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Key feature: high ionisation

charge

e =z/B

velocity: B =

Electric charge

Bethe-Bloch formula

High ionisation (HI) possible when: MoEDAL detectors have a
= multiple electric charge (H**, Q-balls, etc.) =n x e threshold of z/f ~ 5 - 10
= very low velocity & electric charge, i.e. Stable Massive Charged Particles (SMCPs)

= magnetic charge (monopoles, dyons) = ngy=n x 68.5 x e

* asingly charged relativistic monopole has ionisation ~4700 times MIP!!

= any combination of the above

dE 7 S 2mc' B’ Klgl ]

_E = K;‘-g7 |_l / T— 5— B(g) Magnetic charge

m Ahlen formula

Particles must be massive, long-lived & highly ionising to be detected at MoEDAL
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MoEDAL sensitivity

Cross-section limits for magnetic and electric charge assuming that:

=~ one MoEDAL event is required for discovery and ~100 events in the other LHC detectors
o integrated luminosities correspond to about two years of 14 TeV run

14 TeV PYTHIA Drell-Yan, m=1000 GeV 14 TeV PYTHIA Drell-Yan, m=1000 GeV
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De Roeck, Katre, Mermod, Milstead, Sloan, EPJC72 (2012) 1985 [arXiv:1112.2999]

MoEDAL offers robustness against timing and
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MOoEDAL physics programme

Magnetic Searching for
monopoles .
SUSY » mas.sme,
R-hadrons i extra long-lived &
dimensions A . .
sleptons highly ionising
H - hl particles
ighly
Doubly

cl';le?;ggid io n iSi ng D-matter
oarticles

Black-hole - Quirks ~) D
Bl MOoEDAL physics program
Int. J. Mod. Phys. A29 (2014)
Q-balls 1430050
[arXiv:1405.7662]
Q )




The MoeEDAL cetector
COMPONECRES
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MoEDAL detector

DETECTOR SYSTEMS

@ Low-threshold NTD
(LT-NTD) array
« z/B>~5-10
@ Very High Charge
Catcher NTD
(HCC-NTD) array
* z/B>~50
@ TimePix radiation
background
monitor

MOoEDAL is unlike any other LHC experiment: (@ Monopole Trapping
detector (MMT)

= mostly passive detectors; no trigger; no readout

= the largest deployment of passive Nuclear Track Detectors (NTDs)
at an accelerator

= the 15 time trapping detectors are deployed as a detector



Corfu2017 V.A. Mitsou

& HI particle detection in NTDs

z//a’

» Passage of a highly ionising particle through the __ originalsurface
plastic NTD marked by an invisible damage zone S Tv%t --------- i
(“latent track”) along the trajectory % l -

» The damage zone is revealed as a cone-shaped
etch-pit when the plastic sheet is chemically postetched surface__ ::::::::

etched
» Plastic sheets are later scanned to detect etch-pits

CR39

3 sheets each

500 um thick 1
MAKROFOL X
3 sheets each
200 um thick [

nium face plat

N 3
B3

Looking for
aligned etch pits
in multiple sheets
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2012: LT-NTD
NTDs sheets kept in boxes mounted

onto LHCb VELO cavern walls

2015-2016: LT-NTD
Top of VELO cover
Closest possible
location to IP

2015-2016: HCC-NTD
Installed in LHCb acceptance
between RICH1 and TT
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TimePix radiation monitor

» Timepix (MediPix) chips used to measure online the

sensor chip (e.g. silicon)

high resistivity n-type silicon

radiation field and monitor spallation product Sconjayer ,. aluminjum layer
background oo N |

solder bumps

» Essentially act as little electronic “bubble-chambers”
» The only active element in MoEDAL

Energy [keV] singlepisel
>- ’;’J‘,:_- A |
o o
Z 200r
[0} i 10?
X
o _ | 2015 deployment
1000 - of MediPix chips
- R B in MOEDAL
i T R i )
% 100 200 —
 Of Evere: 28 Pixel No. X * 256x256 pixel solid state detector

* 14x14 mm active area
Sample calibrated frame in MoEDAL TPX04 * amplifier + comparator + counter + timer
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MMT: Magnetic Monopole Trapper

» Binding energy of monopoles in nuclei
with finite magnetic dipole moments of
(100 keV)

« MMTs analysed with superconducting
guantum interference device (SQUID)

» Material: Aluminium
o |large nuclear dipole moment

o relatively cheap

» Persistent current: difference between
resulting current after and before

o first subtract current measurement for
empty holder

magnetometer current /1,
D

o if other than zero - monopole signature

Typical sample &
pseudo-monopole curves

Superconducting
Coll
Sample
(fixed to belt) Conveyor Belt ——— >
: \
" sauip
\ (sensor and electronics)
—d
5 :I T | T I T TT T TT LI | T T TT | TTTT | LI | 11T I T I:
4F- MOEDAL A sample =
- liminary sample + 1gD pseudopole =
3E preliminary L. sample - 1g_ pseudopole -
2 =
1 =
O E
i E
25 E
3 =
-4 i_ ; —i
_5 :l 11 I | - I 1111 | 11 I:’lfs\l 11 11 | 1111 | 1111 I 1111 I 1111 I 11 I:
0 50 100 150 200 250 300 350 400 450 500

Z position (mm)
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MMTs deployment 7015.2016

e |nstalled in additional

2012 locations: sides A & C, too
11 boxes each containing 18 Al rods of « Approximately 800 kg of Al
60 cm length and 2.54 cm diameter (160 kg) e Total 2400 aluminum bars

LHC bea? pipe; interaction point —= (Xx)




Results en menepole mass & charge
rom MMTS

* @8TeV JHEP 1608 (2016) 067 [arXiv:1604.06645]
* @13 TeV Phys.Rev.Lett. 118 (2017) 061801 [arXiv:1611.06817]
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Magnetic monopoles

* Motivation
= symmetrisation of Maxwell’s egs.
= electric charge quantisation

* Properties
= magnetic charge =

coupling constant = g/hc ~34

= spin and mass not predicted

Without Magnetic
Name With Magnetic Monopoles
Monopoles
Gauss's law: V. E = 4rp. V- E = 4rp.

Gauss' law for

<1
o]
II
o
<
oy

magnetism:
Faraday's law of . . BB . - OE @
induction: ~VxE= ot VX E= ot
Ampere's law . .

. . - - OF - - = OF -
(with Maxwell's VXB=§+4ﬁe VXB=§+47&'6

extension):

> HIGHLY IONISING

-

q M
Production \ Y
mechanisms

in colliders g M

Drell Yan mechanism

NS

q
\N"\N\Y
M

- M
p p I— q

J

Photon fusion Box diagram

MoEDAL improves reach of monopole searches w. J]
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[ . proto eo \
MMT2015: scanning i

. . Exposure: 0.371 fb1 of 13 TeV
» Analysed with SQUID at ETH Zirich pp collisions during 2015 )

 Excellent charge resolution (< 0.1 g,) except for outliers

g 1 | Persistent current after first
S 2 —
= woron. 3 passage for all samples
2 1= —
§ 0= e e msa::a%«wamém- =
.1f_ _f
'2: PR TRV AT H S (NN [T W RN T ST S AV RS S RIS S R _f
400 600 800 1000 1200 1400 1600 1800 2000 2200
run number
= =S R A ; Persistent current for multiple
e . .. . = measurements of candidates
= — M MoEDAL —
= 1= . -
é OE— I3 w m O a4 » « A » * « ¢ —E
£ E
N PRL 118 (2017) 061801
0 2 4 6 8 10 12 14 16 18 20 [arX|V161106817]
sample number

No monopole with charge > 0.5 g, observed i




Material description
between IP & detector

o
o
T T

al
o
T T

vertical position y [cm]

[GeV]

kin
4

E

radiation length between (-65 cm, y, z) and (65 cm, y, 2) [X]

S

longitudinal position z [cm]

MMT2015: analysis

Geometry

Kinematics

QI

*

q g

coupling > 1 = non-perturbative!

F

MoEDAL Simulatio
DY spin-1/2, m = 1000 GeV

JHEP 1608 (2016) 067

T I T e O e B A A N

6 [rad]

Event generation of Drell Yan
production

9000
8000

Propagation in ma

e Ahlen formula

e Monopole energy loss
e Stopping range

Energy loss (GeV/cm)

S

S ——
3E

arXiv:1606.01220

99,
69,
39,

d 2gD
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MMT2015: results

PRL 118 (2017) 061801

Detector: prototype of 222 kg of aluminium bars [arXiv:1611.06817]

Exposure: 0.371 fb! of 13 TeV pp collisions during 2015

10°

T | T T T T I T T T T | T T T T | T T T T I
Vs=13 TeV, 0.371 fb

R T MoEDAL

Vs =13 TeV, 0.371 fb™

MoEDAL
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* First monopole searches at 13 TeV at LHC
« First limits for magnetic charge of 5 g, and masses > 3.5 TeV
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Monopole mass limits

DY Spin 1/2

7

Magnetic charge [gp]
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MoEDAL 8 TeV

ATLAS 8 TeV

I MoEDAL 13 TeV

7.
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Excluded monopole mass [GeV]

1400

DY lower mass limits
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PRL 118 (2017) 061801
[arXiv:1611.06817]

Mass limits are highly A

model-dependent

= Drell-Yan production does not
take into account non-
perturbative nature of the large
monopole-photon coupling

Exclude low masses for

|g| = 4g, for the first time at

LHC
World-best collider limits for
gl 22¢g,



Beyone magnhelic monepoles

* What about electrically-charged particles?
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Why MoEDAL when searching SMCPs?

» ATLAS and CMS triggers have to

s rely on other “objects”, e.g. E;™$, that accompany SMCPs, thus limiting the
reach of the search

- final states with associated object present

* trigger threshold set high for high luminosity
= develop specialised triggers

* dedicated studies needed

- usually efficiency significantly less than 100%

» Timing: signal from (slow-moving) SMCP should arrive within the correct
bunch crossing

 MoEDAL mainly constrained by its geometrical acceptance
» When looking for trapped particles

= monitoring of detector volumes in an underground/basement laboratory has
less background than using empty butches in LHC cavern
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Slepton searches comparison™

Velocity

Analysis

Efficiency

Acceptance

Background

Luminosity

ATLAS / CMS

B>0.2
Constrained by LHC bunch
pattern

Not simple, involving several
detector components,
electronics, triggers, ...

€ x A order of 20%
See limitations in previous
slide

May be considerable or
difficult to estimate

high

MoEDAL

B<0.2
Constrained by NTD Z/B
threshold

Simple and robust

~ 100% (if B < 0.2)

* Geometry: ~ 50% for 2015;
scalable to higher coverage

* B-cutyield: ~10%
=~ highly model dependent

Practically zero

factor of 10-50 less

* Indicative numbers

comments

Complementarity

©

For same signal yield,
MoEDAL should have
better sensitivity @

LIMITING FACTOR

@
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Nuclear Track Detectors coverage

High acceptance in central region n~0

= back-to-back pair production means probability >~ 70% for at least one SMCP
to hit NTD

For particles over z/B threshold, detection efficiency practically 100%

2015 NTDs

Credit: Daniel Felea
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SUSY long-lived particles (relevant for MoEDAL)

» Long-lived sleptons (staus mostly)

= Gauge-mediated symmetry-breaking (GMSB): F(i—> lé’) B 1 m;r’ | _ % !
stau NLSP decays via gravitational interaction o 48w M2 mé m,l?
to gravitino LSP

= Coannihilation region in CMSSM: long lived stau, when m(%) - m(¥,°) < m(t)
=>» naturally long lifetime for stau in both cases

e R-hadrons

=18

= Gluinos in Split Supersymmetry: 8q9, 8qqq, g
 long-lived because squarks very heavy

* gluino hadrons may flip charge as they pass through matter
= Stops: g, Taqg

+ e.g. stop NLSP in gravitino dark matter t = tG

* e.g. as LSP in R-parity violating SUSY, long-lived when RPV coupling(s) small
* Long-lived charginos

= Anomaly-mediated symmetry-breaking (AMSB): ¥,*and ¥,° +
gt i X1 =TT X
are mass degenerate = ¥,* becomes long-lived 1 1
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Improving complementarity

 Relaxing constraints imposed in ATLAS/CMS selections
» Example: CMS dE/dx analysis @7-8 TeV [JHEPO7 (2013) 122, arXiv:

1305.0491]
tracker+TOF | tracker-only
7] <2.1 Relaxing both constraints
pr (GeV/c) >45
d; and dyy, (cm) <0.5 :]
T Opr/ PT <025
Track x*/ng <5
# Pixel hits >1 J
# Tracker hits >7
Frac. Valid hits >0.8
EpE&(AR < 0.3) (GeV/c) <50
# dE/dx measurements >5
dE/dx strip shape test yes
E.a(AR <03)/p <0.3
I, (MeV /cm) >3.0
AR to another track - In collaboration with Kazuki Sakurai
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Results for 88, &§=2jj%.", ¥,"=>T,

%.° long-lived despite large  (massive) t* produces a kink
mass split between §,°and  between ¥,°and ¥, tracks
= large impact parameters

T, =» decays in tracker

End-of-run-3 (2023) luminosity Ay d;

E II'Illllll-"'''|""l""l""l"'l]llu||||..|;£
= ]
W 7]
& ]

4
1| lIIIIII

10° Different

B thresholds

10 N

£ == 5 MoEDAL 20 ft’} p

© =2 5 MOEDAL 20 b}

; == ; MoEDAL 20 fo
CMS 300 fb

|/ I
S I 1 B N W A T

e sseeeeee. .o -—--
’
’

IlIIlIIIIIIIIIIIlIII

1300 1400 1500 1600 1700 1800 1900 2000 2100

My [GeV]

* Comparison of CMS exclusion with MoEDAL
discovery potential requiring 1 event
* Conservative estimate of MoEDAL luminosity

T, metastable, e.g. gravitino LSP
=>» detected by MoEDAL

Run 2 (2018) vs. Run-3 (2023) luminosity

=

Expected exclusion
£ ZiMoEDAL 8 fb” J
© ~iMoEDAL 20 b3

CoicMs 150" ]
L oicMs 300

S e
~
s
~

S
~
S
~.

4
4

B thr = 0 W
O NN

events C A

. ! 1 Q& . |\‘ . \‘J

P
11200 1400 1600

e mEEEEEEaE .-
’
,
4

1 800 2000 2200 2400

My [GeV]

CMS affected two-ways:
a) no pixel hit
b) too large impact parameters

MoEDAL can cover long-lifeti

inaccessible by ATLAS/CMS eve
moderate NTD performance
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Summary & outlook

MoEDAL is searching for (meta)stable highly ionising particles
least tested signals of New Physics
predicted in variety of theoretical models

m]

m]

m]

design optimised for such searches
combining various detector technologies

m]

Results on monopole searches at 8 TeV & 13 TeV published
= no magnetic monopole detected
= bounds set significantly extend previous results at high charges

Looking forward to many more results
from Run-Il and beyond
= for other monopole interpretations
* production via photon fusion
* spin 1 monopoles
= with NTDs
= for electrically-charged particles




Thank vou for
your attention!
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Analysis procedure

+ Track diameter: . L " F:\s;\ f,M:S::;rm SARV
+ D = 2v[(v,-vg)/(v,+vg)] 12

+ Track depth: o CR39 b
+L=(v¥p) t I

+ Reduced etch rate: [ Alaminim b
+p=valy, 7 Makrofol ! |

Electrically-charged particle: dE/dx ~ B2 = slows down appreciably within NTD
=> opening angle of etch-pit cone becomes smaller

Magnetic monopole: dE/dx ~ In3

= slow MM: slows down within an NTD stack =2 its ionisation falls => opening angle of the
etch pits would become larger

= relativistic MM: dE/dx essentially constant = trail of equal diameter etch-pit pairs

The reduced etch rate is simply related to the restricted energy loss
REL = (dE/dX)IOnm from track
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Dirac’s Monopole

Paul Dirac in 1931 hypothesized that the magnetic
monopole exists

In his conception the monopole was the end of an
infinitely long and infinitely thin solenoid

Dirac’s quantisation condition:

C

Where g is the “magnetic charge” and a is the fine
structure constant 1/137

This means that g = 68.5e (when n=1)!

The other way around: IF there is a magnetic
monopole then charge is quantised:

—In OR g=—=e rom =2mn n=1,2,3..
2] 8=7 (S > ), AHin .

Dirac String
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Cross section limits versus mass Detector: prototype

of 160 kg of Al rods

10° DY spin-1/2 5 Exposure: 0.75 fb!

o) SRR UYWL L B B B _ 3 o) 10 SR \\ L L L L Of8TeV pp Collisions
© - (5=8TeV, 0.75 fb" L - © -

10* = 10* E

- E S T —— x E

L v 4 oW e et ]

1 03 B Ekt 1 03 R N R F. » *t

= T e e

B 7:\ .::::::,'I.':::.---..:-.'.'.'.'.'.'..i .............. + ] I S O R Semrere” 1

21 ] 20 ]

10 E LODYspin12  95%CLLimits - 10 E LO DY spin 0 95% CL Limits

- —1g, 1, ] - —1g, +1g, ]

0L —2g, H2g, 10 —2g, *2g, -

: I : I

Lovv v v b Py 1 INSNC P b ey I Lo by DN e b b ey 1
1 0 500 1000 1500 2000 2500 3000 3500 1 0 500 1000 1500 2000 2500 3000 3500
Mass [GeV] Mass [GeV]

Limits extend up to masses > 2500 GeV for the first time at the LHC

* reminder: shown (tiny) LO DY cross sections are not reliable
= makes sense to probe and constrain very high masses

JHEP 1608 (2016) 067 [arXiv:1604.06645]
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Cross section limits versus charge | Detector: protetyee

of 160 kg of Al rods

T TTTT ST T T T T I i~ 7 7 77 Exposure:0.75 fb
5 : 5 .
g 10 E\ L L \I\ LI I B B B IO A DY Sp|n—1/2 j_l—v—v_l—gl g 10 ; || T T \I\ L R R Of8TeV pp CO”ISIOnS
S B i o - W 548 Tev, 0751 i
10* = = 10* = I =
E 1 E ! -
107 E R R E.
E EI E L _____ '>< """"""""" 95% CL Limits El
102 | 102 /,»“T . ~+100 GeV 500 GeV ||
E , EI E 1000 GeV < 2000 GeV EI
C I ] -  LoDY spin J £+3000 GeV A 3500 GeV |
- [ 95% CL Limits .| - \‘ S|
10 LO DY spin 1/2 41006V S0 GV g 10 e "
E —Isoo GeV 1000 GeV 52000 GeV | E 1000 el 3
C -boo 3000 GeV #3500 GeV :l B 1 i
1 I | - l | | I ‘ L1 ‘ L1 | 1 I I I I! I ‘ L1 ‘ | | I ‘ L1 ‘ L1 | I
1 15 2 2.5 3 35 4 4 3 1 P 2 25 3 3.5 4 4 3
I Charge [g ]I I Charge [g i

also covered by ATLAS search

World-best limits for |g| > 1.5 g,
o previously ~400 GeV at Tevatron [e.g. CDF hep-ex/0509015]

first time at the LHC JHEP 1608 (2016) 067
[arXiv:1604.06645]
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Complementarity of MoEDAL & other LHC exps

MoEDAL

* Designed to detect charged
particles, with effective or actual

z/P>5

* No trigger/electronics = slowly moving
(P < ~0.5) particles are no problem

* One candidate event should be enough
to establish a signal (no SM bkg)

* MoEDAL NTDs are calibrated using
heavy ion beams

* Magnetic-charge sensitivity directly
calibrated in a clear way

MoEDAL strengthens & expands the phys-\
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Doubly-charged Higgs

» Extended Higgs sector in BSM models:

SU,(2) x SUg(2) x U, (1) P-violating ] Ml 8

model | T

» Higgs triplet model with massive left- Olf—mmmmmm oo oo /—

handed neutrinos but not right-handed _ [0

ones

» Common feature: doubly charged Higgs ! R

- - : (e0sf -/ SRS O it

bosons H** as parts of a Higgs triplet C

 Lifetime | C

le- 07} --—--F/—-4+-——-————— el e LR s R e

= depends on many parameters: o

YUkawa hij (long if < 10_8)’ Hii mass’ o 1 1 1 1 l 1 1 lllllllillllllllllllllilllli

a . “ h . . 200 400 600 800
essentially there are no constraints on Its my:: (GeV)

lifetime =¥ relevant for MoEDAL
Partial decay width of H*+ — WEW=

Chiang, Nomura, Tsumura,
Phys.Rev. D85 (2012) 095023 [arXiv:1202.2014]
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Black-hole remnants

* In some Large Extra Dimension models the formation of TeV Black Holes (BH)
by high energy SM particle collisions is predicted
= BH average charge 4/3
= slowly moving (B < 0.3)

» Charged Hawking BH evaporate but not completely BHR charges ® 14 TeV LHC

=? certain fraction of final BH remnants - [CHARYBDIS+PYTHIA]
carry multiple charges

=>» highly ionising, relevant to MoEDAL 0e

© Sabine Hossenfelder T % 025¢
Y
N

o — — @ 0.1

I\ o P

k
/ \ . OO e i l
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