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1 Perimeter-Linear Action

Thus we shall consider the sum

SL =

ÿ

<i,j>

⁄ij ·
ÿ

(2fi ≠
ÿ

—ijk),

where —ijk are the angles on the cone which appear in the normal section of the edge < ij >
and triangle < ijk >. Combining terms belonging to a given triangle < ijk > we shall get

a sum

⁄ij + ⁄jk + ⁄ki = ⁄ijk

which is equal to the perimeter of the triangle < ijk > :

SL =

ÿ

<ijk>

⁄ijk · Ê(2)
ijk

where Ê(2)
ijk is the deficit angle associated with the triangle < ijk > like in Regge discreti-

sation.

The linear character of the action requires the existence of a new fundamental coupling

constant mP of dimension 1/cm.

SL = mP

ÿ

<ijk>

⁄ijk · Ê(2)
ijk
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1 Regge Area Action ≈∆ Linear Action

In Regge action the area of the triangle ‡ijk is multiplied by the deficit angle

SR =

ÿ

<ijk>

‡ijk · Ê

(2)
ijk

and represents the discretised version of the standard continuous area action in gravity:

SA = ≠ c

3

16fiG

⁄
R

Ô
≠gd

4
x.

The integral

s
R

Ô
≠gd

4
x has dimension cm

2
and measures the ”area” of the universe.

The linear action can be considered as a ”square root” of classical Regge area action.

SR =

ÿ

<ijk>

‡ijk · Ê

(2)
ijk ≈∆ SL =

ÿ

<i,j>

⁄ijk · Ê

(2)
ijk,

‡ijk ≠ the Area ≈∆ ⁄ijk ≠ the Perimeter,
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1 Continuous Linear Action

It is unknown how to derive a continuous limit of the discretised linear action. One can
try to construct a possible linear action for a smooth space-time manifold by using the
available geometrical invariants.

These invariants have the following form:

I1 = ≠ 1
180Rµ‹⁄fl;‡R

µ‹⁄fl;‡
, I2 = + 1

36Rµ‹⁄fl⇤R

µ‹⁄fl
,

and we shall consider a linear combination of the above expressions:

SL = ≠Mc

⁄ 3
8fi

(1 ≠ “)
Ò

I1 + “I2
Ô

≠gd

4
x,

where we introduced the corresponding mass parameter M and the dimensionless param-
eter “. The dimension of the invariant [

Ô
I1 + “I2] is 1/cm

3, thus the integral SL has the
dimensions of cm and measures the ”size” of the universe.

It is similar to the action of the relativistic particle

S = ≠Mc

⁄
ds = ≠Mc

2
⁄ Û

1 ≠ v̨

2

c

2 dt.

Both expressions under the square root are not positive definite . The action develops an
imaginary part when v

2
< c

2 and quantum mechanical superposition of amplitudes prevents
a particle from exceeding the velocity of light. A similar mechanism was implemented in
the Born-Infeld modification of electrodynamics with the aim to prevent the appearance
of infinite electric fields.
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1 Linear Action - Physical Consequences

Considering the action

SL = ≠ Mc

⁄ Ò
I1 + “I2

Ô
≠gd

4
x,

one can expect that there may appear space-time regions where the expression under

the squareroot were negative. These regions became unreachable by the test particles.

If these ”locked” space-time regions happen to appear and if that space-time regions

include singularities, then one can expect that the gravitational singularities are naturally

excluded from the theory due to the fundamental principles of quantum mechanics.
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1 Perturbation Generated by the Linear Action

The modified action which we shall consider is a sum

S = ≠ c

3

16fiG

⁄
R

Ô
≠gd

4
x ≠ Mc

⁄
3

8fi

(1 ≠ “)

Ò
I1 + “I2

Ô
≠gd

4
x, (1.1)

We shall consider the perturbation of the Schwarzschild solution which is induced by the

the additional term in the action and try to understand how it influences the black hole

physics and the singularities.

The Schwarzschild solution has the form

ds

2
= (1 ≠ r

g

r

)c

2
dt

2 ≠ (1 ≠ r

g

r

)

≠1
dr

2 ≠ r

2
d�

2
, (1.2)

where g00 = 1 ≠ rg

r

, g11 = ≠(1 ≠ rg

r

)

≠1
, g22 = ≠r

2
, g33 = ≠r

2
sin

2
◊, and

r

g

=

2GM

c

2 ,

Ô
≠g = r

2
sin ◊.

The nontrivial quadratic curvature invariant in this case has the form

I0 =

1

12

R

µ‹⁄fl

R

µ‹⁄fl

= (

r

g

r

3 )

2

and shows that the singularity located at r = 0 is actually a curvature singularity. The

event horizon is located where the metric component g

rr

diverges, that is, at

r

horizon

= r

g

.
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1 Perturbation of Schwarzschild solution

The expressions for the two curvature polynomials of our interest are

I1 = ≠ 1

180

Rµ‹⁄fl;‡Rµ‹⁄fl;‡, I2 = +

1

36

Rµ‹⁄fl⇤Rµ‹⁄fl ,

and on the Schwarzschild solution they take the form:

I1 =

r2
g(r ≠ rg)

r9 , I2 =

r3
g

r9 ,

The action acquires additional term of the form

SL = ≠Mc2
⁄

3

2

Á
Ú

1 ≠ Á
rg

r

rg

r2 drdt ,

where Á = 1 ≠ “. As one can see, the expression under the squareroot becomes negative at

r < Árg, 0 < Á Æ 1 (1.1)

and defines the region which is unreachable by the test particles. The size of the region

depends on the parameter Á and is smaller than the gravitational radius rg.
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Figure 1:

This result seems to have profound consequences on the gravitational singularity at r =

0. In a standard interpretation of the singularities, which appear in spherically symmetric

gravitational collapse, the singularity at r = 0 is hidden behind an event horizon. In that

interpretation the singularities are still present in the theory.

In the suggested scenario it seems possible to eliminate the singularities from the theory

based on the fundamental principles of quantum mechanics.
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The quantum mechanical amplitude in terms of the path integral has the form

� =

⁄
e

i
~S[g]Dgµ‹(x),

where integration is over all di�eomorphism nonequivalent metrics.

For the Schwarzschild massive object the expression for the action is:

S = ≠Mc

2
⁄ Œ

Árg

3

2

Á

Ú
1 ≠ Á

rg

r

rg

r

2 drdt = Mc

2
t (0.1)

it is proportional to the length t of the space-time trajectory, as it should be for the

relativistic particle at rest,

The corresponding amplitude can be written in the form

� ¥ exp (

i

~
ÿ

n

Mnc

2
t),

where the summation is over all bodies in the universe.
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1 Perturbation of the Schwarzschild Metric

The perturbation generates a contribution to the distance invariant ds of the form

”ds =

3

2

⁄ Œ

r
Á
Ú

1 ≠ Á
rg

r

rg

r2 dr =

5
1 ≠

3
1 ≠ Á

rg

r

43/26

and the correction to the purely temporal component of the metric tensor is

g00 = 1 ≠ rg

r
≠

5
1 ≠

3
1 ≠ Á

rg

r

43/262
.

The equation used to determine gravitational time dilation near a massive body is modified

in this case and the proper time between events is defined now by the equation

d· =

Ô
g00dt =

Û

1 ≠ rg

r
≠

5
1 ≠

3
1 ≠ Á

rg

r

43/262
dt

and therefore d· Æ dt, as in standard gravity.

It follows that near the gravitational radius r ¥ rg a purely temporal component of the

metric tensor has the form g00 ¥ 1 ≠ rg

r ≠ Á2 9
4

3
rg

r

42
+ O(Á3

) and the infinite red shift

which appears in the standard case at r = rg now appears at

r ¥ rg(1 +

9

4

Á2
) + O(Á4

).
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1 Perturbation of the Trajectories of Test Particles

The Hamilton-Jacobi equation for geodesics, modified by the perturbation is:

g

µ‹ ˆA

ˆx

µ

ˆA

ˆx

‹
= g

00
3

ˆA

cˆt

42
≠ 1

g

00

3
ˆA

ˆr

42
≠ 1

r

2

3
ˆA

ˆ„

42
= m

2
c

2
.

The solution has the form A = ≠Et + L„ + A(r), where E and L are the energy and
angular momentum of the test particle and

A(r) =
⁄ 53

g

00 E

2

c

2 ≠ m

2
c

2 ≠ L

2

r

2

4
g

00
61/2

dr. (1.1)

In the non-relativistic limit E = E

Õ + mc

2
, E

Õ π mc

2, and in terms of a new coordinate
r(r ≠ rg) = r

Õ we shall get

A(r) ¥
⁄ 5

(E

Õ2

c

2 +2E

Õ
m)+ 1

r

Õ (4E

Õ
mrg +m

2
c

2
rg)≠ 1

r

Õ2

3
L

2≠ 3
2m

2
c

2
r

2
g(1+ 3

2Á

2)
461/2

dr

Õ (1.2)

and the advance precession of the perihelion ”„ expressed in radians per revolution is:

”„ =
3fim

2
c

2
r

2
g

2L

2 (1 + 3
2Á

2) = 6fiGM

c

2
a(1 ≠ e

2)(1 + 3
2Á

2), (1.3)

where a is the semi-major axis and e is the orbital eccentricity. As one can see from the
above result, the precession is advanced by the additional factor 1 + 3

2Á

2.

The upper bound on the value of Á can be extracted from the observational data for
the advanced precession of the Mercury perihelion, which is 42, 98 ± 0, 04 seconds of arc
per century, thus

Á Æ 0, 16 .
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1 Deflection of Light Ray

For the light propagation we shall take m

2
= 0, E = Ê0, L = fl Ê0/c :

A(r) =

Ê0
c

⁄ Û

(g

00 ≠ fl

2

r

2 )g

00
dr ¥ Ê0

c

⁄ Û

1 + 2

rg

r

≠ fl

2

r

2 dr + O(Á

2
r

2
g/r

2
). (1.1)

The trajectory is defined by the equation „ + ˆA(r)/ˆfl = Const and in the given approx-

imation the deflection of light ray remains unchanged:

”„ = 2

rg

fl

,

where fl is the distance from the centre of gravity.

The deflection angle is not influenced by the perturbation, which is of order

O(Á

2
r

2
g/fl

2
)

and does not impose a sensible constraint on Á.
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1 Appendix

The general form of the linear action has the form:

SL = ≠mP c

⁄
3

8fi

ı̂ıÙ
3ÿ

1
÷iKi +

4ÿ

1
‰iJi +

9ÿ

1
“iIi

Ô
≠gd

4
x ,

where the curvature invariants have the form

I0 =

1

12

Rµ‹⁄flR

µ‹⁄fl
, I1 = ≠ 1

180

Rµ‹⁄fl;‡R

µ‹⁄fl;‡
, I2 = +

1

36

Rµ‹⁄fl⇤R

µ‹⁄fl
,

I3 = ≠ 1

72

⇤(Rµ‹⁄flR

µ‹⁄fl
), I4 = ≠ 1

90

Rµ‹⁄fl;–R

–‹⁄fl;µ
, I5 = ≠ 1

18

(R

–‹⁄fl
R

µ
‹⁄fl);µ;–,

I6 = ≠ 1

18

(R

–‹⁄fl
R

µ
‹⁄fl);–;µ = I3, I7 =

1

18

R

–‹⁄fl
R

µ
‹⁄fl;–;µ, I8 = R

µ
‹⁄fl;µR

‡‹⁄fl
;‡ ,

I9 = R

–‹⁄fl
R

µ
‹⁄fl;µ;– , I3 = I5 = I6 = 5I1 ≠ I2, I4 = I1, I7 = I2

J0 = Rµ‹R

µ‹
, J1 = Rµ‹;⁄R

µ‹;⁄
, J2 = R

µ‹⇤Rµ‹ , J3 = ⇤(R

µ‹
Rµ‹) , J4 = R

;µ
µ‡ R

‹‡
;‹

K0 = R

2
, K1 = R;µR

;µ
, K2 = R⇤R , K3 = ⇤R

2
. (1.1)

The ÷i, ‰i and “i are free parameters. Some of the invariants can be expressed through

others using Bianchi identities.
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Thank You !


