

Maria Giulia Ratti Università degli Studi di Milano and I.N.F.N.

on behalf of the ATLAS collaboration

WORKSHOP ON THE STANDARD MODEL AND BEYOND CORFU, 03-09-2017

+ Dark Matter at colliders

- \odot Dark Matter constitutes ~85% of total matter in the Universe
 - * DM and SM interact other than gravitationally \rightarrow weakly
 - * establish complementary strategies to detect it

+ Dark Matter at colliders

• Dark Matter constitutes ~85% of total matter in the Universe

- * DM and SM interact other than gravitationally \rightarrow weakly
- * establish complementary strategies to detect it

Search for direct production of DM pairs Missing transverse momentum (MET) recoiling against a "visible" X=jet, y, W, Z, h MET + jet (or 'Mono-jet') best channel if X comes from ISR

+ Mono-jets at ATLAS

Mono-jet analysis 2015+2016 data MLAS-CONF-2017-060

+ SM backgrounds and Analysis Strategy

• Crucial to measure the SM background precisely

- * Z(vv)+jets (55-70%),
 * W(lv)+jets (35-20%),
 V+jets control regions
- * ttbar (~3%) \longrightarrow Top CR
- ★ Diboson (~2%) → from MC
- * Multi-jet and non-collision backgrounds ----- data-driven

• Look for an excess of events wrt SM prediction

- essential to find the best way to estimate the Z(vv)+jets background
- use simultaneously the shape of the "MET" in W/Z+jets & ttbar control regions to constrain the background in the SR
- this requires to know higher order corrections to W/Z+jets

use state-of-the art perturbative calculations

NEW

following approach by Lindert et al. https://arxiv.org/pdf/1705.04664.pdf

NEW indicates a change wrt 2015 analysis

+ Background estimation

• V+jets simulations combined with perturbative corrections

- ightarrow NLO QCD and nNLO EW accuracy
- \rightarrow thanks to a one-dimensional reweighting $x \equiv \mathbf{p}_{\mathbf{T}}^{V}$

We refer to the observable as " E_T^{miss} " both in SR and CRs

theory prediction

arxiv: 1705.04664

 p_T^V distribution in our MC

Binned simultaneous fit of the in 4 CRs and the SR

In addition perform 10 counting experiments for reinterpretation

Inclusive (IM)	IM1	IM2	IM3	IM4	IM5	IM6	IM7	IM8	IM9	IM10
$E_{\rm T}^{\rm miss}$ (GeV)	>250	>300	>350	>400	>500	>600	>700	>800	>900	>1000

+ Control Regions

W (μ v) + jets

W (ev) + jets dN/dE^{miss} [Events/GeV] **ATLAS** Preliminary Data 2015+2016 10^{5} s = 13 TeV, 36.1 fb⁻¹ High Standard Model W(→ ev) Control Region $Z(\rightarrow vv) + jets$ 10⁴ _____p_(j1)>250 GeV, E_____S250 GeV $W(\rightarrow hv) + jets$ $Z(\rightarrow II) + jets$ 10 tt + single top Dibosons 10 10 10 1.2 Data / SM 1.1 0.9 1000 1100 1200 300 400 500 600 700 800 900 E_T^{miss} [GeV]

Maria Giulia Ratti - maria.giulia.ratti@cern.ch

03/09/17

+ Results

Signal Region

... no significant deviations from SM prediction

- Major systematic components:
 - lepton efficiency
 - * jet/MET scale&reso
- ♦ Reached high precision in the bkg prediction uncertainty σ_{bkg}
 - ★ ~2% at 'low' MET
 - * ~7% in the TeV regime

→ sizeable improvement
 wrt to 2015 analysis:
 ~ halved σ_{bkg}

_ATLAS/CMS DM forum recommendations: arxiv: 1507.00966

Exclusion limit in $\begin{bmatrix} 2 & 10^{-30} \\ 0 & 10^{-33} \end{bmatrix}$ m_{DM} – m_A plane 90% CL limits ATLAS Preliminary PICO-60 $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$ Axial-Vector Mediator 10⁻³³ m_{χ} [GeV] Dirac Fermion DM $g_{n} = 0.25, g_{y} = 1.0$ Expected limit $\pm 2 \sigma_{exp}$ ATLAS Preliminary 000 Expected limit (± 1 σ_{exp}) √s = 13 TeV, 36.1 fb⁻¹ Observed limit (± $1\sigma_{\text{theory}}^{\text{PDF, scale}}$) Axial-Vector Mediator Perturbativity Limit Dirac Fermion DM $g_{n} = 0.25, g_{y} = 1.0$ Relic Density (MadDM) excluded by direct 95% CL limits ATLAS vs = 13 TeV, 3.2 fb⁻¹ detection 10⁻³⁹ 500 10⁻⁴² excluded by ATLAS 10² 10³ 10 10^{4} m_y [GeV] excluded by ATLA 2000 1000 SM **Exclusion** limit in m_{Z_A} [GeV] DM-proton σ – m_{DM} DM SM

03/09/17

+ Dark Matter Results (a selection of)

A axial-vector spin-1 jet from ISR g_{SM}=0.1 g_{DM}=0.25

_ATLAS/CMS DM forum recommendations:

12

+ More DM/SUSY/Add Interpretations

SUSY

vector interaction

ADD

13

+ Conclusions

• ATLAS mono-jet analysis with 2015+2016 data

ATLAS-CONF-2017-060→ https://atlas.web.cern.ch/Atlas/GROUPS/PHYS ICS/CONFNOTES/ATLAS-CONF-2017-060/

- sizeable sensitivity improvement wrt to previous search
- * paper with more DM interpretations soon to be out...

• More data ahead, new challenges

- * try to go lower in MET (work in region where trigger is not at plateau?)
- improve precision with constraint from γ +jets data
- * use additional discriminating variables

Stay tuned !

BACK-UP

+ Useful links

- ATLAS Mono-jet 2015+2016 results: <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-060/</u>
- ATLAS Exotics summary plots: <u>https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/</u>
- ATLAS Exotics public results: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults</u>
- ATLAS Jet/Etmiss public results: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/JetEtmissPublicResults</u>
- LHC DM Working group documents:
 - * Benchmark models: <u>https://arxiv.org/abs/1507.00966</u>
 - Presentation of results for MET+X: <u>https://arxiv.org/abs/1603.04156</u>
 - Presentation of results for MET+X and Dijet: <u>http://arxiv.org/pdf/1703.05703</u>
- Precise predictions for V+jets dark matter backgrounds:

https://arxiv.org/abs/1705.04664

+ Dark Matter Models

Simplified models to describe Dark Matter pair production (ATLAS/CMS DM forum 1507.00966)

Axial-vector (and vector) mediator and pseudoscalar mediators, s-channel

- jet from ISR
- mediator has spin 1, couples to all generations of quarks
- * 4 free parameters: m_A , m_{χ} , g_q , g_{χ}
- * minimal mediator width

Scalar colored mediator, t-channel

- * jet either from ISR or from mediator decay
- mediator has spin 0, couples to first two generations of quarks
- * 3 free parameters: m_{η} , m_{χ} , $g_{q\chi}$
- minimal mediator width

+ SUSY and ADD

SUSY Squark pair production

- compressed scenarios: p_T of quark and LSP are low, system is boosted by ISR jet
- * parameters: squark mass, $\Delta m \equiv m_{\tilde{q}} m_{\tilde{\chi}_1^0}$
- four scenarios considered:

$$\begin{split} \tilde{q} &\to q + \tilde{\chi}_{1}^{0} \qquad \tilde{t}_{1} \to c + \tilde{\chi}_{1}^{0} \\ \tilde{b}_{1} \to b + \tilde{\chi}_{1}^{0} \qquad \tilde{t}_{1} \to b + ff' + \tilde{\chi}_{1}^{0} \end{split}$$

ADD Large Extra-Dimensions

- n additional dimensions compatcified are assumed, where gravity propagates, scale M_D is the fundamental scale of the 4+n-dim theory
- * gravitons escaping the extra dimensions $= E_T^{miss}$
- limits on M_D as a function of the n := #extra-spatial dimensions assumed