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e Conformal supersymmetric o-models with extended
supersymmetry are important in the construction of superstring
compactification.

e N = 2 world-sheet supersymmetry = complex Kihler o -model
target space.

e In a more general case the background geometry may include an
antisymmetric B-field. The corresponding 2-dimensional
supersymmetric o-model have a second supersymmetry when the
target-space has a bi-Hermitian geometry (Gates-Hull-Ro&ek
geometry).

e Bi-Hermitian geometry<>generalised Kahler geometry (GKG) .
e Geometric data of bi-Hermitian geometry:
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e The N = 2 supersymmetric WZW models on the compact groups
provide a large class of exactly solvable quantum conformal
o-models whose targets supports simultaneously GKG geometry
and affine Kac-Moody superalgebra structure causing their exact
solution. Therefore it is important to know the exact relation
between the GK geometry data and affine Kac-Moody superalgebra
conserved currents. In a more general context it would be also
important to see if there are GKG targets which allow the
W-superalgabras conserved currents. Perhaps Kazama-Suzuki
coset models can be related to such targets.



1. Bi-Hermitian data and double Lie group
structure in N = 2 supersymmetric WZW model
on the group G.

e There is a left and right actions of the complex groups G,ir on
the group G so the elements of G can be parametrized by the
elements from the complex group G,i (or GF):
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e Thus, the compact group G is endowed with natural complex
coordinates. We employ these complex coordinates to rewrite the
WZW action on G in the form of supersymmetric o-model action
on the super-world-sheet parametrized by (¢ 1, 601):
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2.Canonical variables and Kac-Moody
superalgebra currents.

e Having the action, Hamiltonian formalism allows to find out the
canonical coordinates and momenta and express the conserved
Kac-Moody superalgebra currents by the canonical variables:
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p} is a canonically conjugated to pi,

p% is a canonically conjugated to j}.
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qﬁf-j- are the structure constants of the Lie algebra of the group Gt x G—.



