Enhancing Tensor Field Theories (renormalizable ϕ^{4} melonic case)

Reiko Toriumi

Radboud University, Nijmegen, the Netherlands
with Joseph Ben Geloun
(Labotatoire d'Informatique de Paris Nord, Université Paris 13) arXiv:1709.05141

Tensor model approach to Quantum Gravity

$\mathcal{Z}_{\text {matrix model }}=\int \mathcal{D} M e^{-S[M]}$,

$$
S[M]=\frac{1}{2} \operatorname{Tr} M^{2}-\frac{\lambda}{\sqrt{N}} \operatorname{Tr} M^{3}
$$

't Hooft 1974, David 1985, Kazakov, Kostov, Migdal 1985, Ambjorn, Durhuus, Frohlich 1985, Kazakov 1986, Distiler, Kawai 1989, Di Francesco, Ginsparg, Zinn-Justin 1995, Brezin, Kazakov 1990, Douglas, Shenker 1990, Gross, Migdal 1990, ...
... generates triangulated 2-dimensional surfaces

... a statistical model for infinitely refined triangulations, when tuned to the criticality ($N \rightarrow \operatorname{lnfinity}, \lambda \rightarrow \lambda_{c}$)

Rank d tensor models generate Feynman graphs dual to d dim. triangulated surfaces.

Quantum Gravity a la tensor modelstensor field theories

$$
\mathcal{Z}=\int \mathcal{D} \varphi \mathcal{D} \bar{\varphi} e^{-\left(S^{\text {kinetic }}+S^{\text {interaction }}\right)}
$$

$$
\varphi, \bar{\varphi} \text { are rank } d \text { tensors/tensor fields: }
$$

$$
\begin{aligned}
\varphi_{i_{1} i_{2} \cdots i_{d}} & \rightarrow \varphi\left(g_{1}, g_{2}, \cdots, g_{d}\right) \\
\bar{\varphi}_{\tilde{i}_{1} \tilde{i}_{2} \cdots \tilde{i}_{d}} & \rightarrow \bar{\varphi}\left(\tilde{g}_{1}, \tilde{g}_{2}, \cdots, \tilde{g}_{d}\right)
\end{aligned}
$$

$$
\begin{aligned}
& S^{\text {kinetic }}[\bar{\varphi}, \varphi]=\operatorname{Tr}_{2}(\bar{\varphi} \cdot K \cdot \varphi)+\mu \operatorname{Tr}_{2}\left(\varphi^{2}\right) \\
& =>-\cdots
\end{aligned}
$$

$$
\begin{aligned}
& S^{\text {interation }}[\bar{\varphi}, \varphi]=\sum_{n_{b}} \lambda_{n_{b}} \operatorname{Tr}_{n_{b}}\left(\bar{\varphi}^{n_{b}} \cdot \mathcal{V}_{n_{b}} \cdot \varphi^{n_{b}}\right) \\
& \stackrel{d=3}{=} \lambda_{2}^{(3)} \circlearrowright+\lambda_{4}^{(3)} \square+\lambda_{6,1}^{(3)} \longmapsto+\lambda_{6,2}^{(3)} \longmapsto+\lambda_{6,3}^{(3)} 凸+\cdots
\end{aligned}
$$

e.g.,

$$
\operatorname{Tr}_{4 ; 1}\left(\varphi^{4}\right)=\sum_{i_{1}, i_{2}, i_{3}, i_{1}^{\prime}, i_{2}^{\prime}, i_{3}^{\prime}} \varphi_{i_{1} i_{2} i_{3}} \bar{\varphi}_{i_{1}^{\prime} i_{2} i_{3}} \varphi_{i_{1}^{\prime} i_{2}^{\prime} i_{3}^{\prime}} \bar{\varphi}_{i_{1} i_{2}^{\prime} i_{3}^{\prime}}
$$

A $(d+1)$-colored Feynman tensor graph is a d dimensional triangulation of a (pseudo) manifold with a boundary.

Our Problem

Melons are branched polymers.

Want to find a way to escape from the branched polymer phase from more physical phase with large and smooth structure of our universe.

Proposal:

Enhance non-melonic graphs with derivative couplings in tensor field theories

Enhancing tensor models by statistical weights
V. Bonzom, T. Delepouve, V. Rivasseau, "Enhancing non-melonic triangulations: A tensor model mixing melonic and planar maps," Nucl. Phys. B 895, 161 (2015)

Derivative couplings are quite natural in field theories. e.g., in Yang-Mills theory,

Our immediate goal is to launch the program of enhancing non-melonic graphs with derivative couplings in a field theory setting in a systematic way. Namely, the first step is to find renormalizable models.

Our enhanced models

(quartic melonic interactions)

Set $G=U(1)^{D}$
Introduce a complex function $\varphi:\left(U(1)^{D}\right)^{\times d} \rightarrow \mathbb{C}$
Work on Fourier component $\varphi_{\mathbf{P}}$ where $\mathbf{P}=\left(p_{1}, p_{2}, \ldots, p_{d}\right)$ with $p_{s}=\left(p_{s, 1}, p_{s, 2}, \ldots, p_{s, D}\right), p_{s, i} \in \mathbb{Z}$
model +

$$
\left[\begin{array}{l}
S_{+}^{\text {interaction }}[\bar{\varphi}, \varphi]=\frac{\lambda}{2} \operatorname{Tr}_{4}\left(\varphi^{4}\right)+\frac{\eta_{+}}{2} \operatorname{Tr}_{4}\left(p^{2 a} \varphi^{4}\right)+C T_{2 ; b}[\bar{\varphi}, \varphi]+C T_{2 ; a}[\bar{\varphi}, \varphi]+C T_{2}[\bar{\varphi}, \varphi] \\
S_{+}^{\text {kinetic }}[\bar{\varphi}, \varphi]=\operatorname{Tr}_{2}\left(p^{2 b} \varphi^{2}\right)+\operatorname{Tr}_{2}\left(p^{2 a} \varphi^{2}\right)+\mu \operatorname{Tr}_{2}\left(\varphi^{2}\right)
\end{array}\right.
$$

$\operatorname{model} x$

$$
\begin{aligned}
& \left\{S_{\times .}^{\text {interaction }}[\bar{\varphi}, \varphi]=\frac{\lambda}{2} \operatorname{Tr}_{4}\left(\varphi^{4}\right)+\frac{\eta_{\times}}{2} \operatorname{Tr}_{4}\left(\left[p^{2 a} p^{\prime 2 a}\right] \varphi^{4}\right)+C T_{2 ; b}[\bar{\varphi}, \varphi]+C T_{2 ; a}[\bar{\varphi}, \varphi]+C T_{2 ; 2 a}[\bar{\varphi}, \varphi]+C T_{2}[\bar{\varphi}, \varphi]\right. \\
& S_{\times}^{\text {kinetic }}[\bar{\varphi}, \varphi]=\operatorname{Tr}_{2}\left(p^{2 b} \varphi^{2}\right)+\operatorname{Tr}_{2}\left(p^{2 a} \varphi^{2}\right)+\operatorname{Tr}_{2}\left(p^{4 a} \varphi^{2}\right)+\mu \operatorname{Tr}_{2}\left(\varphi^{2}\right) \\
& \operatorname{Tr}_{4}\left(\varphi^{4}\right):=\sum_{p_{s}, p_{s}^{\prime} \in \mathbb{Z}^{D}} \varphi_{p_{1}} p_{2 .-p_{d}} \bar{\varphi}_{p_{1}^{\prime} p p_{2} p_{3}-p_{d}} \phi_{p_{1} p_{2}^{\prime} p_{3}^{\prime} \cdot p_{d}^{\prime} \bar{\varphi}_{p_{1}} p_{2}^{\prime} p_{3}^{\prime} \cdot p_{d}^{\prime}}+\operatorname{Sym}(1 \rightarrow 2 \rightarrow \cdots \rightarrow d) \\
& \operatorname{Tr}_{4}\left(p^{2 a} \varphi^{4}\right):=\sum_{p_{s} p_{s} \in \mathbb{Z}^{p}}\left|p_{1}\right|^{2 a} \varphi_{p_{1} p_{2}-p_{d}} \bar{\varphi}_{p_{1}^{\prime} p_{2} p_{3}-p_{d}} \varphi_{p_{1}^{\prime} p_{1}^{\prime} p_{2}^{\prime} p_{3} \cdot p_{d}^{\prime} \varphi_{p_{1}} p_{2}^{\prime} p_{3}^{\prime}-p_{d}^{p_{d}}}+\operatorname{Sym}(1 \rightarrow 2 \rightarrow \cdots \rightarrow d)
\end{aligned}
$$

Our enhanced model x

model x

$$
\left\{\begin{array}{l}
S_{\times}^{\text {interaction }}[\bar{\varphi}, \varphi]=\frac{\lambda}{2} \operatorname{Tr}_{4}\left(\varphi^{4}\right)+\frac{\eta_{\times}}{2} \operatorname{Tr}_{4}\left(\left[p^{2 a} p^{\prime 2 a}\right] \varphi^{4}\right)+\sum_{\xi=a, 2 a, b} C T_{2 ; \xi}[\bar{\varphi}, \varphi]+C T_{2}[\bar{\varphi}, \varphi] \\
S_{\times}^{\text {kinetic }}[\bar{\varphi}, \varphi]=\sum_{\xi=a, 2 a, b} \operatorname{Tr}_{2}\left(p^{2 \xi} \varphi^{2}\right)+\mu \operatorname{Tr}_{2}\left(\varphi^{2}\right)
\end{array}\right.
$$

Our enhanced model +

model +

$$
\begin{aligned}
& S_{+}^{\text {interaction }}[\bar{\varphi}, \varphi]=\frac{\lambda}{2} \operatorname{Tr}_{4}\left(\varphi^{4}\right)+\frac{\eta_{+}}{2} \operatorname{Tr}_{4}\left(p^{2 a} \varphi^{4}\right)+\sum_{\xi=a, b} C T_{2 ; \xi}[\bar{\varphi}, \varphi]+C T_{2}[\bar{\varphi}, \varphi] \\
& S_{+}^{\text {kinetic }}[\bar{\varphi}, \varphi]=\sum_{\xi=a, b} \operatorname{Tr}_{2}\left(p^{2 \xi} \varphi^{2}\right)+\mu \operatorname{Tr}_{2}\left(\varphi^{2}\right)
\end{aligned}
$$

e.g.,

a melonic Feynman graph

Power Counting is achieved

Amplitude: $\quad A_{\mathcal{G}}=\sum_{\mathbf{P}_{v}} \prod_{l \in \mathcal{L}} C_{\bullet ; l}\left(\mathbf{P}_{v(l)} ; \mathbf{P}_{v^{\prime}(l)}^{\prime}\right) \prod_{v \in \mathcal{V}}\left(-V_{v}\left(\left\{\mathbf{P}_{v}\right\}\right)\right)$

$$
\begin{aligned}
& C .\left(\mathbf{P} ; \mathbf{P}^{\prime}\right)=\frac{1}{\sum_{\xi} \mathbf{P}^{2 \xi}+\mu} \boldsymbol{\delta}_{\mathbf{P}, \mathbf{P}^{\prime}} \\
& V_{4 ; s}\left(\mathbf{P} ; \mathbf{P}^{\prime} ; \mathbf{P}^{\prime \prime} ; \mathbf{P}^{\prime \prime \prime}\right)=\frac{\lambda}{2} \delta_{4 ; s}\left(\mathbf{P} ; \mathbf{P}^{\prime} ; \mathbf{P}^{\prime \prime} ; \mathbf{P}^{\prime \prime \prime}\right), \\
& V_{+; ; ; s}\left(\mathbf{P} ; \mathbf{P}^{\prime} ; \mathbf{P}^{\prime \prime} ; \mathbf{P}^{\prime \prime \prime}\right)=\frac{\eta_{+}}{2}\left|p_{s}\right|^{2 a} \delta_{4 ; s}\left(\mathbf{P} ; \mathbf{P}^{\prime} ; \mathbf{P}^{\prime \prime} ; \mathbf{P}^{\prime \prime \prime}\right), \\
& V_{\times ; 4 ; s}\left(\mathbf{P} ; \mathbf{P}^{\prime} ; \mathbf{P}^{\prime \prime} ; \mathbf{P}^{\prime \prime \prime}\right)=\frac{\eta_{x}}{2}\left|p_{s}\right|^{2 a}\left|p_{s}^{\prime}\right|^{2 a} \delta_{4 ; s}\left(\mathbf{P} ; \mathbf{P}^{\prime} ; \mathbf{P}^{\prime \prime} ; \mathbf{P}^{\prime \prime \prime}\right)
\end{aligned}
$$

With multi-scale analysis, we optimally bound the amplitude and get:
V. Rivasseau, "From perturbative to constructive renormalization," Princeton series in Physics, 1991

$$
\begin{aligned}
& \omega_{\mathrm{d} ;+}\left(G_{k}^{i}\right)=-2 b L\left(G_{k}^{i}\right)+D F_{\mathrm{int}}\left(G_{k}^{i}\right)+2 a \rho_{+}\left(G_{k}^{i}\right)+\sum_{\xi=a, b} 2 \xi \rho_{2 ; \xi}\left(G_{k}^{i}\right) \\
& \omega_{\mathrm{d} ; \times}\left(G_{k}^{i}\right)=-2 b L\left(G_{k}^{i}\right)+D F_{\mathrm{int}}\left(G_{k}^{i}\right)+2 a \rho_{\times}\left(G_{k}^{i}\right)+\sum_{\xi=a, 2 a, b} 2 \xi \rho_{2 ; \xi}\left(G_{k}^{i}\right)
\end{aligned}
$$

Non-locality of interactions are reflected in:
$F_{\text {int }}=-\frac{2}{(d-1)!}\left(\omega\left(\mathcal{G}_{\text {color }}\right)-\omega(\partial \mathcal{G})\right)-\left(C_{\partial \mathcal{G}}-1\right)-\frac{d-1}{2} N_{\text {ext }}+(d-1)-\frac{d-1}{4}(4-2 n) \cdot V$
$\omega\left(\mathcal{G}_{\text {color }}\right)=\sum_{J} g_{J} \quad$ Degree of the colored tensor graph: extension of genus and allows large N expansion

Classification of renormalizability

Superficial degree of divergence of a graph

$$
\omega_{d}(\mathcal{G})=\cdots+c V+\cdots
$$

- Super-renormalizable: $c<0$. Amplitudes of graphs become more and more convergent as you go higher orders of perturbation theory, i.e., only finite number of graphs are divergent.
- Just-renormalizable: $c=0 . \omega_{d}$ is independent of orders of perturbation, i.e., infinite number of graphs are divergent.
- Non-renormalizable: c > 0. Amplitudes of graphs become more and more divergent as you go higher orders of perturbation theory.

Potentially just-renormalizable models

requiring just-renormalizability:

$$
\begin{aligned}
& \left.\omega_{d}(\mathcal{G})\right|_{N_{\text {ext }} \geq 6}<0 \\
& c=0 \text { in } \quad \omega_{d}(\mathcal{G})=\cdots+c V+\cdots
\end{aligned}
$$

model $+\bigcirc$		$d=3$	$d=4$	$d=5$	$d=6$
	$D=1$	$\begin{aligned} & 0<a<\frac{2}{3} \\ & \frac{1}{2}<b<b<\frac{5}{6} \end{aligned}$	$\begin{aligned} & \hline 0<a<\frac{7}{6} \\ & \frac{3}{4}<b<\frac{4}{3} \end{aligned}$	$\begin{aligned} & 0<a<\frac{5}{3} \\ & 1<b<\frac{1}{6} \end{aligned}$	$\begin{aligned} & 0<a<\frac{13}{6} \\ & \frac{5}{4}<b<\frac{7}{3} \\ & \hline \end{aligned}$
	$D=2$	$0<a<\frac{4}{3}$ $1<b<\frac{5}{3}$	$\begin{aligned} & \frac{4}{0<a<\frac{3}{3}} \\ & \frac{3}{2}<b<\frac{8}{3} \end{aligned}$	$\begin{aligned} & 0<a<\frac{10}{3} \\ & 2<b<\frac{11}{3} \end{aligned}$	$\begin{aligned} & 4<a<\frac{13}{3} \\ & 0-\frac{5}{2}<b<\frac{14}{3} \end{aligned}$
		$0<a<2$ 3	$0<a<\frac{3}{2}$	$0<a<5$	$0 \times a<\frac{13}{2}$
		$\frac{3}{2}<b<\frac{5}{2}$	$\frac{9}{4}<b<4$	$3<b<\frac{11}{2}$	$\frac{15}{4}<b<7$
	$D=4$	$\begin{aligned} & 0<a<\frac{8}{3} \\ & 2<b<\frac{10}{3} \\ & \hline \end{aligned}$	$\begin{aligned} & 0<a<\frac{14}{3} \\ & 3<b<\frac{16}{3} \end{aligned}$	$\begin{aligned} & 0<a<\frac{20}{3} \\ & 4<b<\frac{22}{3} \\ & \hline \end{aligned}$	$\begin{aligned} & 0<a<\frac{26}{3} \\ & 5<b<\frac{28}{3} \\ & \hline \end{aligned}$

log-div. for 4-point function:

$$
\left.\omega_{\mathrm{d} ;+}\left(\mathcal{G}^{\text {non-melon }}\right)\right|_{N_{\mathrm{ext}}=4}=0
$$

	$d=3$	$d=4$	$d=5$	$d=6$
$D=1$	$a=\frac{1}{2}$	$a=1$	$a=\frac{3}{2}$	$a=2$
	$b=\frac{3}{4}$	$b=\frac{5}{4}$	$b=\frac{7}{4}$	$b=\frac{9}{4}$
$D=2$	$a=1$	$a=2$	$a=3$	$a=4$
	$b=\frac{3}{2}$	$b=\frac{5}{2}$	$b=\frac{7}{2}$	$b=\frac{9}{2}$
$D=3$	$a=\frac{3}{2}$	$a=3$	$a=\frac{9}{2}$	$a=6$
	$b=\frac{9}{4}$	$b=\frac{15}{4}$	$b=\frac{21}{4}$	$b=\frac{27}{4}$
$D=4$	$a=2$	$a=4$	$a=6$	$a=8$
	$b=3$	$b=5$	$b=7$	$b=9$

model $\mathbf{x}\left\{\right.$| | $d=3$ | $d=4$ | $d=5$ | $d=6$ |
| :---: | :---: | :---: | :---: | :---: |
| $D=1$ | $0<a \leq \frac{1}{2}$ | $0<a \leq \frac{3}{4}$ | $0<a \leq 1$ | $0<a \leq \frac{5}{4}$ |
| | $\frac{1}{2}<b \leq 1$ | $\frac{3}{4}<b \leq \frac{3}{2}$ | $1<b \leq 2$ | $\frac{5}{4}<b \leq \frac{5}{2}$ |
| $D=2$ | $0<a \leq 1$ | $0<a \leq \frac{3}{2}$ | $0<a \leq 2$ | $0<a \leq \frac{5}{2}$ |
| | $1<b \leq 2$ | $\frac{3}{2}<b \leq 3$ | $2<b \leq 4$ | $\frac{5}{2}<b \leq 5$ |
| $D=3$ | $0<a \leq \frac{3}{2}$ | $0<a \leq \frac{9}{4}$ | $0<a \leq 3$ | $0<a \leq \frac{15}{4}$ |
| | $\frac{3}{2}<b \leq 3$ | $\frac{9}{4}<b \leq \frac{9}{2}$ | $3<b \leq 6$ | $\frac{15}{4}<b \leq \frac{15}{2}$ |
| $D=4$ | $0<a \leq 2$ | $0<a \leq 3$ | $0<a \leq 4$ | $0<a \leq 5$ |
| | $2<b \leq 4$ | $3<b \leq 6$ | $4<b \leq 8$ | $5<b \leq 10$ |

$$
\begin{aligned}
& \left.\omega_{\mathrm{d} ; \times}(\mathcal{G})\right|_{N_{\mathrm{ext}}=4}<0 \\
& \left.\omega_{\mathrm{d} ; \times}\left(\mathcal{G}^{\text {melon }}\right)\right|_{N_{\mathrm{ext}}=2}<\frac{D(d-1)}{2} \\
& \left.\omega_{\mathrm{d} ; \times}\left(\mathcal{G}^{\text {non }- \text { melon }}\right)\right|_{N_{\mathrm{ext}}=2} \leq \frac{1}{2} D(3-d) \leq 0
\end{aligned}
$$

Conclusions and Outlook

- Model +: a just-renormalizable model

Infinite number of graphs renormalizes $\lambda\left(\phi^{4}\right)$ and $\eta_{+}\left(p^{2 a} \phi^{4}\right)$ couplings.

- Model x : a new type of renormalizable model (neither just- nor super-)

No graphs renormalize $\lambda\left(\phi^{4}\right)$ and $\eta_{x}\left(p^{2 a} \phi^{4}\right)$ couplings.
But infinite number of graphs renormalize mass, $Z_{a}\left(p^{2 a} \phi^{2}\right)$ and $Z_{2 a}\left(p^{4 a} \phi^{2}\right)$ couplings.

- ...We have established the mechanism of enhancing non-melonic graphs in a tensor field theory setting. These models are renormalizable. This is encouraging for analyses at next level...
- Beta functions of coupling constants can be computed.
- Non-perturbative analysis to be applied.
- Other types of interactions to be enhanced by derivative couplings.

