TECHNISCHE
UNIVERSITAT
WIEN

Vienna University of Technology

LLIF

Der Wissenschaftsfonds.

Light stringy states and the Yukawas

Pascal Anastasopoulos

arxiv: 1110.5359
1110.5424
1601.07584
1609.09299

with M. Bianchi, D. Consoli, R. Richter

Corfu - 06/09/2017



Motivation

* D-brane compactifications provide a promising framework for model building.



Motivation

* D-brane compactifications provide a promising framework for model building.

+ They allow for large extra dimensions which imply a significantly lower string scale,
even of just a few TeV.



Motivation

* D-brane compactifications provide a promising framework for model building.

+ They allow for large extra dimensions which imply a significantly lower string scale,
even of just a few TeV.

* Scenarios of these kinds may explain the hierarchy problem, but also allow for stringy

signatures that can be observed at LHC.
Antoniadis Arkani-Hamed Dimopoulos Dvali



Motivation

* D-brane compactifications provide a promising framework for model building.

+ They allow for large extra dimensions which imply a significantly lower string scale,
even of just a few TeV.

* Scenarios of these kinds may explain the hierarchy problem, but also allow for stringy
signatures that can be observed at LHC.

Antoniadis Arkani-Hamed Dimopoulos Dvali
* In these compactifications,

« gauge fields are strings with both ends on the same D-brane.

* matter fields are strings stretched between different branes.



Motivation

* D-brane compactifications provide a promising framework for model building.

+ They allow for large extra dimensions which imply a significantly lower string scale,
even of just a few TeV.

* Scenarios of these kinds may explain the hierarchy problem, but also allow for stringy
signatures that can be observed at LHC.

Antoniadis Arkani-Hamed Dimopoulos Dvali
* In these compactifications,
« gauge fields are strings with both ends on the same D-brane.

* matter fields are strings stretched between different branes.

* Several constructions have been built which come very close to the Standard Model.



Motivation

* D-brane compactifications provide a promising framework for model building.

+ They allow for large extra dimensions which imply a significantly lower string scale,
even of just a few TeV.

* Scenarios of these kinds may explain the hierarchy problem, but also allow for stringy
signatures that can be observed at LHC.

Antoniadis Arkani-Hamed Dimopoulos Dvali
* In these compactifications,
« gauge fields are strings with both ends on the same D-brane.
* matter fields are strings stretched between different branes.

* Several constructions have been built which come very close to the Standard Model.

* Particular interest have the intersecting D-brane scenarios.
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Motivation

+ In these scenarios, Standard Model matter fields are living at D-brane intersections.

* However, at the same intersections, there exist a tower of stringy excitations with
masses that depend on the string scale M; but also the intersection angle 6:

M? = 0, O0M?, 20M?2, 30M? ...

* Thus, each particle living at the intersections has a towers of states similar to the KK
towers, with the difference that each of them has different mass gaps.

+ If the string scale is at a few TeV range and the intersection angle is small, these
stringy excitations might be visible at LHC.

* Such models can be easily distinguished from KK models.

+ Jtis very interesting to study their decay channels and their lifetimes.
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D-brane compactifications
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Our tools

+  We focus on type IIA constructions in a T?xT?xT? space with intersecting D6 branes:

SUN)xU()  SUM)xU(I)

(N, +1; M,= 1)
/

A x5l X7 x9

354 X6 X8
An open string stretched between branes.

N M

+ Strings with both ends on a stack of branes give rise to U(N) = SUN)xU(1) group.
+ Strings stretched between different stacks transform as bifundamentals.

+  Applying these rules we can built a local D-brane realisation of the SM.



Standard Model from open strings

* Forthe SU(3) x SU(2) x U(1)y we need 4 stacks of (3,2,1,1) D-branes.

+ Matter content at D-brane intersections.
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Standard Model from open strings

* Forthe SU(3) x SU(2) x U(1)y we need 4 stacks of (3,2,1,1) D-branes.

+ Matter content at D-brane intersections.
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+ SM gauge fields are strings on the same stack of D-branes.

+ SM matter fields live at intersections. However, they are not alone...

Gauge Bosons



Towers of massive copies at intersections
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+ Strings vibrate. The frequencies are not random. They are proportional to the angle 6.
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Towers of massive copies at intersections

+ Strings vibrate. The frequencies are not random. They are proportional to the angle 6.
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Towers of massive copies at intersections

+ Strings vibrate. The frequencies are not random. They are proportional to the angle 6.

+ FEach vibrating string is a massive copy of the same massless field.
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Example:
» The “zero” mode H is massless: M?= 0.
. The “first” H is massive: M2 = OM2.

» The “second” ﬁ is massive: M2 = 20Mz:.

etc etc...

+ Such towers of states appear at each intersection.



Consequences and predictions

+ The Standard Model revised.
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Consequences and predictions

+ The Standard Model revised.

+ At each intersection we have towers of states.
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Consequences and predictions

+ The Standard Model revised. Masses

+ At each intersection we have towers of states.
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+ Qur aim is to study the phenomenological consequences of these massive copies of the
Standard Model matter particles.



States and VOs
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+ Open strings stretched between intersecting branes are twisted,
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+ Mode expansion ( Z” = X7 + i XPt1):
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* For the quantization we define the commutator/anticommutators:

/ l/ / l/
o, r0l , u] = (m*a’ )by nd" {91 ¥l o) =Bt

*  And the three vacua that these states act on:
WS fermionic (NS):  |a';a?:a®) N g

WS fermionic (R): \al; a2; a3>R

2

WS bosonic:  |a';a*;a’) B
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Sectors at the intersections

+ Fock space at intersections (at the [-forus):

+ NS sector (spacetime bos(‘m% odd number

(al—n—l—aj)m(wir_%+a1)s""aI>B®NS’ 1 Sn, OS’I“
* R sector (spacetime fermions)
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An example SIS
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+ The ”zero” states (massless) are:
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+ Therefore, not all previous states are physical.

* To check that we express states to their VO's using the dictionary:

+ For the NS-sector:
Positive angle 0 Negative angle 0
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+ For the R-sector:
Positive angle 60 Negative angle 0
10) Bor ei0—1/DH o+ 19)sen . HOH/2H 5=

* The o, 7, w are twisted bosonic conformal fields. s ol
Anastasopoulos Bianchi Richter



Vertex Operators

+ Each physical VO has to obey:
QBrsT, V] =0

where the BRST charge is given by:
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Vertex Operators

+ Each physical VO has to obey:
QBrsT, V] =0

where the BRST charge is given by:
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* The physical condition typically gives:

* asimple pole — the equations of motion.

* adouble pole — the energy-momentum equation.
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* The physical condition [Qgrst, V] = 0 gives: i
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* adouble pole — the energy-momentum equation: k%= 0.
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* The physical condition [Qgrst, V] = 0 gives:
* asimple pole — k“&f‘;o‘vﬁf(k) =0
* adouble pole — the energy-momentum equation: k%= 0.

+ Therefore, this is a physical massless fermion.
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Light stringy state phenomenology

+ Qur goal is to evaluate couplings between light stringy states and SM fields.

+  With such couplings at hand we can write an effective action (string theory did her job)
and proceed to the phenomenological study:.

* There are two kind of couplings we will study
* light stringy states with SM gauge fields.
+ light stringy states with SM matter fields.

+ All the above can be computed by 4-point amplitudes with fermionic external legs.
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Strategy

gauge coupling
(with that we
normalise our fields)

* Direct 3-point amplitude computation are ambiguous.

+ Thus, we start by the 4-point amplitude and we factorise:

W\/\/X = =

/ \ \) y ¢

W )? bda il \\./
Yukawa ~/

+ s-channel: a gauge fields exchange

+ t-channel: a scalar exchange s /\_

W X

massless and
massive states
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Our setup

* In order to proceed we need to specity our setup.

+ Consider three stacks of D-branes within a semi-realistic brane configuration:

C

a

L

[ =y

b =

1

+ For the sake of concreteness we choose a supersymmetric setup with:

0, >0, 02, >0 , 9, <0 0L, + 62, + 62, =0
9. >0, 9 >0, 02, <0 —> 0. +0. +6 =(
.<ch. T B<h; &<t 0 +62 +0 = -2

* At the intersections live chiral fermions v, ¥, ¥, Y, ¢, ¢ and their superparteners ¥, X, ®.
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Yukawas between SM and |.s.s

* The Yukawas are (by direct computations and using some SUSY Ward ID’s)
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Yukawas between SM and |.s.s

* The Yukawas are (by direct computations and using some SUSY Ward ID’s)

A(I)
) PP
‘YOOO’ - gOp(27T) 3/4[]?1_0’11971_@% ™ 1 Fl a2b91 CLb ) CL2 F_ ib’ abc’_a’B 1/4 HeX c 27TOéX
(1) \
o | Y000 2A¢¢X usual SM Yukawa'’s (three SM particles)
‘YlO()’ vy \/aT[Fl—alb,l abc,—al
ab
1Yo00| ZAEblsz \ Yukawa’s between two SM and one 1.s.s.
‘Y200| = \/ial Fl—aib,l—aéc,—aéa To! -3
ab
Yukawa’s between one SM and two l.s.s.
1) R
1
Yi10| = |Yoool | —22X —1 U RN e
& CLl CLl b be ca
ab™be /— Yukawa’s between three l.s.s.
(1) (3)
2 Y000/ 1/2 2450y 2440
Yi1| = | & TR | e 1
\/a babc 1 +a3 ) s il —agy,—ap,,—ad o/ o/
(1) (1) (3)
Ya11| = Y000 [8/2 /2 2440x _ 4 \/ 2450 240y
! faab\/abc + a3,) l—az,,1—ap,,—az,” —al,,—a3.,—a3, | 7o/ ro!  mwo/

etc etc...



Kaluza-Klem vs D-brane towers

# Kaluza-Klein models predict also Massive towers of states...



Kaluza-Klem vs D-brane towers

# Kaluza-Klein models predict also Massive towers of states...

10 |-
* There are two main differences: i
&l KK modes
»  Different mass spacing. D 6
A
g string modes
4L
KK _ ™ ,
M4D - E L
2l
. t t . [
Mi% ersecitions — /mHMS
2 + é 8 10

modes



Kaluza-Klem vs D-brane towers

# Kaluza-Klein models predict also Massive towers of states...

10

+ There are two main differences:

2l KK modes
»  Different mass spacing. D 6
S ;
g string modes
m o
MKK v i
4D a
R ,
2
intersections __ I
Min = VmOM,
R R T R T =
modes

+ Decays: in KK scenaria forbid decays which are allowed in D-brane models.

0

e
b

X

¢



Kaluza-Klem vs D-brane towers

# Kaluza-Klein models predict also Massive towers of states...

+ There are two main differences:

»  Different mass spacing.
m
]V[I{I( v
4D R

Mi’lgefr‘sectzons = /TTLHMS

masses

10

KK modes

string modes

\\\\\\

+ Decays: in KK scenaria forbid decays which are allowed in D-brane models.

= P(p°=0)
B = O(p7=1/) /
\\ x = x(p°=0)




Kaluza-Klem vs D-brane towers

# Kaluza-Klein models predict also Massive towers of states...

+ There are two main differences:

»  Different mass spacing.
m
]V[I{I( v
4D R

Mi’lgefr‘sectzons = /TTLHMS

masses

10

KK modes

string modes

\\\\\\

+ Decays: in KK scenaria forbid decays which are allowed in D-brane models.

Y= y(p°
oo @ .
\\ X= X(P5@




Kaluza-Klem vs D-brane towers

# Kaluza-Klein models predict also Massive towers of states...

10

+ There are two main differences:

2l KK modes
»  Different mass spacing. D 6
S ;
g string modes
m o
MKK v i
4D a
R ,
2
intersections __ I
Min = VmOM,
R R T R T =
modes

+ Decays: in KK scenaria forbid decays which are allowed in D-brane models.

¥ = 3(p4o)
X= X(P5@

P = P(p°

¢



Kaluza-Klem vs D-brane towers

# Kaluza-Klein models predict also Massive towers of states...

10
+ There are two main differences: i
&l KK modes
»  Different mass spacing. D 6
A
g string modes
m 4r
M5 = — ;
4D R 7
2L
Mifgﬁe?"sectzons = /TTLHMS
| 2 ‘ | ‘ 4 | | ‘ 6 | ‘ ‘ 8 ‘ ‘ ‘ 10
modes

+ Decays: in KK scenaria forbid decays which are allowed in D-brane models.

¥ =(p4o) P
X= X(P5@

P = P(p°

Q.

X

(1)
1 Yo00] 24
[Yi00| = - [Fl—a}lb,l—a})c,—a}:a]l/2 _qb@/bx
al) T

a




Kaluza-Klem vs D-brane towers

# Kaluza-Klein models predict also Massive towers of states...

10
+ There are two main differences: i
&l KK modes
»  Different mass spacing. D 6
A
g string modes
m 4r
M5 = — ;
4D R 7
2L
Mifgﬁe?"sectzons - /TTLHMS
| 2 ‘ | ‘ 4 | | ‘ 6 | ‘ ‘ 8 ‘ ‘ ‘ 10
modes

+ Decays: in KK scenaria forbid decays which are allowed in D-brane models.

¥ =(p4o) P
P = P(p°
X=X (P5@ X 5
Y, 24
* Therefore, the two scenarios are easily distinguishable. [Yioo| = | - | Ty ar, 1ar ar |2 —2X

- T
aab



Conclusions

+ Semi-realistic D-brane models predict towers of states for each Standard Model field.



Conclusions

+ Semi-realistic D-brane models predict towers of states for each Standard Model field.

«  All these towers come with different mass spacings, which depend on the intersection
angle M~ ~ OM_ where these towers of states live.



Conclusions

+ Semi-realistic D-brane models predict towers of states for each Standard Model field.

«  All these towers come with different mass spacings, which depend on the intersection
angle M~ ~ OM_ where these towers of states live.

+ They are also very different from the related KK states.



Conclusions

+ Semi-realistic D-brane models predict towers of states for each Standard Model field.

«  All these towers come with different mass spacings, which depend on the intersection
angle M~ ~ OM_ where these towers of states live.

+ They are also very different from the related KK states.

+ In this work we have presented scattering amplitudes involving two gauge bosons and
two of the lightest descendants of the quarks.



Conclusions

+ Semi-realistic D-brane models predict towers of states for each Standard Model field.

«  All these towers come with different mass spacings, which depend on the intersection
angle M~ ~ OM_ where these towers of states live.

+ They are also very different from the related KK states.

+ In this work we have presented scattering amplitudes involving two gauge bosons and
two of the lightest descendants of the quarks.

+ Other processes as well as the lifetimes of these states are works in progress.



Conclusions

+ Semi-realistic D-brane models predict towers of states for each Standard Model field.

«  All these towers come with different mass spacings, which depend on the intersection
angle M~ ~ OM_ where these towers of states live.

+ They are also very different from the related KK states.

+ In this work we have presented scattering amplitudes involving two gauge bosons and
two of the lightest descendants of the quarks.

+ Other processes as well as the lifetimes of these states are works in progress.

+ If the string scale is at a few TeV region and some of the intersecting angles are small
these states are very light.



Conclusions

+ Semi-realistic D-brane models predict towers of states for each Standard Model field.

«  All these towers come with different mass spacings, which depend on the intersection
angle M~ ~ OM_ where these towers of states live.

+ They are also very different from the related KK states.

+ In this work we have presented scattering amplitudes involving two gauge bosons and
two of the lightest descendants of the quarks.

+ Other processes as well as the lifetimes of these states are works in progress.

+ If the string scale is at a few TeV region and some of the intersecting angles are small
these states are very light.

+ Decays of such states might be visible at LHC.



