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Why we need Quantum Gravity

Since every interaction we are aware of is of quantum nature we expect
the same to be true for Gravity. Except for that, the singularities that arise
in GR imply that it is only an effective description of the physical reality
and not a fundamental theory.
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Why it's difficult to quantize Gravity

Two primary reasons
@ The standard Dirac procedure leads to Wheeler-DeWitt equation
which is ill defined.

@ The standard QFT-inspired split g, = 7, + hy, leads to a
non-renormalizable theory.
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The spirit of LQG

LQG is a background-independet, non-perturbative theory of Quantum
Gravity from the Relativist's perspective spacetime <> gravitational field.
The quantum object considered is spacetime itself. There are two versions
of the theory; the canonical and the covariant. Here we present the

covariant.
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The triplet of CLQG

(H, A, W)

o H: Hilbert space

o A: Set of operators

@ W: rule for Dynamics. Here the path integral
We are going to construct everything step by step.
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The essence of CLQG in one picture

W ~ fq,K D[g]e%SHE[Q]

q, K
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Action

Slglen = [ d*x\/—gR]g]
e = €0y
J _ 5/

ej'e
e;B e, —5’3

Cal = gaﬁe/ﬂ
g = gapdx®dx? = eqeldxdx® = eqie5 M dxdx’ = ejen = e

/

o When e/ — ALeX, g — g. Local SO(1,3) symmetry.
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Action

Slelen = [ d*x|det e|R]e]

O Nel Ae? Aed = det(e)d*x
Senle]l = [ 2 nel Ae? A e3R(e)
R(e) — %GIJCDGCDKLRUKL(‘E)
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Action

Slelen = [ d*x|det e|R]e]

O Nel Ae? Aed = det(e)d*x
Senle]l = [ 2 nel Ae? A e3R(e)
R(e) — lGUCDECDKLRIJ ( )
SEH[e] 2f eAe J/\FIJ( )
FKL .= RKL jge? A eB

_ 1 I J
*(e VAN e)K,_ = 5€KLe Ne
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Action

o Seyle]l = [*(e Ae) A Fle]
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Action

o Seyle]l = [*(e Ae) A Fle]
e Palatini formulation of GR: Sp[g,T] = [ d*x/—gRlg,T]
o We do the same here: Sple,w] = [ (e Ae) A Flw]
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Action

o Seyle]l = [*(e Ae) A Fle]
e Palatini formulation of GR: Sp[g,T] = [ d*x/—gRlg,T]
o We do the same here: Sple,w] = [ (e Ae) A Flw]

e We add the extra term %f e A e A Flw] where v is called the
Barbero-Immirzi parameter.
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Action

o Seyle]l = [*(e Ae) A Fle]
e Palatini formulation of GR: Sp[g,T] = [ d*x/—gRlg,T]
o We do the same here: Sple,w] = [ (e Ae) A Flw]

e We add the extra term %f e A e A Flw] where v is called the
Barbero-Immirzi parameter. This corresponds to the canonical
transformation from ADM variables to the Ashtekar variables and
doesn’t affect the classical EOM.
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Action

Senle] = [*(e A e) A Fle]
Palatini formulation of GR: Sp[g,l] = [ d*x/—gR|g,]
We do the same here: Sple,w] = [ (e Ae) A Flw]

We add the extra term %f e A e A Flw] where v is called the
Barbero-Immirzi parameter. This corresponds to the canonical
transformation from ADM variables to the Ashtekar variables and
doesn’t affect the classical EOM.

%fe NeA Flw] = %fd“x\/—ge“”PURw,pg — 0 when on shell
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Action

Senle] = [*(e A e) A Fle]

Palatini formulation of GR: Sp[g,l] = [ d*x/—gR|g,]

We do the same here: Sple,w] = [ (e Ae) A Flw]

We add the extra term %f e A e A Flw] where v is called the
Barbero-Immirzi parameter. This corresponds to the canonical
transformation from ADM variables to the Ashtekar variables and
doesn’t affect the classical EOM.

%f eNeA Flw] = %f d*x\/=g€""’ Ryps — 0 when on shell

(Analogy with QCD Sgcp = [ FA*F +0gcp [ F A F)
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Action

e Holst action Syle,w] = [ <*(e Ae)+ %e A e> A Flw]
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Action

Holst action Syle,w] = [ <*(e Ae)+ %e A e> A Flw]
Sule,w] = [ Ble] A Flw]
Ble] .= (e ne)+ %e A e. Simplicity constraint

This type of theories are called “BF" theories and are well-studied.
GR is special because the bivector B is simple.
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Action

Holst action Syle,w] = [ <*(e Ae)+ %e A e) A Flw]

Sule,w] = [ Ble] A Flw]
Ble] .= (e ne)+ %e A e. Simplicity constraint

This type of theories are called “BF" theories and are well-studied.
GR is special because the bivector B is simple.

@ F =dw+ w Aw, the usual field strength of gauge theories. w is an
so(1,3) or equivalently s/(2,C) valued form.
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Action

Holst action Syle,w] = [ <*(e Ae)+ %e A e) A Flw]

Sule,w] = [ Ble] A Flw]
Ble] .= (e ne)+ %e A e. Simplicity constraint

This type of theories are called “BF" theories and are well-studied.
GR is special because the bivector B is simple.

@ F =dw+ w Aw, the usual field strength of gauge theories. w is an
so(1,3) or equivalently s/(2,C) valued form.

@ On a t = const boundary, B is the derivative of the action with
respect to dw/dt, since the quadratic part of the action is ~ B A dw.
Thus B is the momentum canonical to the connection, thus related to
the Lorentz transformations.
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Linear Simplicity Constraints

Pick a spacelike surface ¥ that bounds spacetime. n; is the vector normal
to the surface. We can decompose B into its electric and magnetic part

o Electric part: K! = n;BY
o Magnetic part: L' = ny(xB)M

Charalampos Theofilis Geometry Transition in Covariant LQG 12 /58



Linear Simplicity Constraints

Pick a spacelike surface ¥ that bounds spacetime. n; is the vector normal
to the surface. We can decompose B into its electric and magnetic part

o Electric part: K! = n;BY

o Magnetic part: L' = ny(xB)M
o mK'=nnB” =0

o niL' =niny(xB)Y =0

o KI - KI

o Ll 1
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Linear Simplicity Constraints

Choose locally nj = (
i

1,0,0,0) (time gauge). Then
Ki=BP [ =1c,Bk
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Linear Simplicity Constraints

Choose locally n; = (1,0,0,0) (time gauge). Then
K'= B0, L' = 1€ B*ltis very easy to show that

o K= 'yE. This is called the Linear Simplicity Constraint
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Linear Simplicity Constraints

Choose locally n; = (1,0,0,0) (time gauge). Then
K'= B0, L' = 1€ B*ltis very easy to show that
o K= 'yE. This is called the Linear Simplicity Constraint.

@ Physical meaning of K and L: B is the Generator of Lorentz
transformations. In the time gauge K' is a boost in the /i-direction
and L' is the generator of the rotation around the j-axis.
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SU(2), SL(2,C) and the Yr map

SL(2,C) is the double cover of SO(1,3). It has six generators and two

Casimirs C; = |K|?2 — |L]2 and G, = K - L. The unitary irreps are labelled

by p € R and k € Z/2. The Hilbert space V(P:K) is infinite dimensional

and can be decomposed as V/(PK) = D= H/, where H/ is the usual

2j+1 dim irrep space that carries the usual j spin representation of SU(2).
e states in V(PK): |p k;j, m)
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SU(2), SL(2,C) and the Yr map

SL(2,C) is the double cover of SO(1,3). It has six generators and two
Casimirs C; = |K|> — |L|> and C; = K - L. The unitary irreps are labelled
by p € R and k € Z/2. The Hilbert space V(P:K) is infinite dimensional
and can be decomposed as V/(PK) = @f:",f H/, where H/ is the usual
2j+1 dim irrep space that carries the usual j spin representation of SU(2).
e states in V(PK): |p k;j, m)
@ Choose p = vk and k = j thus these special states have the form
174, Ji J, m)
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SU(2), SL(2,C) and the Yr map

SL(2,C) is the double cover of SO(1,3). It has six generators and two
Casimirs C; = |K|?2 — |L]2 and G, = K - L. The unitary irreps are labelled
by p € R and k € Z/2. The Hilbert space V(P:K) is infinite dimensional
and can be decomposed as V/(PK) = @f:",f H/, where H/ is the usual
2j+1 dim irrep space that carries the usual j spin representation of SU(2).
e states in V(PK): |p k;j, m)
@ Choose p = vk and k = j thus these special states have the form
174, Ji J, m)
° <Ki — fyLi> ~ 0 in the large j limit. Central idea of the EPRL model
that we will use.
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SU(2), SL(2,C) and the Yr map

Both |j, m) and |vj, j;j, m) totally described in terms of j and m. Thus H/
and V/(P=1:k=J) are isomorphic.

Y,: " — v/ (p=1i:k=j)

Uy m) — |nj,JiJ, m)
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Summary

GR can be formulated as a BF theory with SL(2,C) symmetry in the bulk,
SU(2) symmetry on the boundary together with the linear simplicity
constraint K = L on the boundary.
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Elementary Geometry

The most economical and efﬁcient way to describe a tetrahedron is in
terms of four vectors Lo7 L1, L27 L3 normal to the faces that satisfy the
closure condition C := Lo + L1 + L2 + L3 = 0. Degrees of freedom:

4 x 3 —3—3 =06, the same number as the number of edges.

Charalampos Theofilis Geometry Transition in Covariant LQG 17 /58



Elementrary Geometry

° ]Ef| = area of the triangle f
) V2 = %(El X EQ) . E3
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Quantum Spacetime

In GR spacetime < gravitational field. Thus, quantum gravitational field
<> quantum spacetime. We focus on space. We study a quantum of space
which we take to be a tetrahedron and we promote every L;} into an
operator that satisfy some algebra

o [Li 14 =
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Quantum Spacetime

In GR spacetime < gravitational field. Thus, quantum gravitational field
<> quantum spacetime. We focus on space. We study a quantum of space
which we take to be a tetrahedron and we promote every L;} into an
operator that satisfy some algebra

o [Li 14,] = i€l Lksg

o 2 =81YhG, Ly = VhG
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Quantum Spacetime

In GR spacetime < gravitational field. Thus, quantum gravitational field
<> quantum spacetime. We focus on space. We study a quantum of space
which we take to be a tetrahedron and we promote every L} into an
operator that satisfy some algebra

o [Li 14,] = i€l Lksg

o 2 =8myhG, Ly = VhG

o A=13\/j(i+1), j=0,1/2,1,3/2,... The areas are quantized!
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Quantum Spacetime

A candidate for the Hilbert space is H = Hj, ® Hj, @ Hj, ® Hj,.
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Quantum Spacetime

A candidate for the Hilbert space is H = H;, ® H;, ® Hj, ® H ;. But we
also have to impose the closure condition CU=0 VeH.
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Quantum Spacetime

A candidate for the Hilbert space is H = H;, ® H;, ® Hj, ® H ;. But we
also have to impose the closure condition Cv=0 Vv € H. Thus, the
Hilbert space is K := Invsy(o)[Hj, @ Hjy @ Hj, @ Hj]
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Quantum Spacetime

A candidate for the Hilbert space is H = H;, ® H; ® H;, ® H;;. But we
also have to impose the closure condition Cv=0 Vv € H. Thus, the
Hilbert space is K := Invsy(o)[Hj, @ Hjy @ Hj, @ Hj]

o dim(K) = min(jo + j1,j2 +j3) — max(ljo — jil, L2 — jal) + 1

e dim(K) = min(jo + j1,Jj2 +j3) — max(ljo — ji|,[2 —J3|) +1 >0

@ The volume operator is well-defined in K and has discrete eigenvalues.
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Quantum Spacetime

A state in K has the form |jo, 1, j2,/3, V).
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Quantum Spacetime

A state in KC has the form |jo, j1,j2,/3, v).Five numbers instead of six! The
tetrahedron is fuzzy!

Charalampos Theofilis Geometry Transition in Covariant LQG 21/58



Triangulation and Dual Triangulation

A triangulation in two dimensions. Each edge of the dual graph, shown in
red, is common to two faces. As an example, the segment in dotted black

is dual to the edge in dotted red, which is common to the two faces in
pale red.
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Triangulation and Dual Triangulation

Triangulation and 2-complex in three dimensions

Bulk C Boundary I' = aC
Triangulation Dual Triangulation Dual

ane] n

tetrahedron vertex o’ triangle node e
y

triangle A edge vt segment ,~* link ./(.

segment " face O‘" apex . no dual
paald
apex . no dual
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Triangulation and Dual Triangulation

Triangulation

4-simplex @
tetrahedron &

triangle

segment

apex

Charalampos Theofilis

Dual
vertex o
W
edge et
face Of"
ot
no dual
no dual

Triangulation and 2-complex in four dimensions

Boundary ' = aC

Triangulation

tetrahedron &

triangle A

segment _—*

apex .

Geometry Transition in Covariant LQG

Dual
node o
link /J.

no dual

no dual
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How to measure curvature

@ In 2D: Pick a frame and take a tour around a “hinge" by following
the edges. If the frame returns rotated you have detected curvature.
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How to measure curvature

@ In 2D: Pick a frame and take a tour around a “hinge" by following
the edges. If the frame returns rotated you have detected curvature.

@ In 3D: Pick a frame and take a tour around a segment by following
the edges. If the frame returns rotated you have detected curvature.
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How to measure curvature

@ In 2D: Pick a frame and take a tour around a “hinge" by following
the edges. If the frame returns rotated you have detected curvature.

@ In 3D: Pick a frame and take a tour around a segment by following
the edges. If the frame returns rotated you have detected curvature.

@ In 4D: Pick a frame and take a tour around a triangle by following the
edges. If the frame returns rotated you have detected curvature.
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How to measure curvature

Inside the 4D bulk the frame rotation is the outcome of the individual
rotations that take place every time we jump from one 4-simplex to the
other by following the edges. Thus, we assign to each edge an group
element g € SL(2,C).
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How to measure curvature

Inside the 4D bulk the frame rotation is the outcome of the individual
rotations that take place every time we jump from one 4-simplex to the
other by following the edges. Thus, we assign to each edge an group
element g € SL(2,C).By the same reasoning the assign to each link of the

boundary dual graph an element h € SU(2). The boundary dual graph has
now the structure of a spin network.
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Hilbert Space

Hilbert space is defined on the boundary. The only variables we have are
the SU(2) elements of total number L. Thus, a candidate is
Hr = LL[SU(2)H]
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Hilbert Space

Hilbert space is defined on the boundary. The only variables we have are
the SU(2) elements of total number L. Thus, a candidate is

Fr = L,[SU(2)!]. But we have the freedom to choose a rotated frame
and do the same thing. In total we have N frames where N is the total
number of the nodes of the spin network. Thus, the Hilbert space that
corresponds to a triangulation I is Hr = Lo[SU(2)L/SU(2)V]r.
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Hilbert Space

Hilbert space is defined on the boundary. The only variables we have are

the SU(2) elements of total number L. Thus, a candidate is

Fr = L,[SU(2)!]. But we have the freedom to choose a rotated frame

and do the same thing. In total we have N frames where N is the total

number of the nodes of the spin network. Thus, the Hilbert space that

corresponds to a triangulation I is Hr = Lo[SU(2)L/SU(2)V]r.

° an =0 for W € Hr, where 5,, = E/l + E/Z + E/3 + E/4 is the

generator of the total SU(2) transformation of the n node.
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Operators

In standard QM he have the operators
U(x) = xV(x), pY(x) = —in?¥X) Here:

dx
o hyW(h)) = hW(h)
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Operators

In standard QM he have the operators
U(x) = xV(x), pY(x) = —in?¥X) Here:

dx
o hyW(h)) = hW(h)
@ What about the derivative?
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Operators

There exist natural derivatives in SU(2) which correspond to the
left-invariant vector fields (J'W)(h) = —i%\U(he”i)]t:o, where 7/
To be dimensionally correct we use the operators

° E/ = 87T’)/77,GJ7.

ol
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Operators

There exist natural derivatives in SU(2) which correspond to the
left-invariant vector fields (J/W)(h) = —i & W (he'™)|¢—o, where 7/
To be dimensionally correct we use the operators

o L, = 8myhGJ;. Well-defined in Fr but non in Hr-.

ol
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Operators

There exist natural derivatives in SU(2) which correspond to the
left-invariant vector fields (J'W)(h) = —i%\U(he”i)]t:o, where 7/
To be dimensionally correct we use the operators

o L, = 8myhGJ;. Well-defined in Fr but non in Hr-.

@ Easy! We consider Gy = E/ . E’,

ol
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Operators

There exist natural derivatives in SU(2) which correspond to the
left-invariant vector fields (J'W)(h) = —ijtlll(he”i)]t:o, where 7/ = —%i.
To be dimensionally correct we use the operators

o L, = 8myhGJ;. Well-defined in Fr but non in Hr-.

@ Easy! We consider Gy = E/ . E’,

@ When | = /" the norm A; = /G is of course the area of the triangle
punctured by the link / with spectrum A; = 8myhG+\/Ji(ji + 1)
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Operators

There exist natural derivatives in SU(2) which correspond to the

left-invariant vector fields (J/W)(h) = —i & W(he'™)|¢—o, where 7/ = —%i.
To be dimensionally correct we use the operators

o L, = 8myhGJ;. Well-defined in Fr but non in Hr-.

@ Easy! We consider Gy = E/ . E’,

@ When / = /" the norm A; = /G is of course the area of the triangle
punctured by the link / with spectrum A; = 87vAG+\/ji(ji + 1)

o V2 =2(L, x L)L,

e State: |, j, vp)
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The path integral of a BF theory

BF path integral: Z = fDBDwe%fBAF.
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The path integral of a BF theory

BF path integral: Z = fDBDweifBAF.B is a two-form, thus integrated
on triangles or faces of the dual graph. w is an one-form and is integrated
on edges of the dual graph. From it we extract a group element U, via

U. = Pel“e. Hence, we have

o /= fDBf fG dUeeLfil Zf Bfl_.[eef Ue
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The path integral of a BF theory

BF path integral: Z = fDBDweifBAF.B is a two-form, thus integrated
on triangles or faces of the dual graph. w is an one-form and is integrated
on edges of the dual graph. From it we extract a group element U, via
U. = Pel“e. Hence, we have

o Z= [ DBy [, dUeen >r BrIlecr Ue

o From [ dpe ~ §(x) we can write Z = [ dUe [Tf 6(ITecr Ue)
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The path integral of a BF theory

Z = [¢dUe TT 8(Tecr Ue)

By definition g\,e_1 = Zev
Z = fG dgev Hf 6(gvegev’gv’e’ge’v”-")

Charalampos Theofilis Geometry Transition in Covariant LQG 31/58



The path integral of a BF theory

Z = fG dgev Hf 5(gvegev’gv’e’ge’v”~-')
We focus on a face f and we trade the group element that terminates in
vertex and the group element that emanates from the same vertex with

one group element h,r. We do it for every vertex of the face and for every
face in the bulk.

Z= fG’ dhvf fG dgev Hfd(hvfhv’f---) Hv erv(s(ge’vgvehvf)
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The path integral of a BF theory

Z = fG’ dhvf fG dgev Hf (5(hvfh\,/f...) Hv erv 5(ge’vgvehvf)-
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The path integral of a BF theory

Z = [c dhyr [ dgev [T 0(hurhur...) TT, TTrey 0(8erv8uehyr) By
rearranging some terms we can write it as

o Z f— fG/ dh\/f Hf 5(hvf’hvlf) HV AV(hvf)
o A(hv) = [ dgev [Irey 0(8erv8uehyr) is called the vertex amplitude.
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The path integral of a BF theory

Z = [c dhyr [ dgev [T 0(hurhur...) TT, TTrey 0(8erv8uehyr) By
rearranging some terms we can write it as

° Z—fG/ dhyr [1r 0(hurhyr...) TT, Av(hur)
o A fG dgev [ ey 0(gervguehyr) is called the vertex amplitude.
@ The delta functlon on a group can be expanded as

6(U) =52 o0 (2js + 1)Tr;, [U] (similar to 6(0) = >, e™).
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The path integral of a BF theory

Z = [c dhyr [ dgev [T 0(hurhur...) TT, TTrey 0(8erv8uehyr) By
rearranging some terms we can write it as

°© Z= fc/ dhur [T 6(hvehyrr...) T, Av(hur)
o A fG dgev [ ey 0(gervguehyr) is called the vertex amplitude.

@ The delta functlon on a group can be expanded as
6(U) =52 o0 (2js + 1)Tr;, [U] (similar to 6(0) = >, e™).

o Av(hir) = Z{Jf} f(; dgev [1¢(2jF + 1) Trj [gervgve hur]
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The path integral of a special BF theory, GR

AV(th) = Z{Jf} fG dgeV Hf(2./f + ]')Trjf [ge’vgvehvf]

@ A vertex is dual to a 4-simplex thus, vertex amplitude <> 4-simplex
amplitude
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The path integral of a special BF theory, GR

@ A 4-simplex is bounded by five tetraedra < five nodes around the
vertex, one on every edge.

@ Between the 5 nodes there are 10 links that correspond to the 10 h,r.
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The path integral of a special BF theory, GR

Now, we need to remember that we are not quantizing a general BF
theory but GR. GR is characterised by SL(2,C) symmetry in the bulk,
SU(2) on the boundary plus K = «L on the boundary.

@ hyr are assigned to the links of the boundary of the 4-simplex thus
are SU(2) elements.
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The path integral of a special BF theory, GR

Now, we need to remember that we are not quantizing a general BF
theory but GR. GR is characterised by SL(2,C) symmetry in the bulk,
SU(2) on the boundary plus K = «L on the boundary.

@ hyr are assigned to the links of the boundary of the 4-simplex thus
are SU(2) elements.

@ g., are assigned to the edges of the bulk dual graph thus are
SL(2,C) elements.

° Z= fSU thf Hf 5(hvfh ’f---)A (hvf)
® Avlhur) = Z{Jf} f5L 2,C) 8ev [1:(2jF + 1)Trj, [gerv8ue hf]
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The transition amplitude

° A ( ) Z{_]f} fSL 2,C) dgev Hf(2ff + )TrJf[ge 'vBve vf]

@ The trace in the vertex amplitude seems to involve both SU(2) and
SL(2,C) elements. Odd, but easy to fix
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The transition amplitude

Av(hvr) = Z{jf} fSL(z,C) dgev [1¢(2)F + 1) Trj; [8ervguehv]
The trace in the vertex amplitude seems to involve both SU(2) and
SL(2,C) elements. Odd, but easy to fix

AV(th) = ij fSL(2,(C) dgev Hf(2./f + 1)Trjf[y’;rge/vgve Y’yhvf]
TylYigYyhl =X, (i, m| YigY,hlj, m) = - ,
S S G ml YigYs L, n) Gyl hlj,m) = 32, DS () DS (k)

Charalampos Theofilis Geometry Transition in Covariant LQG 37/58



The transition amplitude

o We(hy) NJSU(z dhyr [T 0(hurhys...) TT, Av(hur): function of the
variables on the boundary
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The transition amplitude

o We(hy) NJSU(z dhyr [T 0(hurhys...) TT, Av(hur): function of the
variables on the boundary

@ The final transition amplitude is abstractly defined as the limit in the
most possible refined truncation
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The transition amplitude

o We(hy) NJSU(z dhyr [ 17 0(hyrhyr...) TT, Av(hyr): function of the
variables on the boundary

@ The final transition amplitude is abstractly defined as the limit in the
most possible refined truncation

o UV finite.

@ There can be IR divergences but the version of the theory with
cosmological constant is proved to be IR finite.
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Semiclassical states

2

In the boundary we have a semiclassical (also known as coherent) state of
geometry. Semiclassical states are quantum states that resemble classical
states as much as possible.

W~ fq,K D[g]e%SHE[g]

¢, K
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Semiclassical states

In standard QM a semiclassical state (Gaussian wavepacket) has the form

v po(x) x [ dpe=(P=PoY’tipoy(p x), where ¢(p,x) = e P It is
peaked in momentum pg and position xg.
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Semiclassical states

In standard QM a semiclassical state (Gaussian wavepacket) has the form
2
Wt (x) o [ dpe= (PP tHipxoy(p ), where ¥)(p, x) = e X It is
peaked in momentum pg and position xp. In LQG a semiclassical state has
the form ‘Ur H, (hf) Z{_][} HZ d € —Ge= WZ) £ Gee wrup s(é)v”t(e)(hf)

where ¢r_l[, s(g),nt (hg) st,mt Djjfmt( t(f)) Djmtms(he) Djnzq JZ( ))

2\" . .
ot=|(% with n € [0, 2] controls the spread of the Gaussians.

Since the area A is macroscopic t < 1.

o wy = "gtt 2 where 1y € RT is related to the area dual to the link
£ and is taken > 1.

@ (y € [0,4m) is the distributional extrinsic curvature.

ns,, nodes of the source and the tagret of the link £.

® Mty

Charalampos Theofilis Geometry Transition in Covariant LQG 40/58



The transition amplitude again

An equivalent and useful form of the transition amplitude is

We(hy) = NfSL(2,(C) (IT, dgve) (TTsei Af) (ITser Ae(he)) where Af are the
internal (bulk) faces and A¢(hy) are boundary faces.

(a) Bulk face (b) Boundary face
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Bulk face amplitude

Af = ij d;; Trj, [Hvef Yigil gver Y] =
> die Trje [Ygevgier YYTge wgver Y . Yigmymgume Y] for f € B
where Tr;, [Hvef yf g\,e e/ Y}

Z{me} Jf’ryé:jffr)n ,(Bev8uer )Dﬁ’#f’/jff)m ,(8erviguer) .- . D{IR. ) JeMe (8emu( &yrre)

Jem
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Bulk face amplitude

To calculate this we are going to work in the principal series
representation
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Bulk face amplitude

To calculate this we are going to work in the principal series
representation. A representation space of the j-irrep of SU(2), V/, is
spanned by the homogeneous complex polynomials of degree 2;.

(Z) {#] ZJ+sz , me {_.j7~--).j}7 zZ= (20721)T S
C2. By acting on P with the Y map we obtain the principal series
representation of SL(2,C)

¢$,?jJ)(z) =Y Pj,;,(Z) = \/F<z\z>i7j—j—l P’,;,(z).

=
s
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Bulk face amplitude

To calculate this we are going to work in the principal series
representation. A representation space of the j-irrep of SU(2), V/, is
spanned by the homogeneous complex polynomials of degree 2;.

(Z) [#] ZJ""mZJ s mE{—j,...,_j}7 Z:(ZQ,Z]_)T c

C2. By acting on P with the Y map we obtain the principal series
representation of SL(2,C)

o039)(2) = v 1= Pli(z) = \/g (2]2) 71 Pl (z). Then,

Dj(/ryrjl’ij’(g (jm| YigY |jm') = [op1 dQ ¢(%’)( )¢(W (g7z) where
(29dz — 21dz%) A (2°dZ! — z1dZ?) is a homogeneous and
)

— 2
( C) invariant measure on C?\{0} ~ CP?
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Bulk face amplitude

The face amplitude takes the form
Ar = 2 ) die TTees % Jepr dQef eflevezd  vf € B where

R (Zv’e’f‘zve’f>2 ; (Zve’flzve’f>
Sf[gve, sz] T IOg <Zvef|zvef><zve’f‘zve’f> T ol IOg (Zef|Zyer)

YAREES g\je 2y , ZLysi= gje, Zyf
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Boundary face amplitude

As(he) =

S i T | Yigntge Y (Tuer Y i) 8 Y) Y10 ot Y for
fel
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Boundary face amplitude

As(he) =

-1 -1 -1 -1
> di Tt |:YTgvn’ gverY ([Luer Yigse 80 Y) Y800 8utmn YN, } for
f € I'. By the same technique of the principal series representation we
obtain.

Trjf [YTgv_n’lgVe' Y (Hvef YTgv_e} 8ve Y) YTgV_(nl)e(n)gv(”)n Yhﬁ_l} =

. . o . . .
(Heef & Jepr dQvef> <7£ Jicprys dQnen/) eJiSileve 2l HiiBilgm-he-zd] | where

BZ[gvm hf? Zf] =

2
<Zvn/f|Z£>2 <hzzé|zv(")nf>

108 7,17, v ey 1108 (2e[20)(Z ) g1 Z ) 1)

z z
+ iylog o2 s )

vn/f Zvn/f
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The full amplitude

N> /5 oo (Hdgve) <H di [ ] i /C 1dﬂvef> x

feC ecf

w W

< dﬁnén’) e2_fec IS per JiBe
1
ver (CP )
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The homomorphic amplitude

We contract the full amplitude with the coherent states to impose the
semiclassicality of the geometry

W' (He) = <WC‘\UI¥,HZ> = fsu(z)L ([Teer dhe) We(he) w?,He(hf)
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Approximations

@ We are going to consider tree-level two-complexes 7T there are no
faces which lie completely in the bulk. W (H,) =
_ P 2 - . . )
NZ{je}eDfJ puj et Xolie—we)? iy g Cole ng!z dpg.0 e ieFe(g.zing(m))

= 2 ,0n 2
o Filgue; Znri Nn(p)] = 5g[gve, Zng] + log <?;(Z)I‘ZZ:Z>> g"/j";tlf;g

(Zuwolzo0)* (20 Z () ) (Z () o Z o) e
I vn n I | nf nf
Og (Zvn’ZIZvn’é>< (")nﬁ‘ ( ) > + ’7 Og <Zvn/l‘zvn/2>

o ;= (err Heefdje) (err dJe)
° ng,z dpg.q =
fSL(27<C) (I1, dgve) (err [eer Jopr dﬁvef) (err f(CPI)“ dﬁs“)

e DX: an appropriate domain that satisfies the triangular inequalities
between the spins

@ jy=MXdag+s; with wp= gy
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Tree-level holomorphic amplitude

W (Hy) NfD pidpg oU(g, z; t, Hp) ?H(a08Z0) where
(g, H) =TT, (T epn o 76 dszmn)
Y (ar, &,2iy(n)) = D_p(acFe(g, zngny) + ivCoar)
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Tree-level holomorphic amplitude

W (Hy) NfD pidpg oU(g, z; t, Hp) ?H(a08Z0) where
U(g,zt, H) = Hz (ngeok e St tH(CetFe(g zingn ))58)

Y (ar, &,2inyn)) = D_p(acFe(g, zngn)) + ivCoar).
Stationary phase theorem:
WH(He) =
N Yo AV He(ag, ngn) U (8o, 263 t, Hi) X H082m0) (14 O(A71))
@ c: the critical points. Each critical point comes with a 2V degeneracy,
corresponding to the different configurations for the orientation s(v)
where s(v) takes the values £1 on each vertex of C

@ H.: the Hessian of ¥ which we are going to ignore
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Evaluation at critical points
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Evaluation at critical points

o Fu(g,ziny(n)) = —iv Ge(Sc(v)s @, Nen) ), Where du(se(y), ac, Ny(ny) is the
Palatini deficit angle which also depends on s(v) and reduces to the
usual Regge deficit angle when s(v) is uniform, i.e. it is either +1 or
—1 for all vertices of C

© Ulge.zeit, He) = [T, (X cpp e G (Emm))x )
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Evaluation at critical points

o Fu(g,ziny(n)) = —iv Ge(Sc(v)s @, Nen) ), Where du(se(y), ac, Ny(ny) is the
Palatini deficit angle which also depends on s(v) and reduces to the
usual Regge deficit angle when s(v) is uniform, i.e. it is either +1 or
—1 for all vertices of C

© Ulge.zeit, He) = [T, (X cpp e G (Emm))x )

@ The sum is dominated by the exponential damping factor exp(—sg t).
It can reasonably be expected that due to this exponential damping
the sum converges very fast and that it is therefore a good
approximation to remove the cut-off k and sum s; from —oo to oo for
all el

° chf:—oo e—Sit+i(Ce—de)se
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Evaluation at critical points

00 —s2t+iv(Co—be)se —
b 2552700 € ¢ ( ) _

2 . 2
Qﬁe*%@z*wy 93 ( ”W(Ci—@z) ’ e‘“{)

o U3(u,q):=1+2>7", g™ cos(2nu) :third Jacobi theta function
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Evaluation at critical points

00 —s2t+iv(Co—be)se —
b 2552700 € ¢ ( ) _

Qﬁe*%(Q*WVﬁ?, (”W(QM f)

o U3(u,q):=1+2>7",q" cos(2nu) :third Jacobi theta function

. w2
© U(ge,zei t, Hp) ~ HZZ\/>e T (Cem00) U3 <—'M(Cf¢5),e_4t>
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Final estimation of the transition amplitude

. 7r2
g u(gC,Zc;t, Hf H£2\/>e At Q ¢Z)2 <IW’Y(Cf_¢Z)’e4t>
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Final estimation of the transition amplitude

. 7r2
g u(gc,Zc;t, Hf H£2\/>e At Q d)e) 19 <IW’Y(€$_¢£)’e4t>

o If v < 1 (as it seems to be from the LQG derived BH entropy
formula) then 03 ~ 1

° u(gC7Zc;ta HZ ngfe pra Q ¢Z)2
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Final estimation of the transition amplitude

. 7r2
g u(gc,Zc;t, Hf H£2\/>e At Q d)e) 19 <IW7(Cf_¢£)’e4t>

o If v < 1 (as it seems to be from the LQG derived BH entropy
formula) then 03 ~ 1

° u(gC7Zc; t, HZ H( 2\/>e At CZ ¢Z)2
o By substituting everything to the transition amplitude to obtain the
estimation W}(HE) ~~

*’YZ .
NS ooy AV(@) [T, e 7 (@ +(G=onee (1 4 O(A-1))
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Applications

@ Black Hole to White Hole transition p ~ e "¢

@ Bouncing Cosmology?
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Future work

@ What happens when we include bulk faces?
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Thank you!

Thank you!
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The sign

° Senlgl = [ d*x\/—det(g)R
o Stle] = [*(ene)AF
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The sign

Senlgl = [ d*x/—det(g)R
Stle] = [*(ene)AF
Senle] = [ d*x|det(e)|R][e]
Stle] = [ d*xdet(e)R]e]
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The classical limit

AV ~ CeisRegge + C/efiSRegge
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Why there is no critical parameter

In the path integral of harmonic oscillator if we consider g = g(t) then

Snlgn) =N, mw — %q% We then take the limit N — oo and
Q—0.
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Why there is no critical parameter

In the path integral of harmonic oscillator if we consider g = g(t) then
2
Sn(gn) = 2N mw — %q% We then take the limit N — oo and

n=1
Q — 0.If we consider t = t(7) and g = g(7) then

— N qn *an 1 2.2
Sy = anl %ﬁ o (t”Jrl B t")iw qn-

58 /58
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Why there is no critical parameter

In the path integral of harmonic oscillator if we consider g = g(t) then
2
Sn(gn) = 2N mw — %q% We then take the limit N — oo and

n=1
Q — 0.If we consider t = t(7) and ¢ = g(7) then
N nt1—qn)? 1
Sv=>"N, %%'— (tn+1 — tn)5w?q2.We only have to take
N — oo, there is no critical parameter!
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