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Theoretical drawbacks of SM

• at high energies:
– Hierarchy problem: quantum corrections to

the only dimensionful parameter give
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Theoretical drawbacks of SM

• at high energies:
– Hierarchy problem: quantum corrections to

the only dimensionful parameter give

m2 ∼ Λ2 ⇒ why m ≪ MPl?
– UV completion necessary

– unstable (metastable) vacuum above 1010 GeV

• cosmological:
– CP breaking by CKM matrix too small

(∼ 10−14 vs observed ∼ 10−10 baryons/photon)
– no candidate for CDM

• – why 3 generations?
(is it significant that the number of fermions, 48, and their
electric charge assignments are the same as in N = 8
gauged supergravity with SU(3)× U(1)?)

K.A.M., H. Nicolai, Phys.Rev. D91 (2015) 065029
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• ’softly broken’ conformal symmetry (replacing SUSY in the
hierarchy problem, no low energy supersymmetry)

• no new scales below MPl beyond the weak scale

• the cutoff Λ (∼ MPl) is a bona fide physical scale (no DR)
P.H. Chankowski., A. Lewandowski, KAM, JHEP 1611 (2016) 105

• the model viable to Λ (stable vacuum, no Landau poles)

• model defined at Λ renormalizable

• see-saw mechanism for neutrinos,
B − L spontaneously broken

• there is a candidate for CDM,
observed baryon/photon ratio possible
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Conformal Standard Model
K.A.M., H. Nicolai, Phys.Lett. B648 (2007) 312

A. Latosiński, A. Lewandowski, K.A.M., H. Nicolai, JHEP 1510 (2015) 170

• L = Lkin + L′:

L′ =
(

L̄iΦY E
ij E

j + Q̄iǫΦ∗Y D
ij D

j + Q̄iǫΦ∗Y U
ij U

j +

+L̄iǫΦ∗Y ν
ijN

j + yMϕijN
iTCN j + h.c.

)

−m2

Φ(Φ
†Φ)−m2

φTr(ϕϕ
⋆)

−λ1(Φ
†Φ)2−2λ3Tr(ϕϕ

⋆)(Φ†Φ)− λ2 (Tr(ϕϕ
⋆))2

−λ4Tr(ϕϕ
⋆ϕϕ⋆)

complex fields φ = φij = φji, i, j = 1, 2, 3, chargeL = −2,

mΦ, mφ ∼ 1 TeV
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+ weak scale (∼ 1 TeV) neutrinos
+ complex new scalars φij :

real parts couple to the Φ, one (Tr(φ)) mixes with it
two mass eigenstates:
Higgs 125 GeV + new one (both mixtures)

• phases of φ: very light
couple to SM only through N → Yν → L i.e. extremely
weakly

• BEH mechanism for EW symm. 〈Φ〉 = v 6= 0
SSB of the lepton number symmetry
〈ϕij〉 = vφδij 6= 0

• see-saw mechanism for neutrinos:

yM ∼ O(1), Y ν
ij ∼ O(10−6), mν ∼

v2

vφ

Y 2
ν

yM
≪ 1 eV(6)
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• SM unchanged in the usual sectors (coupling of new fields
to SM through Yν i.e. very small since neutrinos are very
light)

• only a couple of new parameters

• it turns out that the vacuum is stable up to MPl

• all couplings can be small up to MPl

• a set of new particles:
• right-chiral neutrinos very weakly coupled to SM

(see-saw mechanism)
• one scalar mixing with the usual Higgs

• phases of new scalar field very light and extremely
weakly coupled – candidates for DM
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Hierarchy problem
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• we treat the cutoff scale Λ (∼ MPl) as a bona fide physical
scale and we define all ’bare’ quantities at Λ

• vanishing of quadratic divergences is imposed on ’bare’
parameters (at scale Λ)

fH(Λ) =
9

4
g2w +

3

4
g2y + 6λ1 + 12λ3 − 6y2t != 0
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• we treat the cutoff scale Λ (∼ MPl) as a bona fide physical
scale and we define all ’bare’ quantities at Λ

• vanishing of quadratic divergences is imposed on ’bare’
parameters (at scale Λ)

fH(Λ) =
9

4
g2w +

3

4
g2y + 6λ1 + 12λ3 − 6y2t != 0

fφ(Λ) = 14λ2 + 4λ3 + 8λ4 − |yM |2 != 0

these equations are renormalization scheme independent

• at some smaller scale Λ1 the RHS 6= 0

fH(Λ1) = CH(Λ,Λ1), fφ(Λ1) = Cφ(Λ,Λ1)

but Ci = fi(Λ1)− fi(Λ) i.e. the same conditions.

K.A. Meissner, Conformal Standard Model – p. 7/12



Role of gravity
K.A.M., H. Nicolai, Phys. Rev. D80 (2009) 086005
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• how the model that couples to (explicitly non-conformal)
gravity at scale Λ can have ’soft conformal breaking" in the
particle sector below Λ?

• we examined (conformally non-invariant) general N = 4
gauged supergravity

• it turns out that it decouples at low energies into
(conformally non-invariant) gravity and (conformally
invariant) N = 4 SYM theory

• we conjecture that such a decoupling of gravity and particle
sectors below the Planck scale is a general phenomenon
allowing for ’soft breaking’ of conformal symmetry
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• at LHC standard Higgs mixes with the new scalar with

the mixing angle β – mass eigenstates h0 and h′ have

masses 125 GeV and Mh′

• new scalar h′ can eventually be observed – see below

• baryogenesis through resonant leptogenesis (Pilaftsis,

Underwood) - η ∼ 10
−10 possible thanks to CP phases

in Y ν
ij

• phase(s) of φ – properties determined by Yν ∼ 10
−6:

– very light (generically lighter than neutrinos)

– very weakly coupled (decay into photons

Γ ∼ 10
−42 eV, H0 ∼ 10

−32 eV)

good candidates for CDM
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Phenomenology – examples

|yM | MN Mh′ MR tan β Γh′ h′ → SM h0 → SM

0.56 545 378 424 −0.3 3.1 0.59 0.69

0.54 520 378 360 −0.3 3.1 0.59 0.68

0.75 1341 511 1550 0.25 6.2 0.73 0.91

0.75 2732 658 3170 −0.16 5.9 0.74 0.99

0.82 2500 834 2925 0.15 10.9 0.74 0.98

(dimensionful parameters in GeV)
125 GeV mass eigenstate assumed, equations for vanishing
quadratic divergences satisfied, | tan β| 6 0.3
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• assumption of ’softly broken’ conformal symmetry replaces

the usual assumption of low energy supersymmetry and
with additional equations solves the hierarchy problem

• CSM has only several more parameters than SM
(MSSM 116)

• CSM vacuum stable up to MPl

all coupling constants small up to MPl

• baryogenesis through resonant leptogenesis can

accommodate baryon/photon ratio η ∼ 10−10 observed in
our Universe
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Summary

• CSM has definite (unique) predictions for LHC
– besides the Higgs particle one Higgs-like (very) narrow
new heavier scalar (plus invisible)

• other scalars and right-chiral neutrinos (masses ∼ 1 TeV)
too weakly coupled to SM particles to be visible in LHC

• extremely light and naturally weakly coupled phases – CDM
candidates

• time will tell whether the predicted scalar particle will be
seen by the LHC...
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