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Motivation
• Discovery	of	the	Higgs	boson

– Mass	generation	mechanism	is	confirmed
– The	standard	model	as	an	effective	theory	is	established

• What	is	the	nature	of	electroweak	symmetry	breaking?
– SM have minimal Higgs potential…no	principle
– Higgs	self-couplings	have	not	been	measured
– →We	have	not	understood	the	shape of the Higgs	potential

• Exploring	the	structure	of	the	Higgs	sector	is	important
– New	physics	is	required	to	solve	BSM	phenomena

Baryon	asymmetry	of	the	Universe,	Existence	of	dark	matter,…
– BSM	might	be	related	to	the	extended	Higgs	sector

EW	baryogenesis,	Radiative	neutrino	mass	models,	…
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Electroweak Baryogenesisa
〜 Importance to understand the	Higgs potential	〜

• Observed Baryon number:
• Sakharov’s	three	conditions

1. #B	violation, 2.	CP	violation,	3.	Departure	from	equilibrium
• →Strongly 1st order phase transition
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• SM (mh=125GeV)	cannot	satisfy	these	conditions.	
• Strongly	1stOPT is	realized by models	with	

extended Higgs sector.	
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Strongly	1st order	Phase	transition
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The	strength	of	phase	transition
(analytic	formula	of	couplings	are	given

by	one	field	&	high-T	approx.)
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Inert	Singlet	Model (real	singlet	scalar	with	Z2 sym.)

The	strength	of	phase	transition
(analytic	formula	of	couplings	are	given

by	one	field	&	high-T	approx.)

Curtin,	Meade,	Yu,	1409.0005	(JHEP)

e.g.	Inert	Singlet	Model
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Nightmare	scenario
• Potential	barrier	with	1stOPT	can	be	created	even	if	the	Higgs	

couplings	do	not	deviate	from	SM.	

• In	the	model	with	the	unbroken	discrete	symmetry (such	as	Z2,	
Z3,	…),	the	strongly	1stOPT	can	be	realized	by	multi-step	PT.	In	
such	a	case,	it	is	difficult	to	test	at	colliders	in	a	part	of	
parameter	regions.

• We	expect	the	observations	of	the	gravitational	waves	as	a	
new	technique	to	detect	the	signal	of	the	strongly	1stOPT.	
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Gravitational waves
〜 Probing	the Higgs potential by GW observations〜
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http://rhcole.com/apps/GWplotter/

Sensitivity	of	GW	detectors
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GWs	from	1stOPT
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@T=Tt

(Model)

Characteristic parameters of	1stOPT

・ α is defined as																						.	(ρrad is	energy	density	of	rad.)

- Latent	heat:
α	~ “Normalized	difference	of	the	potential	minima”

・ β	is	defined	as																			 .	→

- Bubble	nucleation	rate:	
- 3-dim.	Euclidean	action:	

β-1 ~ “Transition	time”
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GWs	from	1stOPT
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@T=Tt
Prediction*

(Observable)
(*)	C.	Caprini et	al.,	JCAP1604, 001 (2016)

(Model)

Characteristic parameters of	1stOPT

・ α is defined as																						.	(ρrad is	energy	density	of	rad.)

- Latent	heat:
α	~ “Normalized	difference	of	the	potential	minima”

・ β	is	defined	as																			 .	→

- Bubble	nucleation	rate:	
- 3-dim.	Euclidean	action:	

β-1 ~ “Transition	time”

Three	sources	of	GWs	(relic	abundance	@ peak frequency)
“Sound waves”	(Compressional plasma)
“Bubble collision”	(Envelope	approximation)
“Magnetohydrodynamic turbulence in	the plasma”
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Z3-symmetric	model

• Higgs	potential

– complex	singlet	scalar:
• Phase	transition	patterns
– One-step (										,	large						)

– Two-step (										)

– Three-step
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Z3-symmetric	model

• Higgs	potential

– complex	singlet	scalar:
• Phase	transition	patterns

– Two-step (										)
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Z3-symmetric	model

• Higgs	potential

– complex	singlet	scalar:
• Phase	transition	patterns

– Three-step
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Allowed	region	of	strongly 1stOPT	via	multi-step	PT
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Transition	temperatures
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Gravitational	waves	from	1stOPT
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Conclusions
• The	strongly	1stOPT	can	be	realized	by	models	with	extended	Higgs	sector.
• Basically,	these	models	can	be	tested	at	the	colliders.	

• However,	there	is	another	case:	“nightmare	scenario”.
• In	this	talk,	we	have	focused	on	a	model	with	unbroken	discrete	symmetry.	
• The	potential	barrier	is	created	by	“the	multi-step	PT”	at	finite	temp.	
• We	have	shown	that,	even	if	it	is	difficult	to	test	at	the	colliders,

– GW	is	significantly	enhanced	by	the	strongly	1stOPT
– GW	can	be	detected	by	future	interferometers	such	as	eLISA/DECIGO

Toshinori	MATSUI	[KIAS] Corfu	Summer	Institute,	Workshop	on	the	Standard	Model	and	Beyond,	Sep.	2-10,	2017 12
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Thank	you	for	your	attention!
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Back Up
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Dark	Matter:	Z2-like	case(As→0)
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Dark	Matter:	finite	As
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semi-annihilation is realized for small λsh
[Belanger,	Kannike,	Pukhovd, Raidal, 1211.1014]

However, the parameter regions which realize  
the strongly 1stOPT are not explained whole of the 
observed DM relic density.
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• Potential	barrier	by	“Thermal	loop	effects”
•

Strongly 1stOPT	and	Higgs	boson	couplings
〜 Probing	the Higgs potential by “future colliders”〜

Toshinori	MATSUI	[KIAS] Corfu	Summer	Institute,	Workshop	on	the	Standard	Model	and	Beyond,	Sep.	2-10,	2017

The	strength	of	phase	transition
(analytic	formula	of	couplings	are	given

by	one	field	&	high-T	approx.)

4
Kanemura,	Okada,	Senaha,	PLB606,	361	(2005)
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Large	deviation	in	the	hhh coupling	is	required!	→ EWPT can	be	tested	at	future	colliders!

e.g.	Two	Higgs	doublet	model	(2HDM)
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• Potential	barrier	by	“Non-thermal tree	level	effects”
•

Strongly 1stOPT	and	Higgs	boson	couplings
〜 Probing	the Higgs potential by “future colliders”〜

Toshinori	MATSUI	[KIAS] Corfu	Summer	Institute,	Workshop	on	the	Standard	Model	and	Beyond,	Sep.	2-10,	2017

Fuyuto,	Senaha,	PRD	90,	no.	1,	015015	(2014)

Sym.	phase

Δλhhh /λhhh = 10%
20%
30%

50%

vS =90GeV, μS =0GeV, μΦS =-80GeV, μS '=-30GeV

100%

Γ�H 4
= 1

φc /Tc = 1.0

160 180 200 220 240

0.80

0.85

0.90

0.95

1.00

mH[GeV]

κ :	mixing	angle	at	zero-T

<0

EW	phase

:	transition	angle
at	finite-T

The	strength	of	phase	transition
(analytic	formula	of	couplings	are	given

by	one	field	&	high-T	approx.)

e.g.	Higgs	singlet	model	(HSM)	← cubic	term	is	allowed

5
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Models	of	1stOPT

J.	Kehayias and	S.	Profumo,	JCAP1003,	003	(2010)

Higgs	potential	by	high	temperature	approximation

As	the	simplest	model,	
we	have investigated	
the	O(N)	model.	

・ E : thermal	coupling (the	non-decoupling	effects	due	to	the	additional	boson loop)	
・ –e : non-thermal coupling (the	field	mixing	of	the	Higgs	boson	with	additional	scalar	fields)

↑

↓

Kakizaki,	Kanemura,	TM,
PRD	92,	115007	(2015);	

Hashino,	Kakizaki,	Kanemura,	TM,
PRD	94,	015005	(2016)

34
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Models	of	1stOPT

J.	Kehayias and	S.	Profumo,	JCAP1003,	003	(2010)

Higgs	potential	by	high	temperature	approximation

・ E : thermal	coupling (the	non-decoupling	effects	due	to	the	additional	boson loop)	
・ –e : non-thermal coupling (the	field	mixing	of	the	Higgs	boson	with	additional	scalar	fields)

↑

↓

As	the	simplest	model,	
we	have investigated	
the	Higgs	singlet	model.	

Hashino,	Kakizaki,	Kanemura,	TM, Ko,	
PLB	766,	49	(2017)
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• Deviation of Higgs couplings	from SM:
– Recent	LHC	data:	

(1σ;	combination	of	ATLAS	and	CMS)	[ATLAS-CONF-2015-044]

– Expected	accuracy: κV :	2%@HL-LHC	14TeV	3000fb-1 [CMS	collaboration,	1307.7135],	
κV :	0.6% @ILC	250GeV	2000fb-1 [Durieux et	al.	(2017)]
κZ (κW)	:	0.37%	(0.51%)	@ILC	500GeV	500fb-1 [Fujii et	al,	1506.05992]

• Deviation of hhh coupling from SM:
– Expected	accuracy: 54%@HL-LHC	14TeV	3000fb-1 [CMS-PAS-FTR-15-002],	

27%@ILC	500GeV	4000fb-1 [Fujii et	al,	1506.05992],
16%	(10%)@ILC	1TeV	2000fb-1 (5000fb-1)	[Fujii et	al,	1506.05992]

• In	order	to	explore	EWPT,	synergy between	the	measurements	of	various	
Higgs	boson	couplings	at	future	collider	experiments and	the	observation	
of	GWs	at	future	space-based	interferometers can	be	useful	to	determine	
model	parameters	[Kakizaki,	Kanemura,	TM (PRD’15);	Hashino,	Kakizaki,	
Kanemura,	TM (PRD’16);	Hashino,	Kakizaki,	Kanemura,	TM, Ko, (PLB’17)]

Strongly 1stOPT	and	Higgs	boson	couplings
〜 Probing	the Higgs potential by “future colliders”〜

Toshinori	MATSUI	[KIAS] Corfu	Summer	Institute,	Workshop	on	the	Standard	Model	and	Beyond,	Sep.	2-10,	2017 6
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Gravitational	wave	
observations

Toshinori	MATSUI	[KIAS] Corfu	Summer	Institute,	Workshop	on	the	Standard	Model	and	Beyond,	Sep.	2-10,	2017 37



/12

eLISA design	decided	

Toshinori	MATSUI	[KIAS] Corfu	Summer	Institute,	Workshop	on	the	Standard	Model	and	Beyond,	Sep.	2-10,	2017

eLISA cosmology	WG	report,	arXiv:1512.06239 [JCAP(2016)]
C1	: old	LISA	configuration

・Number	of	laser	links	: 6,	corresponding	to	3 interferometer	arms
→ Determined	at	eLISA symposium (Sept.	2016,	U.	of	Zurich)	http://www.physik.uzh.ch/events/lisa2016
・Arm	length	:	2	- 5	million	km
・Duration	:	3	- 10	years	data	taking
・Noise	level	:	N2 (LISA	pathfinder	expected)	is	10	times	larger	than	N1	(LISA	pathfinder	required)
→ Determined	by	receiving	the	pathfinder	result [PRL116,	231101	(2016)]

ESA	approval	:	June,	2017
Launch	:	2034

Extra	budget	was	estimated	

Properties	of	the	representative	eLISA configurations

7
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LIGO have detected GWs

• “GW150914”	LIGO	Scientific	and	Virgo	Collaborations,	Phys.	Rev.	Lett.	116,	no.	6,	061102	(2016)
– BH	merger	(36+29→62	in	the	unit	of	solar	mass)
– 410Mpc	(1.3	billion	years	ago)
– Signal/Noise=24	(>5.1σ),	frequency:	35-250	Hz

• "GW151226”	LIGO	Scientific	and	Virgo	Collaborations,	Phys.	Rev.	Lett.	116,	no.	24,	241103	(2016)
– BH	merger	(14+8→21	in	the	unit	of	solar	mass)
– 440Mpc	(1.4	billion	years	ago)
– Signal/Noise=13	(>5σ),	frequency:	35-450	Hz,	

Toshinori	MATSUI	[KIAS] Corfu	Summer	Institute,	Workshop	on	the	Standard	Model	and	Beyond,	Sep.	2-10,	2017 39
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Prospects	for	LIGO/Virgo	
• LIGO	1st RUN	(2015/09/12-

2016/01/19)
• LIGO	2nd RUN	(from	the	fall	2016)

– 15-25%	improvement	in	
sensitivity	performance	over	
1st RUN

– The	event	rate	will	be	
increased	by 1.5-2 times Frequency/Hz
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Pulsar	Timing	Array

• The	main	idea	behind	pulsar	timing	array	(PTA)	is	to	
use	ultra-stable	millisecond	pulsars	as	beacons	for	
detecting	GW	in	the	nano-Hz	range	(10−9 −	10−7 Hz).	

• Pulsars	are	neutron	stars	with	rapid	rotation	and	
strong	magnetic	field.	Period	from	few	seconds	to	
few	milliseconds.

Toshinori	MATSUI	[KIAS] Corfu	Summer	Institute,	Workshop	on	the	Standard	Model	and	Beyond,	Sep.	2-10,	2017 41
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Pulsar	Timing	Array

• Current limit:	ΩGWh2>~10-9
• EPTA	Collaboration	[Mon.	Not.	Roy.	Astron.	Soc.	453,	no.	3,	2576	(2015) [arXiv:1504.03692]]
• NANOGrav Collaboration	[Astrophys.	J.	821,	no.	1,	13	(2016) [arXiv:1508.03024]]

• International	Pulsar	Timing	Array	(IPTA):	combined	
three	PTAs	[PPTA	(Australian),	EPTA	(European)*,	
NanoGrav (North	American)].	*EPTA	consists	of	5	radio	telescopes

• 1st data	release	Mon.	Not.	Roy.	Astron.	Soc.	458,	1267	(2016) [arXiv:1602.03640]

• Expected limit:	ΩGWh2>~10-12 Publ.	Astron.	Soc.	Austral.	30,	17	(2013) [arXiv:1210.6130]	

• Square	Kilometer	Array (SKA)
: The	next	great	advancement	in	radio	astronomy

• Expected limit:	ΩGWh2>~10-15 https://www.skatelescope.org

Toshinori	MATSUI	[KIAS] Corfu	Summer	Institute,	Workshop	on	the	Standard	Model	and	Beyond,	Sep.	2-10,	2017 42
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Gravitational	wave	
from	1st order	phase	transition

Toshinori	MATSUI	[KIAS] Corfu	Summer	Institute,	Workshop	on	the	Standard	Model	and	Beyond,	Sep.	2-10,	2017 43
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GWs from 1stOPT

Toshinori	MATSUI	[KIAS] Corfu	Summer	Institute,	Workshop	on	the	Standard	Model	and	Beyond,	Sep.	2-10,	2017

C.	Caprini et	al.,	JCAP1604, 001 (2016)

r0: size of critical	bubble

Bubble is spherical
No GW occurs

Expanding
bubbles of the broken phase
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GWs from 1stOPT

Toshinori	MATSUI	[KIAS] Corfu	Summer	Institute,	Workshop	on	the	Standard	Model	and	Beyond,	Sep.	2-10,	2017

C.	Caprini et	al.,	JCAP1604, 001 (2016)

r0: size of critical	bubble

Spherical symmetry is violated	by bubble collisions

(Typical	radius	of	colliding	bubbles)																																														(Horizon	size),	
Transition	time:

45
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GWs from 1stOPT

Toshinori	MATSUI	[KIAS] Corfu	Summer	Institute,	Workshop	on	the	Standard	Model	and	Beyond,	Sep.	2-10,	2017

“Magnetohydrodynamic
turbulence in	the plasma”

“Bubble collision”
(Envelope approximation)

C.	Caprini et	al.,	JCAP1604, 001 (2016)

“Sound waves”
(Compressional plasma)
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Relic	abundance	of	GWs

Toshinori	MATSUI	[KIAS] Corfu	Summer	Institute,	Workshop	on	the	Standard	Model	and	Beyond,	Sep.	2-10,	2017

@

@

@

@T=Tt

Prediction*

(Observable)

(*)	C.	Caprini et	al.,	JCAP1604, 001 (2016)

Relic	abundance	of	GWs @ peak frequency

Input

Model parameters
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Estimation of the relic	abundance

• Wave	eq.	from	Einstein	eq.	in	weak	field	approximation

• Stochastic	backgrounds	of	GWs

M.	Kamionkowski,	PRD49,	2837 (1994)

Efficiency	factor

Toshinori	MATSUI	[KIAS] Corfu	Summer	Institute,	Workshop	on	the	Standard	Model	and	Beyond,	Sep.	2-10,	2017 48
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We	improve	our	analysis	in	accordance	with	the recent simulation	result.	

Origins of GWs from EWPT
C.	Caprini et	al.,	arXiv:1512.06239	[astro-ph.CO] (review)

Toshinori	MATSUI	[KIAS] Corfu	Summer	Institute,	Workshop	on	the	Standard	Model	and	Beyond,	Sep.	2-10,	2017 49
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Recent work of other souse of GW “sound wave”

Toshinori	MATSUI	[KIAS] Corfu	Summer	Institute,	Workshop	on	the	Standard	Model	and	Beyond,	Sep.	2-10,	2017

M.	Hindmarsh,	et	al., PRL	112,	041301	(2014);	arXiv:1504.03291	[astro-ph.CO].
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Origins of GWs from EWPT

@

@

@

・Efficiency	factor κ(vb , α)

・Vacuum bubble velocity vb

C.	Caprini et	al.,	arXiv:1512.06239	[astro-ph.CO] (review)
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Origins of GWs from EWPT

@

@

@

・Efficiency	factor κ(vb , α)

・Vacuum bubble velocity vb

J.R.Espinosa,	et	al,	JCAP	1006,	028	(2010)

C.	Caprini et	al.,	arXiv:1512.06239	[astro-ph.CO] (review)
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Origins of GWs from EWPT

@

@

@

The result from resent simulation

Hindmarsh,	Huber,	Rummukainen,	Weir,	
PRD	92,	no.	12,	123009	(2015)

・The	fraction	of	bulk	motion	from	the	bubble	walls	

・Efficiency	factor κ(vb , α)

・Vacuum bubble velocity vb

J.R.Espinosa,	et	al,	JCAP	1006,	028	(2010)

C.	Caprini et	al.,	arXiv:1512.06239	[astro-ph.CO] (review)
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(α,	βtilde)	⇔ (f,	ΩGWh2)new

Β " 103, Tt " 50 GeV
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(α,	βtilde)_exp. by New	spectra (Tt=50GeV)
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(α,	βtilde)_exp. by New	spectra (Tt=100GeV)
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Efficiency	factor κ(vb , α)

Toshinori	MATSUI	[KIAS] Corfu	Summer	Institute,	Workshop	on	the	Standard	Model	and	Beyond,	Sep.	2-10,	2017

J.	R.	Espinosa,	et	al,	JCAP	1006,	028	(2010)
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ξJ is	same
as our vb(α)

J.	R.	Espinosa, et al.
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Contour	plot	of	α on	(ξw, v+) plane

Diffusion upper
bound of EWBG

α is	given	by	effective	potential.	

J.	M.	No, PRD84,	124025	(2011)
Toshinori	MATSUI	[KIAS] Corfu	Summer	Institute,	Workshop	on	the	Standard	Model	and	Beyond,	Sep.	2-10,	2017

EWBG	requires	small	ξw
⇆GW requires large
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Contour	plot	of	v+ on	(ξw, α)	plane

Toshinori	MATSUI	[KIAS] Corfu	Summer	Institute,	Workshop	on	the	Standard	Model	and	Beyond,	Sep.	2-10,	2017

α is	given	by	effective	potential.	

J.	M.	No, PRD84,	124025	(2011)

EWBG	requires	small	ξw
⇆GW requires large
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Foreground	noise	from	white	dwarf	binaries

Toshinori	MATSUI	[KIAS] Corfu	Summer	Institute,	Workshop	on	the	Standard	Model	and	Beyond,	Sep.	2-10,	2017

R.	Schneider,	S.	Marassi,	V.	Ferrari,	Class.	Quant.	Grav.	27,	194007	(2010)
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