaufdvouue

UTOYN TNV 0LEA VOUOL BUVOUNG:

N-1 X
FR(— fpea) = 1 Ape” D0 hb) - sin (Re(wES)(M)(f — tpeak) +4>n>
n=0
+ Agair(t = trai) ), e [to tf] . (B.9)

H e&riynon oyetixd ye tic ouyvotnteg xou tn wdla etvon 1 idar 6mwe mponyouuévme. Ot
TUPAUETEOL TOL TEPLYEAPOLY xdde TEdTO elvor 5V0: To TAdTOC Ay XL 1) QACT| Py, xal
emmhéov 1 pdla elvor TayxdouLa TOEAUETEOS Yot OXEC T oLy VoTNTeS. 'Eyouue enlong
000 eTTAEOV TUEOUETEOUS YLOL VO LOVTEAOTIOLACOUUE TNV 0V Aygil, tiair, OONYWVTAC
o€ ouvolxd 4N + 1 + 2 mopapétpouc. o v tepintwot| pag e £ = 2, o exdétne v

v oupd eivon —7.

Fevixd, to povtéha TS uTOBNAGYVOUY OTL Ol LUTOVETELS VLo TIC OLUYVOTNTEG Vol UTOEOUGAY VAl
TpoépyovTal and onotadnnote Yewplio. 201600, 0E AUTO TO AEPIANMO ECTIILOUUE CUYHEXQUIEVL

oTLC duvaixég RW xan PT. Avdhoya, xdvouue 500 Blaxpttég unoléoelc: ol Tpomot o xdde xOuo
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avTiotoryoLy eite oTto Suvouxd Regge-Wheeler nou biveton and tnv e&lowon (2.31) elte oto
duvauixo Poschl-Teller mou neprypdpeton otny e€iowon (3.16).

I to duvauixd PT, Yo mpémel vor onuelndel 6Tl TNV TEOCUpUOCAUUE UE TO RW YE1CLLOTOLOVTOG
N uévodo mou mepLypdpeTar oty utoevotnTa 3.4.5). Ot oxpiBelc TIéS YLl TOUC TEWTOUC TEOTOUG
Tpogpyovtar and [77], evéd oL dAhoL umopoly VoL UTOAOYLGTOOY avahUTIXA UEow NG eElowong
(3.18) apol yivel n mpocapuoy” Tou Buvauixol PT 6To duvouxd RW.

I voe o tovicoupe Eoavd, yio xdde xOua yenowonotolue d0o povtéla TS. ‘Eva urtodétel T
CWOTH GUYVOTNTA XAl TO GANO ELGAYEL OXOTLU TN AaVIAOUEVT. XUVOAXE, YENOULOTOLOVUE EEL
povtéha 6tav ueAetdpe To xOuota PT, To omola Bev TERLEYOLY TNV 0LEA SOVUUNS, XoIOS QUTH OEV
ToEdyeToL amd Tr) duvoxr) PT, xan 8OOEXA LOVTENX OTAY UEAETAPE TaL XVUATO RW.

‘Evac tpémo¢ var ueTpioouue Ty moldtnTa xdUe YoVTEAOL Elvon Vo GUYXEIVOUUE TIC Topo-
HETEOUC TOU UE YVWOTES TWES, OTOTE AUTO elvon SuVITO. XTNY TEPIMTWOT Yog, UTOPOUKE VoL TO

£QOPUOGOLKE Yot 800 ToEaUéTEoug: Yia Tn pdlo, mou e€dyeton and To povtéha TS,

| Mgt — My
M= ———, B.10
omov My = 1 xou v cuyvotnTa
w; — W
S — ‘ i 1,theory’ , (B.ll)

|wi,theory ‘

OTIOV W theory Evor 1) YewpnTLN TYr) TV GUVIETOY CUYVOTATEOVY TOL AVTLOTOLOVY OTIC UTOXEL-

MEVES BuVoLXES, T oTtola ELVaL TEVTOL YVWO T

ATAAIKAYIA TTPOXAPMOT HX

[Mo va mpocopudcoude Tar LovTéRa oTa apuiunTixnd dedouéva, yenouylonotoLue T BiBAodrxm
PYTHON scipy xat cuyxexpiuéva tn ouvdptnon curve_fit, n omolo ypnotpornotel tov alyoptiuo
Levenberg-Marquardt yix va ehayiotonotioel To Sum of Square Error Function, 6mwe opil-
etan oty e&lowaon (5.17). o teprocdtepeg Aentopépeieg, delte tnv Evotnra 5.2.

H ouvdptnon curve_fit omoutel oplopéva oplopata mou yerlouv ewxrc nmpocoync. T
TOEABELY U, TEETEL VOL TOPEYOVUE EX TWV TROTEPWY To OPLAL YioL TIG TopopéTeous. Av Tar dpta elvon
TOAD) GTEVA, OPLOPEVES AT TIG TOEOUETEOUS UTOREL VAl TEQLOPLO TOUV OO AUTA ol VoL aoTeEDoLY
Tov alyoprduo Bertiotonolnong and to va Beetl To moyxooulo ehdytoto. o vo To amogiyouue
auTd, dlaopaiilouvye 6TL T dptar efvon aEXETE supdTATAL

‘Ol tar yovtéha amantody éva mpoxooplolévo mopddupo Tpocopuoyi Tou Eexwvd omd
to — Epeak 0 TEAELOVEL 0T0 £ — Fpeqi. I'" auTOV TOV A6Y0, 5T0UC 0pIOPOUC TWY HOVTEAWY EYOUYE
t € [to, tr]. Tua v xordopicoupe to mopddupo mpooupuoyfc, mpénel var Tpoodioploouye Tic ap-
YHEG no TEMUES YpoVixég aTiypés. Autd ta dpta Sev elvon awotned xodoplopéva [78] xa, yio
TOEAOELY A, 1) ETAOYT Tou fo oyetileton pe TNy oxourn oe €EEMEN oLlATNOYN GYETXE UE TOV
YEOVO EYXUROTNTOC TNG YRUUUIXNS UTIOYDENONG OE OYECT UE TO TAHRESC XU oy e&€dyetan and
TEOGOMOLOGELS apLiuntixic oyetdtntoag [39—41].



H emhoyn tng TeMnAc Ypovixnc oTiyUhc @atveton To amhy| Ue TNy Tt potid. O unopoloe
xavelg var el OTL oy Bev VEAaE Vo UEAETHOOUNE TNV ER{OpacT TNE oupds duvaung, Vo unopolooue
VoL ETAECOUUE Wit TEAXY) YPOVIXT] OTLYUN TToU Vo unv Ty TepthoufBdvel, omne yivetoaw otny [39].
[N va elpoacte mo oxpyBelc, dev elvar 6TL 1 oLEd eivor amoloo GTO TEMIIO XU, AAAAL UIANOY OTL
oL ONMs xuplopyoLy oe authy. [lopatneriote, yio topddelyya, 6Tt otny Ewxoéva 6.1, n cuvelsgopd
g e€winuévng oupdc etvon 2 2 maparydviwy peyédoug uixpdteen anod exelvn twv ONMs. 261600,
otny enduevn Evotnta 6.4, avtipetonilovue Ty tTelxr| Ypovixh oTiyuy| wg ehedieprn TapdueTeo
xan BAEnoupe OTL 1) emldpaor] TNE oTIC ECUYOUEVES TOPOETEOUS OEV elva TG0 onuavTtixr. Autd
onualver 6Tt Yo otaepd xp6vo exxivnong fy — fpeak, 1 ECAYLYT) TNC oUVIETNE CUYVOTTTAC TOU
YeueAmdoug TpoToU ToEopéVEL To oTalepr] xS YETUBIAAOUUE TNV TEMXT YPOVIXY| GTLYUT
tf — tpeaks OE CUYXELON PE TO va peTafdhhoupe avtioTolya Tov ypdvo exxivione.

Avtideta, o ypbdvoc exxivnong tou mopadipou mpocupuoYhc to — fpeak Elvon Ayo mo mep-
{mhoxoc. Trdpyouv SwupopeTtinég mpooeyyloelc yio vo tov emAé€oupe [78]. Edw avtipetwnileton
¢ eEAe0iEpn TOPGUETEOC XAl Y10l VO TOCOTIXOTOCOUUE AUTES TIC EMUNTOOELS GTNY ANOBOCT TV

novtéhwy, optlouye TNy e€ng TocoTNTAL

<‘Psigmll/ ‘Ffit>

M=1- )
\/<1'Fsignal/‘ysignal><‘Ffit/‘yfit>

(B.12)

omou
<Tsignal(t)/‘{!fit(t)> = ‘Psignal(t) ’ \Pfit(t)dt' (B.13)

mou ovopdleton Mismatch. Kodoe 1o npocapuoougvo poviero Y gy mhnoidlel to moparybuevo
w0pot Wignat, 1 Stopopd (mismatch) minowdler o pndev, yeyovédc mou LTOdNAGVEL GTL Lo XoAT
TpocupuoY T odnyel oe TOAD wixeY| Slapopd. Enouévwe, oadldlovtoc to ty, YEAETIUE TOGO T

LovTéha Tonpldlouy PE To TapaydueEvo X0y, efetdlovTag T dlogopd. !

Téhog, Yo xde ty, TEETEL Vo TUREYOLUE ULl OEYIXT) EXTIUNGCT] Yol TIC TUPAUUETEOUS TROXEWEVOU
va Eextviioouye tov akyopriuo Bertiotonomong. Edv auth 1 apyin extiunon elvar xovtd 6Tto
Tporypatxd ehdytoto tne Sum of Square Error Function, o akydprduog cuyxhivel o ypryopa
oe auto. 'Etot, av xdvouue wia xohy| apyixr| extiunor), umopolue vo emtoy UVOUNE T1) dladtxacio.
Av xdvoupe pro e€onpeTind xaxt| apy x| EXTUNCT, UTopel Vo XOAMACOUUE OE €Val TOTUXO ENAYLOTO
X0l VO ATOXTHCOUUE UEROANTITIXES TUPAUUETOOUG.

Trodétovtag 6Tt oL e€ayoueves TopdueTeol Behtiwvovton xong auidveton To ty, dedouévou
OTL TO PETABATING PEPOC TOL XVUATOC AMOXAEIETAUL OAO XOU TEPLOCOTERO ANO TNV TEOCUPUOYT,
eopuoloupe TNy axdroudn Sadixactia, 1 onola aneixoviletar oynuatixd oty Euxéva 6.2. T to
TEMOTO tg, BV €YOUNE TEONYOUUEVES ToRUUETEOUC GTIC oTtoleg Vo Bactotolye. 'Etot, oyedidlovue
TV aEyix| exTiunon Tuyaio amd Ul OUOLOUOPEY) XATAVOUT, XAAOTTOVTIAS TO EMITEENTO €0pOC

TV TapauéTewy. [ T emoueva ty, ye Bdon Tnv unoVecT| Log OTL OL ToEAUETEOL BEATIDVOVTAL,

Trdpyet o tdav torydo 6to Tapandve. O XaAITERES TEOCUPUOCUEVES CUVAETNOELS TOU SLAPEROLY UOVO XOTE,
éva otadepd napdyovta divouv Ty Bla Blaopd, xadoe autde o mapdyovtog axvpwvetal. ‘Etol, Yo uropodooue
va €youpe oyxeddv undevixt| Slapopd oadhd hddoc xohitepes napauéTPous TEOCUPUOYNS.
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VTG TOVUE TNV OUOLOUORPYY XaTovour Ye o xoppévn I'xaovoioavh. Auth 1 mpocapuoyt
HOG ETLTEETEL VoL OWCOVUE TEPLOCOTERT) BaplTNTA OE OPLOUEVES TIEQLOYES TOU Y WEOU TURUUETEWY.
Avuty) n I'vaovoiav x6feton oTiC dxpeg ToL EMTEENTOV £0POUC TUPUUETEMY KoL 1) UECT) TWT TNG
TomoVeTelton axEBie 0TS ToEoETEOUS Tou eEyUNcay amd TNV TEONYOVUUEVT TEOGUQUOYT) TOU
to. To mAdtoc opiletan 6to 25Me aUTOV TOV TEOTO, EMLTAYUVOUNE T1) Bladixaota EEXLVOVTAS ono
woe extiunom mou elvan oyeTIXd X0VTd GTO EAAYLOTO.

Télog, emavaropfdvouue TNy mpocapuoyr yio xdde ty Touddyiotov 50 @opéc, avdhoya ue
TO HOVTENO, xoepior UE TUYOIEC TUPAUETEOUE Tou avTAolvTal and TNV xopuévrn I'xaouciavi,
TEOXEWEVOL va Slacaicovye 0Tl o alyodprduoc Pertiotomoinone Bev €yel XOMACEL GE €val
TOTXO EAAYLOTO. ATO AUTEC TIC TPOGUPUOYES, ETUAEYOUUE TIC TOQOUETEOUS TOU AVTIOTOLYOLY
o eEAdytoTr drapopd M.

Iapatneolye 6T, 6mwg culnteiton extevndg oto [40], éva uixed mismatch dev elvon Tovdxelo;
uropet eniong vo odnyroet oe overfitting. Ov cuyypageic delyvouv 6Tl tepthauBdvovTag €we xau
N = 8 cuyvotnteg o€ OLdpopa HOVTEA, 1) ACUUPOVio elvar TOAD UixEY), 0XOUT Xl XOVTA GTNV
%x0pLPT. AuTéd TO Qouvouevixd YeTixd anoTéAeoua, xpUPBEL TO YEYOVOC OTL 1) avIEXTIXOTNTA TWV
eZoYOUEVOY TORAUETEWY ETUOEVMVETAL Yiot UPNAOTERES apUoVIXES. ()¢ €x TOUTOU, EVE 1 TROCUL-

poyY @abveton oaxpl3ric, Unopel oTny mpaypoTixdTTa vou elvan éval amotéheoua Tou overfit.

ATIOTEAEXMATATIA AYNAMIKO POSCHL-TELLER

H apyinr| eqopuoyn eotidlel ot UEAETN TV XUUATOUORPOY TOU ToedyovTal ond Tr ox€duoT)
evoc I'vaovotavol xuyotonoxétou oto 1o duvouxd Poschl-Teller (PT). IMpayuatonololue Tic
TPOCUPUOYES YENOWOTOWWVTISC To HoVTEAA TA xou TS, cuvohxd €EL BLapopeTixd, Tou opilovTon
otic e€lonaoelc (2?) xou (??) avtiotoyo. o to TS e€etdlouye T CLYVOTNTES TOU TEOERYOVTAL
elte and o duvauxd PT (cwoTég) elte and to RW (Aavdaouéves). O npocapuoyéc enovolop-
Bévovtou yio BlopopeTinole Ypovoug EVaperc Tou xupadvovta oand fy — fpeak = —20M €wc 50M
pe BrAuo IM xan amewoviloupe Oheg Tig eEUYOUEVEC TOQUUETEOUS WG CUVAETNOY TOU YeOVOU
Evoping.

H anédoon xde povtéhou ancixovileton oty Ewdva 6.3, 6mou anewoviCoupe Ti¢ Blapopeg
YL SLPOPETIXOUS YPOVOUC EVURENG TNG TROCUPUOYTC. TNV TEELOYY) TELY TNV X0pu@Y| - OTOU
Ol GUYVOTNTEC OEV €YOUV OYNUAUTIOTEL TAPWE axoud - OAEC oL dlopopés elvon peydheg, um-
0dexviovTog 6TL oL e€acVEVNUEVES NULITOVOELSELC BEV uTtopoLY va Teptypddouy ue axpifelo auTtAv
TNV TEPLOY T} TOU XVUATOS, OIS AVUUEVOTAY.

Mrnopoiv va nopatnendoly dUo yevixéc Tdoelc: oL OLlopopéc UewnvovTo xadwe auidvetol o
YEOVOC Evapdng ot ol Blapopéc TV HoVTEA®Y pe N = 2 elvar pixpdtepeg amd T avtioTolyEg
ue N = 1. H npwtn tdon unopel va anodoldel oto yeyovdg ot oe apxetd xaduotepnuévoug
XPOVOUG, TO YETOPUTIXG TEPIEYOUEVO EYEL EEAPAVIOTEL XOU TO TEPLEYOUEVO LYNADV OQUOVIXWDY
€yeL anooBeoTtel, e amoTEAEGUA 1) VEUEAWONE CUYVOTNTA Vo xLpLoEy el Tdve 6To orjua. H debtepn
TAOT OQPEINETOU OTOV UEYUAUTEQO YOPEO TURUUETEWY TOU TUREYEL UEYR)TERT ueALEia.

Emonuaivetar 6t xou ta 0o poviéha Theory Specific emdewxviouv napduota anddoor oe

Teooug yeovoug. To uovtéha TS GR éyouv yewdtepn anddoon and ta TS PT uévo oe



xoduo tepnuévoug ypovoug, uetd and 30M yio to yoviého N = 1 xaw 20M yio T0 yovtého
N = 2, émou eninedwoay oe oyeddy otodeph Tyh Tepitou ~ 107°.

Télog, to poviého TA ye N = 2 gaiveton vor emiTuyydvel eEAapends xahOTepa amd TO av-
tiotoryo TS PT oe nohd xoduotepnuévoug ypovouc. Mo mdavn e€hynon yio autd unopel vo
anodovel GTOV UEYANITERO YMPEO TURUUETEWY TOU, O 000G TUPEYEL UEYOADTERT EVEMELO Yo TOU
ETUTEETEL VO ATOTUTWOEL XohOTERA Tt aiunTnd opdhuata, To omolo Yo meenet va elvon TopdvTaL
Yot T600 Uixpég Sopopéc [39]. AeBopévemy TV Pxe®y SLapopny Tou amoxTRINXaY, Unopolue
VO CUUTIEQAVOUUE OTL TOL HOVTEAX HOG UTTOROUY VO TEOGUQUOC TOVY IXAVOTOLNTIXY 6TO x0uo. AT
€00 xou TEEA, 1) TPOCOoY Y| UeTaTOTLETON OTNV TOLOTNTA TNS EEAYWYHC TULUUETOWY.

Eoxvdpe and ) pdle, My ‘Onoc galveton otny endve exdva tne Eévag 6.4, 6ha o
wovtéda TS PT minowdlouv v tiwn 1 xou to povtéha TS GR minoidlouv war Tyl xovid oe
auTAY 0AAG Oyl axpBae 1. Emouévee, ta poviéha TS PT mou umodétouv cwotéc cuyvotnteg
npooeyyllouv xahitepa T udla mou €xel eyyLel, eve 1 anddooT Twv woviédwy TS GR enined-
woe oe po Aavdoaouévn Ty tepitov 10M xan 30M yio to povtého nou meptéyel Tpomoug N = 1
xar N = 2 avtiotoyo. XNy xdte emxdva delyvouue To oyetnd o@diyo tng e€ayouevng ualag
mou urohoyiletar and Ty e€lowon (B.10) xau BAénoupe 6T n Ty tne yio toc povtéha TS GR o ta-
Yepomoteiton, eved yia T TS PT ouvey(let va Berticdvveton. To avopevouevo oe autd tor dlarypdy-
portar ebvan 6TL o povtéha TS GR, tar onola nepiéyouy tn Aaviacuévn ocuyvotnta, anoxaho oy

4 7 7, 7 7 7 4 7
N wéla o axeBKg OE TEMLUOUS YPOVOUS, OTwe galtvetal oTny xdtw Euxdva.

H endpevn napdpetpoc nov oculntdue elvar 1 avaxtndeioo cuyvétnta w = Re(w) — ilm(w).

LNUEWOTE OTL TO Pacpa PT €xel To {010 TeayHaTnd UEROS Yo OAES Tig ouyvotnTee. To anoteréo-
OLTOL YLOL TO TEROLYLOITLNGL YOl (POVTOG T U€ET eppaviovTan 0T eTdvey ot X3t Téveh avtioTolya
e Ewovag 6.5). H npdtn mapatipenorn elvon 6TL yiol TEOWOUE YEOVOUS, XL EWBIXE TpLY oo
TNV x0puUPT, oL TEOBAEPELC amoXAVOLY TOAD amd TG AVUUEVOUEVES TWES TTou amelxoviCovTon Ue
uodpee yeauués. H obyxhon otic avapevoueves Tyég opy(lel UETE TNV x0pUPT| xou EWBLXS Yid dp-
%eTd xaUG TERNUEVOUC YPOVOUS, OAA To HOVTERX BRlOX0LY TIC GWOTES CUYVOTNTES, EXTOC UTO T
novtéda TS GR (BA. tnv evowuoatwpévn emxdva mou o TdlEL TNV TEPLOY T TwV XA JUCTERNUEVWY
XEOVWY).

Axoun, to povtéra mou elvon TS cuyxAivouv Yenyopdtepa and o TA, aAAd Tar TeheuTaio TA-
notdlouvy o xovtd ot owotéc auyvotntes (BA. Hopdptnua A xau Ewdva A.1). Emniéov, n
YePeAOONG oL VOTNTA Tou €EQYETOL OO UOVTERX TOU TEPLEYOLY BUO XATACTAGEL, GUYXALIVEL
YENYOPOTEQX U6 TA LOVTEA TTOU TEPLEYOLY Wiot GUYVOTNTA.

Y1 Yewpla ypopuxey dtatapoy vy, xdde cuyvotnta €xel otadepd TAdTOC xan pdor. §2¢ €x
T00TOU, Yl VoL LOYURLOTEL Xavelg OTL ol ouyvotnTa Beloxeton oe €val oMU, TO TAATOS XoL 1)
@pdomn tne meénel eniong vo e€dyovton otadepd. AuTéC oL ToEdUETEOL BEV Elval TGO VeUEMMOELS
660 ol (dieg oL cuyvotnTee, xadde eCaptdvton and v Initial Condition mou yenowwonoidnxe
Yoo TV Toporywyr) Tou xouatog. £otéco, 1 otadepy| eCaywyy| TNg cUYVOTATAS ATO POVY TNS
0ev eyyudTar TNV aviyveuon tng ouyvotntoag. LTnv Ewdva 6.6 ameixovilouue tor TAdTH Yl TN
Yepehddn ouyvotnta Ag xou tnv tpdtn apuovixry Aq (BA. Hoapdetnua A xou Ewxéva Al yia
To avtioTolyo dlorypdupata Yo T @don). To mAdtog yia tn Yepehwdn cuyvotnta e€dyetol Ue
oTadepd xou oTadepd TEOTO G XUVUCTERNUEVOUS YEOVOUS amd OAoL T LOVTEAX, TLGTOTOUDVTAS

N 00YXALoT TNG SLYVOTNTOC. £26TOGO, Yo TNV TEWTT AEUOVIXT, TO TAATOC YiveTton oTodepd PuoVOo
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Yoo TOAD xoduotepnuévoug yedvoug wovo v ta wovtéda TA xou TS PT, eved vy to TS GR
ATOXALVEL, TEYUO TOU ONULVEL OTL AUTO TO CUYXEXPWEVO UOVTEAO OmETUYE VoL BpEl TNV Tp®TN
QPUOVIXT) TOU CHUATOC.

Mo teheutalar yevixr| nopatipnon UTopel Vo YIVEL GYETIXA PE TO YEYOVOC OTL Tar ovTéra TS
GR npofrémouy haviocuévee cuyvOTNTES UE dpxeTH axplBela xou oTtadepdTnta. Autd onuolvel
OTL oy BeV YVWEIloue TO OWOTO UTOXEUEVO QPACH TOU XOUATOS Xl UTOVETHUE OTL TROEEYOTAY
amd €va BUVOUIXO GR, Yol UTopOUCUUE EVOEYOUEVWS VOl EIUUGTE IXAVOTIOLNUEVOL UE T ATOTEAED-
potar, Qv Oev elyope TOAAG wovTéda yio cUYxetoT. Enouévng, autd Ya unopoloe va yenotuedoel
¢ EVal TELPAUTIXG ToEABELYUO Yiot MEPOANTTIXG povTERa. [iot havioaouéveg unotéoels, dnAady

oL VOTNTEC GR yiar €var xOua PT, ol e€oryOUEVES TapdUeTEOL HTay oTadepé, oy xou AaviaoUEVeC.

ATIOTEAEXMATATIA AYNAMIKO REGGE-WHEELER

H 8eltepn epapuoy| eivon puor emavainn tomv meonyoluevwy UTOAOYIOU®DY, OANS VLo TO BUVOULXO
RW. H x0ptor SLopopd uetall) Twv 800 TEQITTOCEWY efvol 6TL To RW €YEL BLUPORETIXY| AGUUTTWTIXY
CUUTERLPOPEA, 1) oTolo BN YEl OE Wiar 0URE Yia UEYEAOUS YpoVoUuS Evaping Tng Tpocapuoyg. ‘Omeg
Yo cLINTACOLYE, UTO ETBEVWVEL TNV eEorywyY) TwV Topauétewy. ITdavéc hoeg v autd Hu
umopovoay va elvon 1 cuumeplAndm g ovpde ot povtéla 1 n e&aipect TG ouUEdS omd TO
Topdiupo mpooapuoync. ‘Onwe Ho dolue Ye meplocoTepee Aentouépeleg oty Evotnta 6.4, 7
TEATN TEOGEYYLOT AELTOVPYEL, EVEM 1) SeUTERT OYL.

Xpnowomololue 6ha Tar cuYxexpUéva povtéha TA xau TS mou opiCovta oTig e€lowoelg (6.2),
(B.8), (6.3) xou (B.9), ye ovunepthauBavopevouc tpémoug N = 1 4 N = 2 xau AowPdvoupe
eniong umodn Ty oupd. Luvokxd, epapuolouye BKdexa SlopopeTind Yovtéha. ‘Omme xou meLy,
yioe Tt povTéda TS, e€eTdloupe TO00 TIC OWOTES GUYVOTNTEC GR 660 xan Tig havdacuéveg PT xou
emavaho3EVOUPE TIC TPOoapUOYES antd g — fpeak = —20M €w¢ 60M pe Brua 1M.

Ipwta épyovton Tar Sarypdupata Mismatch oty Ewdva 6.7, to omola ntapovoidlouy napouota
CUUTIERLPOEA UE TIELY, UTOBEXVOOVTAS T CUUQWVIK PETAED TNS TTROCUPUOGUEVNE CUVRTNONG XAl
e aprduntrc xugoatodopgrc. ‘Oha to yovtéha ye xatdotaon N = 1 (otepeée ypauués ato
endve Tével) amodidouy apxetd nopdpola. Hapatnerote To ehdyioto YOpw and t) — tpeak =~ 10M
XL TN AVIODCO GUUTERLPOEA OT1) GUVEYELX. AEV TOQUTNENOUUE ULol TETOLO GUUTERLPOES Yol TO
xOuo PT, ontdte pnopel vo anodovel otny xaduotepnuévn ovpd. Ilpdyuatt, 6tav yovieronololue
NV 0UREY (BLUXEXOUUEVES YRUUUESC OTO EMAVK TEVEN), OL ACUUPWVIES UELDVOVTOL amtd 800 Ewe TEo-
oeplc té&elg peyédoug (avdhoya Ue To HOVTEND) Xou TAUTOYEOVA OEV TapaTnEElTaL Xouio avioboo
TdoM.

[Mopdpoia elvon 1 cuPTERLPOEA TwV TEocUpUOY®Y UE cuyvotntee N = 2. H Slagpopd €8¢ eivou
OTL PTAVOUV TO EAGYLOTO acuUUPuViag Vopltepa amd Ta avtioTorya wovtéda ue N = 1, xadag
ATOTUTIMVOLY XOAUTEQU TNV TEWT OQUOVIXT TOU €lval Tapoloa vwpeltepa 0To xUUo Xo €YEL
eCaolevioel oe petayevéotepoug ypovous. H évbelln and o Sorypduuato acuppoviog elvar xo
TOAL OTL ToL LOVTEND TanEtdlouY APXETA XUAS UE TO GO Xat oo €6 xan Tépa Yo cLINTACOLUE TN

OYEOT TNG UXPTIC AOUUPWVIOG UE TNV TOLOTNTA Xl T1) 0 TAdepOTNTOL TV EEAYOUEVWY TURUUETOMV.

Topa mepvipe otn eloyouevn udla, mou amewovileton otnv Ewdva 6.8, @épvovtdg yag



670 VEo onueio 6mou 1 Beitiworn mou mopEyetar and TNy poviehomoinom tTng ovpds yiveTow mo
oupric. 310 endve mdvel amexovioupe v eCayopevn udla My ¢ ouvdpTtnoT Tou xpdvou
exxYNONG TNG TPOCUPUOYNG XL GTO XUTW TAVEA, TO OYETIXO CYANUA TNG. LNUELDOTE OTL Ta
Hovtéha ywelc TNV oupd (oTepeéc YPaUUES xou oTo 600 TAVER) ToAXVTOVOVTOUL YOp® Ao {Lo
ouyxexpévn TN, Ta povtéha TS PT ye tn haviaouévn cuyvotnta, Beloxouv uio havioouévn
T pe oxeTnd opdhua ~ 1072, evé ta poviéha TS GR mou mepiéyouy T 60oTH cuyVeTNT,
TUAAVTOVOVTOL YUPW o6 T1 owo T Ty Tou 1, ye oyetnd o@dhya nepinov evog Tding yeyévoug
UXPOTERO.

AuTH 1 TOAAVTEUOUEVT TAATPOPUA, OXOUT XL YL TO UOVIEAO TOU TEPLEYEL TIC OWOTEG
ouyvotnteg, elvan avtiieon ye tnv avtictoryn Ewxodva 6.4 yio to xOpa PT. H Siopopd ogeile-
ToL OTNV TOEOLGTA TNG 0URAS UE VOO SUvoung mou meplopilel T ouveyt| Behtiwon g Tung g
palac Ypw amd to — fpeak 2 10M €0c 20M ot StapopeTind povTéha.

Q61600, 610V LOVTEROTIOLOUUE PNTd THY xotUGTERNUEVT 0LEE. (BLUXEXOUUEVES YROUMES), TIORA-
TNEOVKE oXOUT X0 UE YURVO UATL OTO ETAVG Taved OTL 1) e€oryouevr pdla otardepomoteiton yYopw
an6 TN Aavdoopévn Twn yio to povtéda TS PT xau yOpw and tn cwoth T o to povtéda TS
GR. Am6 0 %t nével BAEnouye 6T, 0TNY TRoYLaTXoTNTa, 0G0V agopd to. TS GR, 1) toddvTrmon
TOU OYETX0U OQAAIATOS Elvol UixpdTepT xatd 600 TdEelc pueyédoug.

Emmiéov, ou yevixée tdoeic elvan 6Tt Tar HovTéRa pE 800 TEOTOUC ol T UOVTEAN UE OURECS
pTdvouy oTny "TeENxY) Toug xatdoTaon”, eite ToAavTwuéva elte oTadepd, To yeRyopo and To
HOVTEAX UE EVay TEOTIO X ToL JovTERA ywpic oupéc. H eCorywyn tne pdlag cuvolixd elvon opxeTd
oy, xondeg Bev amoxhivel, elvon otadepn xou emmiéoy, Tor BlaPopETIXE anoTeAéoUoTo UETAULD

BLOPORETINWY HOVTEAWY UTOEOLY Vo eENyNUoly AoYxd.

Ye auté To OoTddo, TEEmel va emelepyaoTOUUE €va onueto mou, wohg mopatnendel, Vo
unopoloe va xatotayel otny xatnyoplo "not even wrong". Xuyxexpléva, 600 and To LOVTEAX
mou yenowomoovvton etvar T TS PT pe ovpd. Anhady), o éva povtého cuyxexpylévou TOTOU,
Tou onolou To @doua vTotiieTton OTL TPOEpYETAL Amd Wlal BLYNTIXY Ywelc ovpd, TepL aBdvETOL
wo xoduotepnuévn ovpd. Evvolohoynd, autd elvar eviehds Aavdaouévo. (061600, uTdpyEL pLo
e€NYNOT VLol AUTO O TEOGPEREL XATL TOAUTIUO.

Av nopapeploouye TEOCWELVE TOV Ywelc 0LEd YapaxThpa Tou @douatog PT xot VewpeHoOoUuE
aUTES TIG EtoayVeloeg CUYVOTNTES ATAMS WS BLO CGUYVOTNTES TOU EVAL DLUPOPETIXES UTO AUTEG
mou TepLthaUPBdvovTal 0TO Ofjua, aUTd Tou TopaTNEOLUE tivon éva evdlagépov onueto. O cuv-
BLACUOS TNG OLEAS PE TN AavOooPEVY CLYVOTNTA BEATIOVEL TNY TEOGUPUOYY UELOVOVTAS TN
dlapopd (mismatch), onwe gatveton otnv Ewdva 6.7, xou otadeponoiddvioag tny e€oywyh e
udlog, omwe gatvetar oty Ewxodva 6.8. Etol, 1 owot poviehomoinoT oplouéveny TUNUAT®mY Tou
ofotog odnyel oc mo otaldepd anoteAéouaTa, axdpo XL oy LTTOTIETOL OTL Ol CUYVOTNTES Elval
hov)oopEVES.

Topa culntdue TNV e€aywYn TV GUYVOTATOY Tou @aivovion oty Ewdva 6.9, 6mou otnv
aptoTepr) xan TN 0e&id OTAAY PAETOUUE TIC ULYOBIXES CLYVOTNTES TNG VEUEAWOOUS CUYVOTNTOG
XL TNE TEWTNG dpUovixAc avtiotolya. YTrdpyel enione n avtiotolyrn Ewdva 6.10, n omolo delyvel

TAL OYETIXA OPIAUOTA TV CUVIETWY CUYVOTATWY Tou opilovtar oty eiowon (B.11). Auth n
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oulntnom aneixoviCel xou AL TNy Pektiwon mou TEOXITTEL AN TNV UOVIEAOTOINGT| TWY OURMY
%o €Tlong AmOXUAUTTEL TOL TEOBANUUTIXG Y AU TNELOTIXG OPLOUEVWY UOVTEAWY.

Avagopd ye tn Yeuehiddn ouyvotnta (aplotepr othhn), 6Aa ta poviéha TS PT npofié-
TOLY Lol AvOACUEVT TN UE OYETIXO OQdAua Tepimou 2%, eved Oha tor dAla tpoceyyilouy Tig
OWOTES TWES UE TOUAAyLoTOV Uiot TAEN PeEYEVOUC UIXPOTERO OYETIXO CPIAUL. LNUEWWCTE OTL OL
CUYVOTNTES OmO ToL HOVTEND Ywplg 0upd (OTEREES YPOUUES) TAAAVTWVOVTOL YURW ANd WUlal CUY-
xexpwévn twn. H e€olpeon elvon 1o poviého 2 TA, 1o omolo otadeponoiel v elaywyr tne
Yepehddoug cuyvotntac (BA. T xiteivn yeouun otny eloaywyr g Ewdvog 6.9 xou tnv Euxdva
6.10).

Ou ouyvotnteg tne mpwtng oppovixnc (8edid maved) e&dyovton ye otadepd TedTO Yiot To
povtéda TS (mdh AavOoaouévn twh v TS PT xou owot vy TS GR). Autd ogelieton oto
yeyovog 6Tl elvon o Adyog Tng unoTdéuevng ouyvotntoac meog TNy e&oyéuevn udla, n onola
e€dryeton oTodepd pe dlapopeTixt| oxplBela avdhoya pe To Lovtéro. (2otdc0, To wovtéro TA elvon

e€oupeTnd oo tardég xou Sev avoxTd xotOAOL TNV apUovixY| (xlTeLvn Yeouur).

Edv dev elyav moapovolactel dhhec ypagpixéc moapactdoelg, Yo unopoloe xavele vo cuumep-
Gver 6TL Ohat ot ovtéda TS unopolv v e€dyouv o€lOmoTa TV TEMTY VEUOVIXT Al TO GTjud.
H Ewova 6.11 delyvel ta e€ayouevo TAATY WG CUVAETNCT TOU 0pYLX0U YpOVOU. XTO 0pIGTERO
TAVEN, TUPOUGLALOVUE To amoTEAESUATA Yo TN YeUEALDOT cuyvoTnTa, Ag, 1 omola Exel TapoUoLaL
CUUTERLPOPA PE TIC dhheg Tapauéteouc. Ta povtéha mou Tapahelnouy TNV OLEA TUAXVTLVOVTOL
O€ UETAYEVEGTEPOUC YPOVOUS YU ATtO Lol CUYXEXEWEVY TUY|, TO LOVTEAX TOU TERLAOUBAVOUY
NV 0Upd oTolepoTOoUY TNV EEAUYWYT) XU Ta LOVTERX TOU TERLAUUBAVOUY TNV opUovixy entiong
otadepontoloty Ty e€aywyn, oA oe wxpodtepo Badud. Emniéov, to poviéda TS PT anodidouv
ENAPEWS BLOPOPETIXT T amd Aol ToL GARL.

Y10 8e&l mhveh tng exovag, BAEnoupe OTL xopla oo ToL TAGTN YL TNV TEMTY AEUOVIXT OEV
Begdnxe aliomota. ‘Oha anoxhivouv oe peydheg Tiwég Tou apyxol yedvou. Erot, dev unopolue
VO GUUTEQUVOUUE HUE GLYOURPLE OTL OVLYVEDCOUE TNV TEOTY VEUOVIXT GE AUTO TO GUYXEXQLIEVO
TOEOYOUEVO o P TN Stadixaota mou axohoudiinxe. Av cuyxplvoupe pe to avtioTolya amo-
teléopata and To xOuo PT, 6mou povo 1o poviého 2 TA amétuye vo aviyvedoeL TNV dpUovixy
(Ewxova 6.6), unopolye va evtonicoupe Tov Adyo auThg TNne dlopopds mlow and tny oupd. Ilapo-
HOLOL AMOTEAEOUATO VLol TG PAoELS uTtopolV Vo Beedoly oto [updptnua A otnv Ewdva A.3.

Téhog, culntdue av 1 e&oywyh g ovpds Htay otadepn ¥ Oyt xal TaEOUCLALOUUE CYETIXA
anoteAéopata 6To Lyfua 6.12. Kou to mAdtog tng xou o méhog g Beédnxay vo €youv mapduoLa
oupmepipopd. o apyixoie ypdvoug, €we ty — tpeak ~ 10M, oL apduetpor elvon apxetd aotabelc,
TEdYUO TOL oNUALVEL OTL 1] GUPBOAT) TOUG 6TO G BEV Elvor TOGO UEYEAN G GOYXELOT| UE GAAES
oudPoléc.

Qlot600, petd amd fo — fpeak ~ 20M yia Ta povieda e ouyvotntee N = 1 xau fo — fpeak ~
10M vy tar poviéha ye ouyvotntee N = 2 mopatnpolue €(Te Uial TOAAVTOUUEVY) CUUTERLPORT.
YUpw amd pio oplouévn Tin elte o olyxhion o wa otadepr| Tiwn, avtiotolyo. Mia Stoncintixy
e€nynon yia auTr TN Stapopd Yo umopoloe va elvon 6TL ToL JoVTEAX Ue xatdotaon N = 2 xotorypd-
(POLY XUAITEQ TO TAAAVTOUUEVO UEROS TOU GAUATOS, APTiVOVTOS ETOL EVOL TN TTIOU TEPLEYEL L0

mo xadapr| Lop@r| TNS oLEAS.



EPAPMOTI"EY KAT ATIOTEA'EXMATA II

Y€ auTO TO EPIANLO ToEOUGIALoVUE T1) Be)TERT OELRd ATOTEAECUAT®Y, EOTIALOVTUS OTNY (POLV-
opevoloywt| eméxtacn 6to GR ringdown, yveooth xa w¢ Parametrized Quasi-Normal Mode
Framework (PF). Iapduola ye mpty, mapdyoupe ypopuxd xuota ringdown, oAAd mdve oto
duvauxo GR mpociétouye Tpomonotioele duvduewy 1/7 xou €8 youue TIC TUpUUETROUS TTROCUE-

uolovtog Tig ex¥eTind amocBevVOUEVES NULTOVIXEC CUVOPTHACELS UE OUREC.

METABOAH MIAY AYNAMHY. THN ®OPA

[Tpoc¥étoupe pla pévo Tpomonoinon avtioTeopng dUVOUNS TOu ' 6T0 a&ovixd duvoutxd GR. Mio

uovo tpononoinon atny e&lowor (4.6)), onualvel 6TL To BuvoXd YiveTal

V(r) = VOR(r) + rlgl"‘(k) (rf)k (B.14)

Qc ex T00TOU, 1 TEOTOTOIMEN EAéYYETIL AnbAUTA amb SUo TapauéTteous, To Thdtog tne ak)

et
v exdetinn topdueteo k, yia Ty ontola e€etdloupe k = 2,...,7. O atdyoc eivor var oxworypopr-
OOUYE TI OLVBETELS PETAEY AUTOY TWY 600 TUPUUETEWY X0k TOV YORUXTNELO TGOV TOV XUUITWY,
ToL OTOLQ, AV AVTIUETOTLOTOVY AvTIGTEOPA, 00NYOVUY GTIG WLOTNTES TOU UTOXEUEVOL BUVAUIXOU.

H pédodoc mou axoroudolue elvon 1 Blar ue oty mou mopoucidletar oty Evotnra 6.1. Xe
cuvTouia, TUEdYOUPE €val XV TROEPYOUEVO amd Ta (Blor apytxd Sedouéva ahhd amd To TpOo-
TOTIONUEVO SUVOULXO, EEAYOVUE TO GTUa GTO TEBLO TOU YEdVou G TaleponoldvTaS TNV Totoveato
evog mapatnenTh xou mpocapuolouue To uovtého Theory Agnostic g eiowong (B.8), o onolo
TEPLAOUBAVEL EVOL ATOGUVOESEUEVO N{TOVO Xou Lo oupd. Extedolue tnyv tpocopuoy| Yo dlapope-
To0g yedvoug exxivnong, yia Tov xoéva emavakouSdvoupe Touldytotov 100 popéc xou xpatdue
TNV XoAOTERT TROCUPUOYT) TTOU TOREYEL TNV UxedTeRT anoxhon. O Adyog mou mepthaufdvouue
NV oupd oTIC TPocapUoYES unopel va avayVel otnv Evétnta 6.3. Exel, oe dhec T exxdveg ol
umhe otepeéc yeaupés avagepovian oto N = 1 TA xou oL umhe OLUXEXOUUEVES YROUMES GTO
novtého ovpdc N = 1 TA. To povtéro ovpde N = 1 TA nopéyel mo axpi3n xau mo ctodepd
ATOTEAEGUOLTAL.

Emmiéov, oo [oapdotnua B, tapovcidlouue xdmoteg eidveg Tng Blog avdAucng aAAd yio Eval
HOVTELO oL e OWPBAVEL HOVO TN VEUEALDOT CUYVOTNTA Ywelc TNV 0UEd.

Q¢ mpwtn €vdelln yio TNy emtuyio TV TpocapuoyY®y, detyvouue oty Ewxodva 7.1 tig amox-
Moele e ouvdpTtnon tou ypdévou exxivione. Adgpopec duvduelc tou k € [2,7] epugavilovton oe
w8 mhvel xau dragopetinée Tyée v ta thdrn, k) € [~1.5,1.5] epgaviloviar oty shipoxa
Yewudtwy. H ouuneptpopd tov anoxhicewy lvat mopdpola, extoc and tny nepintwon tou k = 2

UE aeVNTIXE TAATY).
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And Tdpa xan 0T0 €1, OTPEPOUUCTE OTNY TOLOTNT TV EEAYOUEVLY TURUUETOMY. LTNV
Ewoéva 7.2 mapouctdloude tol xoAUTERA OMOTEAEGHUATA TEOGUPUOY NS Yiot TO Vepehiddeg ONM
we ouVdpTNoN Tou ThdTouc tne teomomoinone, wo(a®)). Luyxexpwéva, dpopeTing mhvel
avapépovtal o dLapopeTixés duvdels k xou SlapopeTixol deixteg avagpépovtar oe 800 dlapope-
Tx00¢ Ypbvoug exxivnong ty — tpeak = 10M xau 30M. H xdoavn ypoppn avtiotolyel otny Jew-
entr) mpofBAemouevn T oe mopa perturbative eninedo xatd Seltepn TN 6w uTohoyileTan
oo [70].

Me v yxpL oxwaouévrn meployr), Belyvouue TN Olapopd UETULY TWVY YOOUMIXMY Xl TWY TET-
PUYWVIXOY TEOBAEPEWY ot PE AUTOV TOV TEOTO UTOBEXVOOUUE TO CUCTNUITIXG GOAAUA TOU
TROEPYETOL OO TNV EVOWUATWOT TN TETPAYWVIXNC BLOpY®waong Téve omd Th) Y e,

Ynueidote 6Tl oL e€orydueveg ONMs GUUGKOVOLY UE TNV TEOBAEdT Ylo TIC YPOVIXES OTLYHES
apYd (umhe xhahor). H uévn Swgovia uropel va mapotnendel yio apvnuinée tyée tou a?). O
To miavog Aoyog oyetiletan Ye Tic xGUeTeC HodPEC DLUXEXOUMEVES YROoUUES. AUTEC Ol YPOoUUES
mpoépyovtar and Ty e&iowan (4.4) xon UTOBEVOOLY Lol YOVOEIXY EXTIUNCT TNS HEYOAITEENC
nprc xdde a®), xdtew anéd v omola  PF urotideta 6t eivan axpiBiic. Ot ypoupée yia k > 4
Beloxovton mépa amd T dplar TV aEOVKV. AUTOHC 0 AVOTATOS TERLOPLOUOC Belyvel TNV Teployn
otnv omnola Yo énpene vo hettoupyel To mhaloto. Aev onuaiver 6TL dev Yo Aettovpyrioet Tépa and
oUTO.

[Mopatnpolue 6Tt YEVIXE TO TAACLO AELTOURYEL oxOUN XU TEQEA OO AUTES TIC YROUUES HE TNV
uévn e€oipeon auth ) pixer teproyt Tou a2,

LNUEWOOTE OTL YiaL TN OEBOUEVT] TIEQLOYY| TALTOUG, 1) OANXYT| TOU TEAUYUAUTIXOL Upoug Yiveto
o teen xodwe avZdveton to k. Autd elvan droancntind, xadde ueyahitepo k pépvel uixpdtepn
TPOTOTONCY GTO BUVOULXO, ETOPEVKC UIXPOTERT] ATOXALOT) GTOV TRUYUAUTXO Wépoc. Avtideta, 1)
CUUTERLPOPA TOU PaVTACTIXOV U€poug Oev elvon 1 (Blor xan oTny TporypotixdTnTa elvon avtidetn:
10 Yeydho k to tpononolel neplocdTepo and TNy TN Tou GR oe oyéon pe To uixpod k.

Yty Ewdva 7.3 €youue éva ypdpnuo pe tnyv ida dour) 6mng 1 7.2, émou delyvouue o oye rel-
ative errors (nou divovton otny e&iowaon (B.11)) uetadd twv e€ayduevmy xon Twv TeoBAETOUEV®Y
GUYVOTATGV ¢ ouvdpTNon Tou TAdToue T Teononoinong, 8lwo|(a®)). Awpopeting ypbuara
AVTITPOCWTEVOLY BLAPORETIXOVE YPOVOUS EXXIVIONC TN TEOGUQUOYHC.

[Mopatnenote Tic BV0 cuUTEPLPORES Tou OYETXOU opdipatoc. H mpdtn elvon 6Tl pewdveton
g audvetal o ypeovog exxivnong, Yeyovog mou elye mopatnendel Ndn otnv mepintwon GR
TOU TEONYOUUEVOU Xeolalou (eW8xoTepa, Belte Ty Ewdva 6.10). H dedtepn tdon elvar dtL o
wxpbTepa oyeTnd opdluata emtuyydvovia xovid oto ak) ~ 0, émou n tponomoinon eiva
uxet). Autd UTOONAMVEL OTL 1) PF AELTOURYEL XUAUTERO OE QUTY| TNV TEPLOY T}, xad®S oL TPoBAEDELg
Ne elvon To xovTd oe aUTEC Tou eEdyovTal amd T yeovixr) eZEMEN. AuTtd elval ovouevOUEVO,
#xaOC ToL Uixpd TAATN TaEdyouy uxedTER amdXALor omd TNV GR, emouéveg 1 ouviixn (4.4)
EXTATPOVETOL TLO ATOTEAECUATIXAL.

Ou enduevee 800 Emdvee ?? €youv enlong tny (Bror Sudtan xou delyvouy To TAATOS xou T Qo)
e Vepehiddoug ouYVHTNTAC WS GUVEETNOT Tou TAdToug Tne Teororoinone ak) (apiotepd) xau
TO TAATOC XAl TOUG TOAOUC TN 0updc (Be&Ld).

[Mopatnerote 6TL TO TAGTOC XaL 1) PACT) TNG CLYVOTNTUS TEOTOTOLOVUVTAL OLuPopETXd. 'l

AEVNTLXSL a®), 10 Mmdroc peidbveton xau 1 (pdon auEdveton oe oyéon Ue Ty T e GR (oT0
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a®) = 0), %o AVTLOTEOPWS Yo Yetwd mAdTn. Enlong, n dwapopd Toug amd tnv tur tng GR
(%) = 0) ehattdveton xadde avZdveton To k. Auth eivor avapevouevo, SIOTL ia oUYXEXEIIEVN
i tou a) elodyel wxpdtepn Tpomomoinom yio peydho k amd bTL yior wxpo.

Y1 6e€id emodva BAénoupe OTL Yo éva BeBOUEVO TAATOC TEOTOTOINGCTE, Ol TUPAUETEOL TNG
oupdc elvan o (Bleg yior Gheg Tic duvduels Tou k, extoéc and to k = 2. O héyoc yiow auth T
otapuwvia elvon 6Tt 0 ex¥€TNg Yot OAEC TIC TPOCUPUOYES TN 0LEAC dlatnerUnxe oTtadepdg xou {oog
ue —7. Qotéo0, 1 tpononoinomn k = 2 tpomonotel auTdHV TOV EXVETN (S CUVAETNOY TOU TAUTOUG
NG, EMOUEVKC YENOWOTOWACUUE TO Aaviaouévo WOVTENOD Yior auTH| T1 S0OVAUT TEOTOTOINCNG XAl
TO XAVOE Yo Y8eTn TNG 00YXELONE UETAED OAWY TV BlapopeTIX®Y TpoTonolhcewy. Hapatnernote
OTL yior GRS Tig dAAeg Tég Tou k ol (Biec oupéc Pploxovtal pe ouvéneto.

H emduevn Ewdva 7.5 €xel ¢ oxond var ameovioel TNy andxAon TV TUpoUETEWY otd ThY
T GR. Kou éh, xéde othAn avagépeto ot dlogopetinée Tyéc Tou k € [2,7] xou ot oplldvriol
d&oveg elvon Tar TAATH. L TOUG XATANOPUPOUS AEOVES, ATELXOVILOUUE UE BLOPORETING YPWOUTA TIG
TUPUUETEOUC IOV TROCUPUOCTNXAY OE oyéom Ue T avTioTolyeg Tiwée toug otny GR. Ilopotn-
POVPE OTL YLt TO UxpdTERO k (Ueyahltepn Tpomtomoinam), ol tapdueteol ahhdlouv TeploadTepO.
Y ouvéyew, xadde to k avidveton, 1 Tpomonoinoy PeLDVETAL UE TOV (Blo TROTO Lol TIC TEELG
Tapopétpous, Re(wy), Ao, Po. O poviactindc pépog mopouctdlel DIapopeTins GUUTERLPOPE Kol 1)
Teononoinoy| Tou elvon ueyahitepn yiol HeYOAUTEROD K.

Ot otepeég ypaupés mou epgpovilovion 0TS TEONYOVUEVES EIXOVES TROERYOVTOL OO TNV TEOCUQ-
LOYH TV onueiny Tou Blou yeduortoc. H tpocoapuoy yenowonowel xufud toludvupa f(ak)) =
B- ((x(k)>3 + - (a(k))z +9- (Dc(k)) + €. H Ewova 7.6 Belyver autolc ToU¢ GUVTEAECTESC WG
ouvdptnon tou k yia dheg Tic mapapétpous e Vepehiddouc hettovpyiog. ‘Onwe Brémoupe, o
xuPixol cuvtekeoTég B elvon oyeddv undevixol yior Oheg Tig Topauéteoug xou to k. Emlong, yia
ONEC TIG TOPUUETPOUS, EXTOG UTO TOV TRAYUATIXO HEROC, O TETPUYWVIXOG CUVTEAEGTHS Yy elvor un
UNOEVIXOC ol Yiat OAOUC oUTOUG O YROUULXOS CUVTEAEC TN O €lvan Un undevixog. Autéd onuaivel
OTL Yo T TAATH TNE Teomomoinone mou emAéloue, 1 SLopUwaon oe OReC TIC TUEUUETEOUS Elvol
TETPOY WVIXT], EVE YLOL TOV TROYHoTixd Yépog elvar yeopux. I' autd to Adyo otnv Ewxova 7.3

TO OYETUO GPINIA TOU TRUYUATIXOU UEEOUG elval IXEOTERO amtd TO AVTIGTOLYO TOU PAVTACTLXOU.
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