

The Event Generator WHIZARD

Jürgen R. Reuter, DESY

The event generator WHIZARD

in memoriam: Maria Callas

Μαρία Καλογεροπούλου

* 2.12.1923 — + 16.9.1977

La Traviata

Lucia di Lammermoor

Medea

The event generator WHIZARD

Tools 2017, Corfu, 13.09.17

2 / 36

in memoriam: Maria Callas

Μαρία Καλογεροπούλου * 2.12.1923 — † 16.9.1977

The event generator WHIZARD

Tools 2017, Corfu, 13.09.17

2 / 36

WHIZARD: Some (technical) facts

WHIZARD v2.6.0 (08.09.2017) <u>http://whizard.hepforge.org</u>

<whizard@desy.de>

Ancient acronym: W, Higgs, Z, and Respective Decays

WHIZARD Team: Wolfgang Kilian, Thorsten Ohl, JRR Simon Braß/Vincent Rothe/Christian Schwinn/Marco Sekulla/So Young Shim/Florian Staub/Pascal Stienemeier/ Zhijie Zhao + 2 Master

PUBLICATIONS

General WHIZARD reference: EPJ C71 (2011) 1742, arXiv:0708.4241 0'Mega (ME generator): LC-TOOL (2001) 040; arXiv:hep-ph/0102195 VAMP (MC integrator): CPC 120 (1999) 13; arXiv:hep-ph/9806432 CIRCE (beamstrahlung): CPC 101 (1997) 269; arXiv:hep-ph/9607454 Parton shower: JHEP 1204 (2012) 013; arXiv:1112.1039 JHEP 1210 (2012) 022; arXiv:1206.3700 Color flow formalism: NLO capabilities: JHEP 1612 (2016) 075; arXiv: 1609.03390 CPC 196 (2015) 58; arXiv:1411.3834 Parallelization of MEs: **POWHEG** matching: EPS-HEP (2015) 317; arXiv: 1510.02739

The event generator WHIZARD

WHIZARD: Introduction / Technical Facts

ele256

muo356

gam345

- Universal event generator for lepton and hadron colliders
- Tree ME generator 0'Mega optimized ME generator (recursive via Directed Acyclical Graphs)

ele25

- Generator/simulation tool for lepton collider beam spectra: CIRCE1/2
- Parton showering internal: analytic + k_T -ordered, hadronization: external
- Interfaces to external packages for Feynman rules, hadronization, tau decays, event formats, analysis, jet clustering etc.: FastJet, GoSam, GuineaPig(++), HepMC, HOPPET, LCIO, LHAPDF(4/5/6), LoopTools, OpenLoops, PYTHIA6 [internal], [PYTHIA8], Recola, StdHep [internal], Tauola [internal]
- Event formats: LHE, StdHEP, HepMC, LCIO + several ASCII
- Programming Languanges: Fortran2003/2008 (gfortran ≥4.8.4), OCaml (≥3.12.0)
- Standard installation: configure <FLAGS>, make, [make check], make install
- Large self test suite, unit tests [module tests], regression testing
- Continous integration system (gitlab CI @ Siegen)

4 / 36

WHIZARD: Past and recent timeline

- Original scope: electroweak (multi-fermion) studies at 1.6 TeV TESLA [\approx 1998–2000]
- Milestone: first-ever multi-leg implementation of MSSM v1.25 [2003]
- Solor flow formalism [≈ 2005]
- Used for many TESLA studies and most ILC CDR and TDR, CLIC CDR and detector LoI studies (versions v1.24, v1.50, v1.95) [≈ 2002–2013]
- Major refactoring phase I: LHC physics \rightarrow v2.0.0 [\approx 2007–2010]
- Validation inside ATLAS and CMS [$\approx 2011-2014$]
- $\stackrel{\scriptstyle{\otimes}}{=}$ 2nd refactoring phase II: NLO automation / maintainability \rightarrow v2.2.0 [\approx 2012–2014]
- Strong interest of CEPC/FCC-ee study group(s) for simulations $[\approx 2013/14 now]$
- 9 04/2015, ALCW'15 Tokyo: LC generator group endorsed v2.2 for new mass productions
- Final validation for LC [ee] physics between v1.95 and v2 [finalized until November]

Special thanks to:

Mo Xin

[beam spectra, photon background, event formats, shower/hadronization, tau decays]

Akiya Miyamoto

Tim Barklow Phili

Philipp Roloff

The event generator WHIZARD

.R.Reuter

WHIZARD: Manual

whizard.hepforge.org

C

0

Û

The event generator WHIZARD

e⁺e⁻ Beamspectra

The event generator WHIZARD

e⁺e⁻ Beamspectra

- High-energy e+e- colliders need to achieve extreme luminosities
- Price for limited AC power: high bunch charges and tiny cross sections
- Dense beams generate strong EM fields: deflect particles in other bunch (beamstrahlung)

e⁺e⁻ Beamspectra

- High-energy e+e- colliders need to achieve extreme luminosities
- Price for limited AC power: high bunch charges and tiny cross sections
- Dense beams generate strong EM fields: deflect particles in other bunch (beamstrahlung)

The event generator WHIZARD

Lepton Collider Beam Simulation

- Another demand: adapt GuineaPig beam spectra for WHIZARD v2
- For WHIZARD v1.95 simulations done by Lumilinker [T. Barklow]
- TESLA/SLC spectra were rather simple
- Fits with 6 or 7 parameters possible [CIRCE1]
- Beams not factorizable: $D_{B_1B_2}(x_1, x_2) \neq D_{B_1}(x_1) \cdot D_{B_2}(x_2)$
- No simple power law: $D_{B_1B_2}(x_1, x_2) \neq x_1^{\alpha_1}(1-x_1)^{\beta_1}x_2^{\alpha_2}(1-x_2)^{\beta_2}$

Lepton Collider Beam Simulation

- Another demand: adapt GuineaPig beam spectra for WHIZARD v2
- For WHIZARD v1.95 simulations done by Lumilinker [T. Barklow]
- TESLA/SLC spectra were rather simple
- Fits with 6 or 7 parameters possible [CIRCE1]
- Beams not factorizable: $D_{B_1B_2}(x_1, x_2) \neq D_{B_1}(x_1) \cdot D_{B_2}(x_2)$
- No simple power law: $D_{B_1B_2}(x_1, x_2) \neq x_1^{\alpha_1}(1-x_1)^{\beta_1}x_2^{\alpha_2}(1-x_2)^{\beta_2}$

Dalena/Esbjerg/Schulte [LCWS 2011]

Tails @ CLIC much more complicated (wakefields)

J.R.Reuter

The event generator WHIZARD

Lepton Collider Beam Simulation

- Another demand: adapt GuineaPig beam spectra for WHIZARD v2
- For WHIZARD v1.95 simulations done by Lumilinker [T. Barklow]
- TESLA/SLC spectra were rather simple
- Fits with 6 or 7 parameters possible [CIRCE1]
- Beams not factorizable: $D_{B_1B_2}(x_1, x_2) \neq D_{B_1}(x_1) \cdot D_{B_2}(x_2)$
- No simple power law: $D_{B_1B_2}(x_1, x_2) \neq x_1^{\alpha_1}(1-x_1)^{\beta_1}x_2^{\alpha_2}(1-x_2)^{\beta_2}$

Dalena/Esbjerg/Schulte [LCWS 2011]

Tails @ CLIC much more complicated (wakefields)

CIRCE2 algorithm (WHIZARD 2.2.5, 02/15)

- Adapt 2D factorized variable width histogram to steep part of distribution
- Smooth correlated fluctuations with moderate Gaussian filter [suppresses artifacts from limited GuineaPig statistics
- Smooth continuum/boundary bins separately [avoid artificial beam energy spread]

8 / 36

J.R.Reuter

The event generator WHIZARD

Iterations of Beam Spectrum

(171,306 GuineaPig events in 10,000 bins)

The event generator WHIZARD

Iterations of Beam Spectrum

iterations = 0 and smooth = 0, 3, 5:

iterations = 2 and smooth = 0, 3, 5:

iterations = 4 and smooth = 0, 3, 5:

The event generator WHIZARD

Inclusive Lepton Collider ISR included

Soft exponentiation to all orders

 $\epsilon = \frac{\alpha}{\pi} q_e^2 \ln\left(\frac{s}{m^2}\right) \qquad \text{Gribov/Lipatov, 1971}$

 $f_0(x) = \epsilon \cdot (1-x)^{-1+\epsilon}$

Hard-collinear photons up to 3rd QED order

Inclusive Lepton Collider ISR included

 f_3

10/36

Soft exponentiation to all orders

 $\epsilon = rac{lpha}{\pi} q_e^2 \ln\left(rac{s}{m^2}
ight)$ Gribov/Lipatov, 1971 $f_0(x) = \epsilon \cdot (1-x)^{-1+\epsilon}$

Hard-collinear photons up to 3rd QED order

Kuraev/Fadin, 1983; Skrzypek/Jadach, 1991

$$g_3(\epsilon) = 1 + \frac{3}{4}\epsilon + \frac{27 - 8\pi^2}{96}\epsilon^2 + \frac{27 - 24\pi^2 + 128\zeta(3)}{384}\epsilon^3$$

$$\begin{aligned} (x) &= g_3(\epsilon) f_0(x) - \frac{\epsilon}{2}(1+x) \\ &- \frac{\epsilon^2}{8} \left(\frac{1+3x^2}{1-x} \ln x + 4(1+x) \ln(1-x) + 5 + x \right) \\ &- \frac{\epsilon^3}{48} \left((1+x) \left[6 \operatorname{Li}_2(x) + 12 \ln^2(1-x) - 3\pi^2 \right] + 6(x+5) \ln(1-x) \right. \\ &+ \frac{1}{1-x} \left[\frac{3}{2} (1+8x+3x^2) \ln x + 12(1+x^2) \ln x \ln(1-x) \right. \\ &- \frac{1}{2} (1+7x^2) \ln^2 x + \frac{1}{4} (39-24x-15x^2) \right] \right) \end{aligned}$$

 $\zeta(3) = 1.20205690315959428539973816151\ldots$

Soft exponentiation to all orders

Inclusive Lepton Collider ISR included

10/36

Gribov/Lipatov, 1971 $\epsilon = \frac{\alpha}{\pi} q_e^2 \ln\left(\frac{s}{m^2}\right)$ $-\frac{\epsilon^2}{8}\left(\frac{1+3x^2}{1-x}\ln x + 4(1+x)\ln(1-x) + 5 + x\right)$ $-\frac{\epsilon^{3}}{48}\left((1+x)\left[6\operatorname{Li}_{2}(x)+12\ln^{2}(1-x)-3\pi^{2}\right]+6(x+5)\ln(1-x)\right)$ $f_0(x) = \epsilon \cdot (1-x)^{-1+\epsilon}$ $+\frac{1}{1-x}\left|\frac{3}{2}(1+8x+3x^2)\ln x+12(1+x^2)\ln x\ln(1-x)\right|$ Hard-collinear photons up to 3rd QED order $-\frac{1}{2}(1+7x^2)\ln^2 x + \frac{1}{4}(39-24x-15x^2)$ Kuraev/Fadin, 1983; Skrzypek/Jadach, 1991 $g_3(\epsilon) = 1 + \frac{3}{4}\epsilon + \frac{27 - 8\pi^2}{96}\epsilon^2 + \frac{27 - 24\pi^2 + 128\zeta(3)}{384}\epsilon^3$ $\zeta(3) = 1.20205690315959428539973816151\ldots$ /N dN/dE [(10.0 GeV)^{*} Entries 10000 719.7 RMS ntegral 9970 Entries Mean 1209 RMS 796.1 Integral (luminosity spectrum peak) • *E* = 3000 GeV • $E = 1500 \, \text{GeV}$ 10-1 (Z peak and lumi spectrum)(Z resonance)• $E = M_Z$ (due to $e^+e^- \rightarrow \gamma^* \rightarrow b\bar{b}$) • $E \approx 30 \text{ GeV}$ 500 1000 1500 2000 2500 3000 [from J.-J. Blaising]

 $f_3(x) = g_3(\epsilon) f_0(x) - \frac{\epsilon}{2}(1+x)$

The event generator WHIZARD

Beamstrahlung / ISR for high-energy searches

Hagiwara/Kilian/Krauss/Ohl/Plehn/Rainwater/JRR/Schumann [CATPISS collaboration], hep-ph/0512260

The event generator WHIZARD

Tools 2017, Corfu, 13.09.17

11/36

Beamstrahlung / ISR for high-energy searches

Hagiwara/Kilian/Krauss/Ohl/Plehn/Rainwater/JRR/Schumann [CATPISS collaboration], hep-ph/0512260

The event generator WHIZARD

Tools 2017, Corfu, 13.09.17

11/36

General structure of SINDARIN input

```
άσια ταρτζ τως».
```

model = NMSSM

```
alias ll = "e-":"e+":"mu+":"mu-"
alias parton = u:U:d:D:s:S:g
alias jet = parton
alias stop = st1:st2:ST1:ST2
```

```
process susyprod = parton, parton =>
    stop,stop + gg,gg + gg,stop
```

```
sqrts = 13000 GeV
beams = p, p => lhapdf
```

```
integrate (susyprod)
    { iterations = 15:500000, 5:1000000 }
```

```
n_events = 10000
```

```
sample_format = lhef, stdhep, hepmc
sample = "susydata"
```

```
simulate (susyprod)
```

Standard cut expression:

cuts = all Pt > 100 GeV [lepton]

Cuts on tensor products:

cuts = all Dist > 2 [e1:E1, e2:E2]

Selection cuts:

cuts = any PDG == 13 [lepton]

cuts = any M > 100 GeV [combine if cos(Theta) > 0.5
 [lepton,neutrino]

Sorting and selecting:

```
cuts = any E > 2*mW [extract index 2
      [sort by -Pt [lepton]]
```

Clustering:

[FastJet: Cacciari/Salam/Soyez]

```
jet_algorithm = antikt_algorithm
jet_r = 0.7
?keep_flavors_when_clustering = true
```

Subevents and jet counts:

```
cuts = let subevt @clustered_jets = cluster [jet] in
    let subevt @pt_selected =
        select if Pt > 30 GeV [@clustered_jets] in
```


The event generator WHIZARD

Decay processes / auto decays

WHIZARD cannot only do scattering processes, but also decays

Example Energy distribution electron in muon decay:

```
model = SM
 process mudec = e2 => e1, N1, n2
 integrate (mudec)
 histogram e e1 (0, 60 MeV, 1 MeV)
 analysis = record e_e1 (eval E [e1])
 n_{events} = 100000
 simulate (mudec)
 compile_analysis { $out_file = "test.dat" }
4000
      dN/dE_e(\mu^- \to e^- \bar{\nu}_e \nu_\mu)
3000
2000
1000
  0
                                                    GeV
                  0.02
                                  0.04
    0
                                                  0.06
```


J.R.Reuter

The event generator WHIZARD

Decay processes / auto decays

WHIZARD cannot only do scattering processes, but also decays

Example Energy distribution electron in muon decay:

```
model = SM

process mudec = e2 => e1, N1, n2

integrate (mudec)

histogram e_e1 (0, 60 MeV, 1 MeV)

analysis = record e_e1 (eval E [e1])

n_events = 100000

simulate (mudec)

compile_analysis { $out_file = "test.dat" }

dN/dE_e(\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu)
```

Automatic integration of particle decays

```
auto_decays_multiplicity = 2
?auto_decays_radiative = false
```

```
unstable Wp () { ?auto_decays = true }
```

It	Calls	Integral[Ge	V] Error[(GeV] Err[%] Acc
1	100	2.2756406E-	01 0.00E-	+00 0.00	0.00*
1	100	2.2756406E-	01 0.00E-	+00 0.00	0.00
Unsta	ble parti	cle W+: comp	uted bran	ching ratio	s:
dec	ay_p24_1: ay_p24_2:	3.3325864E-	01 sbar	, u , c	
dec dec	ay_p24_3: ay_p24_4:	1.1112356E- 1.1112356E-	01 e+, 1 01 mu+,	numu	
dec Tot	ay_p24_5: al width	1.1112356E- = 2.0478471E	01 tau+ +00 GeV (, nutau computed)	
 Dec	ay option	= 2.0490000E s: helicity	+00 GeV () treated ex	preset) xactly	

2000

1000

0

0

0.02

0.04

The event generator WHIZARD

0.06

GeV

Spin Correlation and Polarization in Cascades 14/36

Cascade decay, factorize production and decay

 $p+p \rightarrow \tilde{u}^* + \tilde{u} \rightarrow \tilde{u}^* + u + \tilde{e}^+ + e^-$

The event generator WHIZARD

Spin Correlation and Polarization in Cascades 14/36

Cascade decay, factorize production and decay

 $p+p \rightarrow \tilde{u}^* + \tilde{u} \rightarrow \tilde{u}^* + u + \tilde{e}^+ + e^-$

Possibility to select specific helicity in decays!

unstable "W+" { decay_helicity = 0 }

The event generator WHIZARD

Beam structure: beam polarization

Beam polarization

<pre>beams_pol_density = @([<spin< pre=""></spin<></pre>	entries>]), @([<spin entries="">])</spin>
<pre>beams_pol_fraction = <degree< pre=""></degree<></pre>	beam 1>, <degree 2="" beam=""></degree>

Different density matrices

Spin j	Particle type	possible m values
0	Scalar boson	0
1/2	Spinor	+1, -1
1	(Massive) Vector boson	+1, (0), -1
3/2	(Massive) Vectorspinor	+2, (+1), (-1), -2
2	(Massive) Tensor	+2, (+1), (0), (-1), -2

beams_pol_density = @()Unpolarized beams
$$\rho = \frac{1}{|m|}\mathbb{I}$$
 $|m| = 2$ masslessbeams_pol_density = @(±j)
beams_pol_fraction = fCircular polarization $\rho = \operatorname{diag}\left(\frac{1+f}{2}, 0, \dots, 0, \frac{1+f}{2}\right)$ $|m| = 2$ masslessbeams_pol_density = @(0)
beams_pol_fraction = fLongitudinal polarization
(massive) $\rho = \operatorname{diag}\left(\frac{1-f}{|m|}, \dots, \frac{1-f}{|m|}, \frac{1+f(|m|-1)}{|m|}, \frac{1-f}{|m|}, \dots, \frac{1-f}{|m|}\right)$ $I = 0$ beams_pol_density = @(j, -j, j:-j:exp(-I*phi))
beams_pol_fraction = fTransversal polarization
(along an axis) $\rho = \frac{1}{2}$ $\left(1 = 0 = \cdots = \frac{f}{2}e^{-ie}\right)$ beams_pol_density = @(j:j:1-cos(theta),
j:-j:sin(theta)*exp(-I*phi), -j:-j:1+cos(theta))
beams_pol_density = @(j:j:h, j-1:j-1:h_{i^1}, \dots, -j:-j:h_i) $\rho = \frac{1}{2}$ $\left(1 = f \cos \theta = 0 = \cdots = f \sin \theta e^{-i\phi}\right)$ beams_pol_density = @(j:j:h, j-1:j-1:h_{i^1}, \dots, -j:-j:h_i) $\rho = \frac{1}{2}$ $\left(1 = f \cos \theta = 0 = \cdots = f \sin \theta e^{-i\phi}\right)$ beams_pol_density = @(j:j:h, j-1:j-1:h_{i^1}, \dots, -j:-j:h_i) $\rho = \frac{1}{2}$ $\left(1 = f \cos \theta = 0 = \cdots = f \sin \theta e^{-i\phi}\right)$ beams_pol_density = @(j:j:h, j-1:j-1:h_{i^1}, \dots, -j:-j:h_i) $\rho = \frac{1}{2}$ $\left(1 = f \cos \theta = 0 = \cdots = f \sin \theta e^{-i\phi}\right)$ beams_pol_density = @(j:j:h, j-1:j-1:h_{i^1}, \dots, -j:-j:h_i) $\rho = \frac{1}{2}$ $\left(1 = f \cos \theta = 0 = \cdots = f \sin \theta e^{-i\phi}\right)$ beams_pol_density = @(m:m':x_{n,m'})Diagonal / arbitrary density matrices

J.R.Reuter

The event generator WHIZARD

Beam structure: special beams

Beam polarization, ILC-like setup

beams = e1, E1
beams_pol_density = @(-1), @(+1)
beams_pol_fraction = 80%, 30%

Polarized decays: longitudinal Z

```
process zee = Z => e1, E1
beams = Z
beams_pol_density = @(0)
```

Scan over polarizations

```
scan int h1 = (-1,1) {
   scan int h2 = (-1,1) {
      beams_pol_density = @(h1), @(h2)
      integrate (proc)
   }
```

Asymmetric beams

beams = e1, E1
beams_momentum = 100 GeV, 900 GeV

Beams with crossing angle

beams_momentum = 250 GeV, 250 GeV beams_theta = 0, 10 degree

Beams with rotated crossing angle

beams_momentum = 250 GeV, 250 GeV beams_theta = 0, 10 degree beams_phi = 0, 45 degree

Structure functions (also concatenated)

```
beams = p, p => pdf_builtin
$pdf_builtin_set = "mmht2014lo"
beams = p, pbar => lhapdf
beams = e, p => none, pdf_builtin
beams = e1, E1 => circe1
$circe1_acc = "TESLA"
?circe1_generate = false
circe1_mapping_slope = 2
beams = e, E => circe2 => isr => ewa
```

```
beams = e1, E1 => beam_events
$beam_events_file = "uniform_spread_2.5%.dat"
```


}

The event generator WHIZARD

Phase Space Integration

- VAMP: adaptive multi-channel Monte Carlo integrator
- VAMP2: fully MPI-parallelized version, using RNG stream generator

WHIZARD algorithm: heuristics to classify phase-space topology, adaptive multi-channel mapping \implies resonant, t-channel, radiation, infrared, collinear, off-shell

Complicated processes: factorization into production and decay with the unstable option Resonance-aware factorization for NLO processes and parton showers (e.g. $e^+e^- \rightarrow jjjj$)

The event generator WHIZARD

MPI Parallelization

- Event generation trivially parallelizable
- Major bottleneck: phase space integration (generation of grids)
- Parallelization of integration: OMP multi-threading for different helicities since long
- NEW (after v2.5.0): MPI parallelisation (using OpenMPI)
- Distributes workers over multiple cores, grid adaption needs non-trivial communication
- Amdahl's law: $s = \frac{1}{1-p+\frac{p}{N}}$
- Speedups of 10 to 30, saturation at O(100) tasks
- Integration times go down from weeks to hours!

The event generator WHIZARD

Keep resonances in ME-PS merging

• Problem: $e^+e^- \rightarrow jjjj$ not dominated by highest α_s power,

but by resonances $e^+e^- \rightarrow WW/ZZ \rightarrow (jj)(jj)$

- Solution: proper merging with resonant subprocesses by means of resonance histories
- WHIZARD v2.6.0: option to set resonance histories

?resonance_history = true
resonance_on_shell_limit = 4

Keep resonances in ME-PS merging

• Problem: $e^+e^- \rightarrow jjjj$ not dominated by highest α_s power,

but by resonances $e^+e^- \rightarrow WW/ZZ \rightarrow (jj)(jj)$

- Solution: proper merging with resonant subprocesses by means of resonance histories
- WHIZARD v2.6.0: option to set resonance histories

?resonance_history = true
resonance_on_shell_limit = 4

Keep resonances in ME-PS merging

• Problem: $e^+e^- \rightarrow jjjj$ not dominated by highest α_s power,

but by resonances $e^+e^- \rightarrow WW/ZZ \rightarrow (jj)(jj)$

- Solution: proper merging with resonant subprocesses by means of resonance histories
- WHIZARD v2.6.0: option to set resonance histories

?resonance_history = true
resonance_on_shell_limit = 4

BSM Models in WHIZARD

MODEL TYPE	with CKM matrix	trivial CKM
Yukawa test model		Test
QED with e, μ, τ, γ		QED
QCD with d, u, s, c, b, t, g		QCD
Standard Model	SM_CKM	SM
SM with anomalous gauge couplings	SM_ac_CKM	SM_ac
SM with Hgg , $H\gamma\gamma$, $H\mu\mu$		SM_Higgs
SM with bosonic dim-6 operators		SM_dim6
SM with charge $4/3$ top		SM_top
SM with anomalous top couplings		SM_top_anom
SM with anomalous Higgs couplings		SM_rx/NoH_rx/SM_ul
SM extensions for VV scattering		SSC/AltH/SSC_2/SSC_AltT
SM with Z'		Zprime
Two-Higgs Doublet Model	2HDM_CKM	2HDM
MSSM	MSSM_CKM	MSSM
MSSM with gravitinos		MSSM_Grav
NMSSM	NMSSM_CKM	NMSSM
extended SUSY models		PSSSM
Littlest Higgs		Littlest
Littlest Higgs with ungauged $U(1)$		Littlest_Eta
Littlest Higgs with T parity		Littlest_Tpar
Simplest Little Higgs (anomaly-free)		Simplest
Simplest Little Higgs (universal)		Simplest_univ
SM with graviton		Xdim
UED		UED
"SQED" with gravitino		GravTest
Augmentable SM template		Template

- Automated models: interface to SARAH/BSM Toolbox Staub, 0909.2863; Ohl/Porod/Staub/Speckner, 1109.5147
- Automated models: interface to FeynRules

Christensen/Duhr; Christensen/Duhr/Fuks/JRR/Speckner, 1010.3251

The event generator WHIZARD

BSM Models in WHIZARD

MODEL TYPE	with CKM matrix	trivial CKM
Yukawa test model		Test
QED with e, μ, τ, γ		QED
QCD with d, u, s, c, b, t, g		QCD
Standard Model	SM_CKM	SM
SM with anomalous gauge couplings	SM_ac_CKM	SM_ac
SM with Hgg , $H\gamma\gamma$, $H\mu\mu$		SM_Higgs
SM with bosonic dim-6 operators		SM_dim6
SM with charge $4/3$ top		SM_top
SM with anomalous top couplings		SM_top_anom
SM with anomalous Higgs couplings		SM_rx/NoH_rx/SM_ul
SM extensions for VV scattering		SSC/AltH/SSC_2/SSC_AltT
SM with Z'		Zprime
Two-Higgs Doublet Model	2HDM_CKM	2HDM
MSSM	MSSM_CKM	MSSM
MSSM with gravitinos		MSSM_Grav
NMSSM	NMSSM_CKM	NMSSM
extended SUSY models		PSSSM
Littlest Higgs		Littlest
Littlest Higgs with ungauged $U(1)$		Littlest_Eta
Littlest Higgs with T parity		Littlest_Tpar
Simplest Little Higgs (anomaly-free)		Simplest
Simplest Little Higgs (universal)		Simplest_univ
SM with graviton		Xdim
UED		UED
"SQED" with gravitino		GravTest
Augmentable SM template		Template

- Automated models: interface to SARAH/BSM Toolbox Staub, 0909.2863; Ohl/Porod/Staub/Speckner, 1109.5147
- Automated models: interface to FeynRules Christensen/Duhr; Christensen/Duhr/Fuks/JRR/Speckner, 1010.3251
- Automated models: UFO interface [new WHIZARD/0'Mega model format] NEW in v2.5.0

21/36

model = SM (ufo)

UFO file is assumed to be in working directory OR

model = SM (ufo ("<my UFO path>"))

UFO file is in user-specified directory

İ	WHIZARD 2.5.1
	=======================================
	Reading model file '/Users/reuter/local/share/whizard/models/SM.mdl'
	Preloaded model: SM
	Process library 'default_lib': initialized
	Preloaded library: default_lib
	Reading model file '/Users/reuter/local/share/whizard/models/SM_hadrons.mdl'
	Reading commands from file 'ufo_2.sin'
	Model: Generating model 'SM' from UFO sources
	Model: Searching for UFO sources in working directory
	Model: Found UFO sources for model 'SM'
	Model: Model file 'SM.ufo.mdl' generated
	Reading model file 'SM.ufo.mdl'

Switching to model 'SM' (generated from UFO source)

All the setup works the same as for intrinsic models

Old FeynRules / SARAH interface might get deprecated

kept at the moment for user backwards compatibility

All SM-like models/scalar extensions already supported

Higher-dim. operators, general Lorentz/color structures is work in progress (scheduled end of 2017)

The event generator WHIZARD

New Physics in Vector Boson Scattering: LHC 22/36

- Vector Boson Scattering (VBS) major measurement of LHC runs II/III Gianotti, 01/2014
- Light Higgs suppression makes VBS prime candidate for BSM searches
- Model-independent EFT descriptions not so useful: either weakly-coupled resonances in reach or strongly-coupled sectors
 Alboteanu/Kilian/JRR, 0806.4145; Kilian/Ohl/JRR/Sekulla, 1408.6207
- Parameterize new physics by dim 6/dim 8 operators, calculate unitarity limits
- Dimension-8 operators for longitudinal/mixed/transverse modes Fleper/Kilian/JRR/Sekulla, 2017
- Solution T-matrix unitarization implemented in WHIZARD (both for operators and resonances)

New Physics in VBS: LHC & Lepton Colliders

LHC (14 TeV)

Fleper/Kilian/JRR/Sekulla: Eur.Phys.J. C77 (2017) no.2, 120

Fleper/Kilian/JRR/Sekulla: to appear soon

WIP: Unitarity limits for $pp \rightarrow VVV$

23/36

Kilian/JRR/Sekulla

The event generator WHIZARD

VBS SM: Comparison VBScan COST network ^{24/36}

A. Karlberg/M. Pellen/M. Rauch/JRR/V. Rothe/C. Schwan/P. Stienemeier/M. Zaro

$\mathcal{O}(\alpha^6)$ Integrated Cross Sections for pp $\rightarrow e^+ \nu_e \, \mu^+ \nu_\mu \, jj + X$

NLO comparison still under way

	Code	LO σ [fb]	Contact person	Code	Squares	Interf.	Off-shell	NF QCD	EW Corr.
	BONSAY MG5_AMC POWHEG RECOLA+MOCANLC VBFNLO	$\begin{array}{c} 1.5524 \pm 0.0002 \\ 1.547 \pm 0.001 \\ 1.5573 \pm 0.0003 \\ 0 \ 1.5503 \pm 0.0003 \\ 1.5538 \pm 0.0002 \end{array}$	A. Karlberg M. Pellen M. Rauch C. Schwan M. Zaro V. Rothe	POWHEG RECOLA+MOCANLO VBFNLO BONSAY MG5_AMC WHIZARD	t/u Yes Yes t/u Yes Yes	No Yes No No Yes Yes	Yes Yes Yes V+I PA Yes Yes	No Yes No No No Yes	No Yes No No Yes
10 ⁻³ e+m	WHIZARD	1.5539 ± 0.0002 1.5539 ± 0.0004 10^{-3} e^+mu^+vvjj production at the MonteCarlo comparison, LO fixe	e LHC, 13 TeV	$ \mathcal{A} ^2 \ni \left\{ \begin{array}{c} & & \\ &$,,)		
10 ⁻⁴ [qd] uiq 10 ⁻⁵ b 10 ⁻⁶	eCarlo comparison, LO fixed order VBFNLO — MG5_aMC — POWHEG — Recola — BONSAY — WHIZARB	Tag 10 ⁻⁴ Jug and Jug and Ju		A _{virt} $ i$,…, , ≰<,…, ≰<,…, LC	σ [fb]	··· ,	NLO σ[f	
1.1 1.1 0.9 0	200 400 600 800 1000	10 ⁻⁶ BONSAY 1.1 0.9 -5 -4 -3 -2 -1 0 1		BONSAY MG5_AMC POWHEG RECOLA+MOCANLO VBFNLO WHIZARD	1.5524 1.547 1.5573 1.5503 1.5538 1.5539	$\begin{array}{c} \pm 0.0 \\ \pm 0.0 \\ 3 \pm 0.0 \\ 3 \pm 0.0 \\ 3 \pm 0.0 \\ 3 \pm 0.0 \\ 0 \pm 0.0 \end{array}$	002 1. 01 1. 003 1. 003 1. 003 1. 002 1. 004	3469 ± 0 318 ± 0 334 ± 0 317 ± 0 3531 ± 0	.0008 .003 .003 .004 .0003

The event generator WHIZARD

y(j₁)

P_T(j₁) [GeV]

NLO Automation in WHIZARD

 \star

Working NLO interfaces to:

- GoSam [N. Greiner, G. Heinrich, J. v. Soden-Fraunhofen et al.]
- * OpenLoops [F. Cascioli, J. Lindert, P. Maierhöfer, S. Pozzorini]
- * Recola [A. Denner, L. Hofer, J.-N. Lang, S. Uccirati]

NLO QCD (massless & massive emitters) fully supported

```
alpha_power = 2
alphas_power = 0
process eett = e1,E1 => t, tbar
    { nlo_calculation = "full" }
```

- FKS subtraction [Frixione/Kunszt/Signer,
- Resonance-aware treatment [Ježo/Nason, 1509.09071]
- Virtual MEs external
- Real and virtual subtraction terms internal
- NLO decays available for the NLO processes
- Fixed order events for plotting (weighted, either LHEF or HepMC)
- Automated POWHEG damping and matching

Tools 2017, Corfu, 13.09.17

The event generator WHIZARD

NLO Automation in WHIZARD

 \star

Working NLO interfaces to:

- GoSam [N. Greiner, G. Heinrich, J. v. Soden-Fraunhofen et al.]
- * OpenLoops [F. Cascioli, J. Lindert, P. Maierhöfer, S. Pozzorini]
- * Recola [A. Denner, L. Hofer, J.-N. Lang, S. Uccirati]

NLO QCD (massless & massive emitters) fully supported

```
alpha_power = 2
alphas_power = 0
process eett = e1,E1 => t, tbar
    { nlo_calculation = "full" }
```

- FKS subtraction [Frixione/Kunszt/Signer,
- Resonance-aware treatment [Ježo/Nason, 1509.09071]
- Virtual MEs external
- Real and virtual subtraction terms internal
- NLO decays available for the NLO processes
- Fixed order events for plotting (weighted, either LHEF or HepMC)
- Automated POWHEG damping and matching

Tools 2017, Corfu, 13.09.17

The event generator WHIZARD

Examples and Validation

List of validated NLO QCD processes

• Simplest hadron collider processes validated:

 $pp \rightarrow (Z \rightarrow II) + X, \ pp \rightarrow (W \rightarrow Iv) + X, \ pp \rightarrow ZZ + X$

- $e^+e^- \rightarrow jj$
- $e^+e^- \rightarrow jjj$
- $e^+e^- \rightarrow \ell^+\ell^- jj$
- $e^+e^- \rightarrow \ell^+ \nu_\ell j j$
- $e^+e^- \rightarrow t\bar{t}$
- $e^+e^- \rightarrow t\bar{t}t\bar{t}$
- $e^+e^- \rightarrow t\bar{t}W^+jj$
- $e^+e^- \rightarrow tW^-b$
- $e^+e^- \rightarrow W^+W^-b\bar{b}, \quad \ell^+\ell^-\nu_\ell\bar{\nu}_\ell b\bar{b}$
- $e^+e^- \rightarrow b\bar{b}\ell^+\ell^-$
- $e^+e^- \rightarrow t\bar{t}H$
- $e^+e^- \to W^+W^-b\bar{b}H$, $\ell^+\ell^-\nu_\ell\bar{\nu}_\ell b\bar{b}H$
- $pp \rightarrow \ell^+ \ell^-$
- $pp \rightarrow \ell \nu$
- $pp \rightarrow ZZ$

- QCD NLO infrastructure in pp close to complete
- After complete NLO QCD validation: WHIZARD v3.0.0
- Status of EW corrections: all parts technically completed, validation phase started [Rothe et al.]

The event generator WHIZARD

Validation of NLO QCD for Lepton Collisions

		MG5_AMC			WHIZARD	
Final state	$\sigma^{\rm LO}[{\rm fb}]$	$\sigma^{\rm NLO}[{\rm fb}]$	K	$\sigma^{\rm LO}[{\rm fb}]$	$\sigma^{\rm NLO}[{\rm fb}]$	K
jj	622.3(5)	639(1)	1.02684	622.73(4)	639.7(2)	1.0272
$b\bar{b}$	92.37(6)	94.89(1)	1.02728	92.32(1)	94.78(7)	1.0266
$t\bar{t}$	166.2(2)	174.5(6)	1.04994	166.4(1)	175.1(1)	1.0522
$t\bar{t}t\bar{t}$	$6.45(1) \cdot 10^{-4}$	$12.21(5) \cdot 10^{-4}$	1.89302	$6.463(2) \cdot 10^{-4}$	$12.16(2) \cdot 10^{-4}$	1.8814
$b \overline{b} b \overline{b}$	$1.644(3) \cdot 10^{-1}$	$3.60(1)\cdot 10^{-1}$	2.1897	$1.64(2) \cdot 10^{-1}$	$3.67(4) \cdot 10^{-1}$	2.2378
$t \bar{t} b \bar{b}$	$1.819(3) \cdot 10^{-1}$	$2.92(1) \cdot 10^{-1}$	1.6052	$1.86(1) \cdot 10^{-1}$	$2.93(2) \cdot 10^{-1}$	1.5752
$t\bar{t}j$	48.13(5)	53.43(1)	1.11012	48.3(2)	53.66(9)	1.1109
$t\bar{t}H$	2.018(3)	1.911(6)	0.947	2.022(3)	1.913(3)	0.9461
$tar{t}\gamma$	12.7(2)	13.3(4)	1.04726	12.71(4)	13.78(4)	1.0841
$t \bar{t} Z$	4.642(6)	4.95(1)	1.06636	4.64(1)	4.94(1)	1.0646
$t\bar{t}HZ$	$3.600(6) \cdot 10^{-2}$	$3.58(1)\cdot 10^{-2}$	0.99445	$3.596(1)\cdot 10^{-2}$	$3.581(2) \cdot 10^{-2}$	0.9958
$t \bar{t} \gamma Z$	0.2212(3)	0.2364(6)	1.06873	0.220(1)	0.240(2)	1.0909
$t ar{t} \gamma H$	$9.75(1) \cdot 10^{-2}$	$9.42(3) \cdot 10^{-2}$	0.96614	$9.748(6) \cdot 10^{-2}$	$9.58(7) \cdot 10^{-2}$	0.9827
$tar{t}\gamma\gamma$	0.383(5)	0.416(2)	1.08618	0.382(3)	0.420(3)	1.0995
$t\bar{t}ZZ$	$3.788(4) \cdot 10^{-2}$	$4.00(1)\cdot 10^{-2}$	1.05597	$3.756(4) \cdot 10^{-2}$	$4.005(2) \cdot 10^{-2}$	1.0663
$t\bar{t}HH$	$1.358(1) \cdot 10^{-2}$	$1.206(3) \cdot 10^{-2}$	0.888	$1.367(1) \cdot 10^{-2}$	$1.218(1) \cdot 10^{-2}$	0.8909
$t\bar{t}W^+W^-$	0.1372(3)	0.1540(6)	1.1225	0.1370(4)	0.1538(4)	1.1225
$t\bar{t}W^{\pm}jj$	$2.400(4) \cdot 10^{-4}$	$3.72(1) \cdot 10^{-4}$	1.54999	$2.41(1) \cdot 10^{-4}$	$3.74(2) \cdot 10^{-4}$	1.5518
jjj	340.1(2)	316(2)	0.92914	342.4(5)	319(1)	0.9316
jjjj	104.7(1)	109.0(6)	1.04106	105.1(4)	118(1)	1.1227
$t\bar{t}t\bar{t}j$	$2.719(5) \cdot 10^{-5}$	$5.34(3) \cdot 10^{-5}$	1.96394	$2.722(1) \cdot 10^{-5}$	$4.471(5) \cdot 10^{-5}$	1.6425
$t\bar{t}Hj$	0.2533(3)	0.2658(9)	1.04935	0.254(1)	0.307(1)	1.2087
$tar{t}\gamma j$	2.355(2)	2.62(1)	1.11253	2.47(1)	3.14(2)	1.2712
$t\bar{t}Zj$	0.6059(6)	0.694(3)	1.14548	0.610(4)	0.666(5)	1.0918

NLO QCD Results for off-shell $e^+e^- \rightarrow tt$

Chokoufé/Kilian/Lindert/Pozzorini/JRR/Weiss, 1609.03390

NLO QCD Results for off-shell $e^+e^- \rightarrow ttH$ ^{28/36}

Chokoufé/Kilian/Lindert/Pozzorini/JRR/Weiss, 1609.03390

The event generator WHIZARD

Differential Results for off-shell ttH

$$E_h = \frac{1}{2\sqrt{s}} \left[s + M_h^2 - (k_1 + k_2)^2 \right]$$

Determination of top Yukawa coupling (ttH)

 $e^+e^- \rightarrow W^+W^-b\bar{b}H, \quad \sqrt{s} = 800 \text{ GeV}$ 3.0 LO, $W^+W^-b\overline{b}H$ NLO, $W^+W^-b\bar{b}H$ 2.82.6₫ 2.4 ь $W^+W^-b\bar{b}H$ ttH2.2LO 0.514 ± 0.0002 0.520 ± 0.001 $\mathbf{2.0}$ NLO 0.485 ± 0.0002 0.497 ± 0.002 1.8 1.020.1 K-factor 86.0 K 1.0 0.96 0.9 0.95 1.0 1.051.1 ξ_t

Chokoufé/Kilian/Lindert/Pozzorini/JRR/Weiss, 1609.03390

cf. Talk by Alexander Mitov

The event generator WHIZARD

Tools 2017, Corfu, 13.09.17

Differential Results for off-shell ttH

$$E_h = \frac{1}{2\sqrt{s}} \left[s + M_h^2 - (k_1 + k_2)^2 \right]$$

Determination of top Yukawa coupling (ttH)

cf. Talk by Alexander Mitov

Chokoufé/Kilian/Lindert/Pozzorini/JRR/Weiss, 1609.03390

Polarized Results (tt)

- ILC will always run polarized
- Polarized I-loop amplitudes beyond BLHA

		$\sqrt{s} = 800 \mathrm{GeV}$			$\sqrt{s} = 1500 \mathrm{GeV}$		
$P(e^{-})$	$P(e^+)$	$\sigma^{\rm LO}[{\rm fb}]$	$\sigma^{\rm NLO}[{\rm fb}]$	K-factor	$\sigma^{\rm LO}[{\rm fb}]$	$\sigma^{\rm NLO}[{\rm fb}]$	K-factor
0%	0%	253.7	272.8	1.075	75.8	79.4	1.049
-80%	0%	176.5	190.0	1.077	98.3	103.1	1.049
+80%	0%	176.5	190.0	1.077	53.2	55.9	1.049
-80%	30%	420.8	452.2	1.074	124.9	131.0	1.048
-80%	60%	510.7	548.7	1.074	151.6	158.9	1.048
80%	-30%	208.4	224.5	1.077	63.0	66.1	1.049
80%	-60%	240.3	258.9	1.077	72.7	76.3	1.049

The event generator WHIZARD

Tools 2017, Corfu, 13.09.17

Top Threshold at lepton colliders

ILC top threshold scan best-known method to measure top quark mass, $\Delta M \sim 30-70 \text{ MeV}$

Heavy quark production at lepton colliders, qualitatively:

Threshold region: top velocity $v \sim \alpha_s \ll I$

The event generator WHIZARD

Top Threshold in WHIZARD

- Implement resummed threshold effects as effective vertex [form factor] in WHIZARD
- $G^{v,a}(0,p_t,E+i\Gamma_t,\nu)$ from TOPPIK code [Jezabek/Teubner], included in WHIZARD

• Default parameters: $M^{1S} = 172 \text{ GeV}, \Gamma_t = 1.54 \text{ GeV},$ $\alpha_s(M_Z) = 0.118$ $M^{1S} = M_t^{pole} (1 - \Delta_{(Coul.)}^{LL/NLL})$

Important effects: beamstrahlung; ISR; LO EW terms Exclusive observables accessible

Theory uncertainties from scale variations: hard and soft scale $\mu_h = h \cdot m_t$ $\mu_s = f \cdot m_t v$

The event generator WHIZARD

Top Threshold in WHIZARD

• Implement resummed threshold effects as effective vertex [form factor] in WHIZARD • $G^{v,a}(0, p_t, E + i\Gamma_t, \nu)$ from TOPPIK code [Jezabek/Teubner], included in WHIZARD

error source	$\Delta m_t^{\rm PS} \; [{ m MeV}]$
stat. error (200 fb ^{-1})	13
theory (NNNLO scale variations, PS scheme)	40
parametric (α_s , current WA)	35
non-resonant contributions (such as single top)	< 40
residual background / selection efficiency	10 - 20
luminosity spectrum uncertainty	< 10
beam energy uncertainty	< 17
combined theory & parametric	30-50
combined experimental & backgrounds	25 - 50
total (stat. $+$ syst.)	40 - 75

Default parameters:

$$M^{1S} = 172 \text{ GeV}, \Gamma_t = 1.54 \text{ GeV},$$

 $\alpha_s(M_Z) = 0.118$
 $M^{1S} = M_t^{pole} (1 - \Delta_{(Coul.)}^{LL/NLL})$

from 1702.05333

Theory uncertainties from scale variations: hard and soft scale $\mu_h = h \cdot m_t$ $\mu_s = f \cdot m_t v$

The event generator WHIZARD

Chokoufé/Hoang/Kilian/JRR/ StahlhofenTeubner/Weiss, to appear very soon

$$f_s(v) = \begin{cases} 1 & v < v_1 \\ 1 - 3\left(\frac{v - v_1}{v_2 - v_1}\right)^2 - 2\left(\frac{v - v_1}{v_2 - v_1}\right)^3 & v_1 \le v \le v_2 \\ 0 & v > v_2 \end{cases}$$

The event generator WHIZARD

33 / 36

Bach/Chokoufé/Hoang/Kilian/JRR/Stahlhofen/Teubner/Weiss, to appear very soon

The event generator WHIZARD

33 / 36

Bach/Chokoufé/Hoang/Kilian/JRR/Stahlhofen/Teubner/Weiss, to appear very soon

The event generator WHIZARD

Bach/Chokoufé/Hoang/Kilian/JRR/Stahlhofen/Teubner/Weiss, to appear very soon

The event generator WHIZARD

Matching threshold NLL to continuum NLO

Total uncertainty: matching and *h-f* variation band

Bach/Chokoufé/Hoang/Kilian/JRR/Stahlhofen/Teubner/Weiss, to appear very soon

The event generator WHIZARD

Tools 2017, Corfu, 13.09.17

Matched threshold differential distributions

J.R.Reuter

The event generator WHIZARD

Conclusions & Outlook

- WHIZARD 2.6 event generator for collider physics (ee, pp, ep)
- Allows to simulate all possible BSM models
- \bigcirc High-multiplicity SM processes (2→10 etc.)
- \bigcirc e⁺e⁻ physics: beam spectra, e⁺e⁻ ISR, LCIO, polarizations
- NLO automation: reals and subtraction terms (FKS) [+ virtuals externally],
- Solution State - Automated POWHEG matching
- Top threshold in e⁺e⁻: NLL NRQCD threshold / NLO continuum matching
- NEW: UFO models, MPI parallel integration, Resonance matching to shower

The event generator WHIZARD

BACKUP

The event generator WHIZARD

More SINDARIN references

Space-like cuts (incoming particles): integer variables int i =3cuts = all M2 < $-(50 \text{ GeV})^{2}$ real a = 2.78real variables real foo = -7.8%[combine [incoming lepton, lepton]] real coeff = $20.1 \text{ TeV}^{(-2)}$ Combine two cuts: complex variables complex ca = 2 + Icuts = all Pt > 100 GeV [lepton] string variables string \$str = "foo" and all M > 10 GeV [lepton, lepton] logical variables logical ?ok = false Collecting particles: cuts = E <= 200 GeV [collect [neutrino]]</pre> printf "abc" printing printf "%i" (12345) Cut window on a selection: if i == 1 then real eta cut = 5printf "one = %1" (i) conditionals cuts = any 5 degree < Theta < 175 degree elsif i == 2 then [select of abs(Eta) < eta_cut [lepton]]</pre> printf "two" endif alias lepton = e1, e2, e3aliases scan mW = (75 GeV,(80 GeV => 82 GeV /+ 0.5 GeV), MLM matching: (83 GeV => 90 GeV /*/ 5)) { mlm_ptmin = 5 GeV; mlm_etamax = 2.5 <scan body> mlm Rmin = 1} mlm_nmaxMEjets = 1 scanning

The event generator WHIZARD

WHIZARD Parton Shower

Two independent implementations: kT-ordered QCD and Analytic QCD shower Analytic shower: no shower veto \Rightarrow exact shower history known, allows reweighting

Kilian/JRR/Schmidt/Wiesler, JHEP 1204 013 (2012)

Technical overhaul of the shower / merging part

Plans: implement GKS matching, QED shower (also interleaved, infrastructure ready)

J.R.Reuter

The event generator WHIZARD

Tuning of the WHIZARD Parton Shower

First tunes of both kT-ordered QCD and Analytic QCD shower

Chokoufe/Englert/JRR, 2015

- Di- and Multijet data from LEP as given in RIVET analysis
- Usage of the PROFESSOR tool for determining the best fit Buckley et al., 2009

The event generator WHIZARD

- Amplitudes (except for pure QCD/QED) contain resonances (Z,W, H, t)
- In general: resonance masses *not* respected by modified kinematics of subtraction terms
- Collinear (and soft) radiation can lead to mismatch between Born and subtraction terms
- Algorithm to include resonance histories [Ježo/Nason, 1509.09071]
- Avoids double logarithms in the resonances' width
- Most important for narrow resonances $(H \rightarrow bb)$
- Separate treatment of Born and real terms, soft mismatch [, collinear mismatch]

- Amplitudes (except for pure QCD/QED) contain resonances (Z,W, H, t)
- In general: resonance masses *not* respected by modified kinematics of subtraction terms
- Collinear (and soft) radiation can lead to mismatch between Born and subtraction terms
- Algorithm to include resonance histories [Ježo/Nason, 1509.09071]
- Avoids double logarithms in the resonances' width
- Most important for narrow resonances $(H \rightarrow bb)$
- Separate treatment of Born and real terms, soft mismatch [, collinear mismatch]

- Amplitudes (except for pure QCD/QED) contain resonances (Z,W, H, t)
- In general: resonance masses *not* respected by modified kinematics of subtraction terms
- Collinear (and soft) radiation can lead to mismatch between Born and subtraction terms
- Algorithm to include resonance histories [Ježo/Nason, 1509.09071]
- Avoids double logarithms in the resonances' width
- $\stackrel{\smile}{\Psi}$ Most important for narrow resonances $(H \rightarrow bb)$
- Separate treatment of Born and real terms, soft mismatch [, collinear mismatch]

 $\stackrel{\scriptstyle \ensuremath{\mathnormal{\forall}}}{=}$ WHIZARD complete automatic implementation: example $e^+e^- \rightarrow \mu\mu bb$

======= It	Calls	Integral[fb]	Error[fb]	Err[%]	Acc	Eff[%]	Chi2 N	[It]
1	11988	9.6811847E+00	6.42E+00	66.30	72.60*	0.65		
2 3	11959 11936	2.8539703E+00 2.4907574E+00	2.35E-01 6.54E-01	8.25	9.02* 28.68	0.69 0.35		
4	11908 11874	2.7695559E+00	9.67E-01	34.91	38.09 21.57*	0.30		
		2.45401512+00	4.021-01	19.00	21.3/*	0.74		
5 ======	59665 ======	2.7539078E+00	1.97E-01	7.15	17.47	0.74	0.49	5
	standard FKS							

J.R.Reuter

Tools 2017, Corfu, 13.09.17

(ZZ, ZH histories)

- Amplitudes (except for pure QCD/QED) contain resonances (Z,W, H, t)
- In general: resonance masses *not* respected by modified kinematics of subtraction terms
- Collinear (and soft) radiation can lead to mismatch between Born and subtraction terms
- Algorithm to include resonance histories [Ježo/Nason, 1509.09071]
- Avoids double logarithms in the resonances' width
- $\stackrel{\smile}{\Psi}$ Most important for narrow resonances $(H \rightarrow bb)$
- Separate treatment of Born and real terms, soft mismatch [, collinear mismatch]

 $\stackrel{\circ}{\downarrow}$ WHIZARD complete automatic implementation: example $e^+e^- \rightarrow \mu\mu bb$ (ZZ, ZH histories)

======= It	Calls	Integral[fb]	Error[fb]	Err[%]	Acc	Eff[%]	Chi2 N	[It]
1 2 3 4 5	11988 11959 11936 11908 11874	9.6811847E+00 2.8539703E+00 2.4907574E+00 2.7695559E+00 2.4346151E+00	6.42E+00 2.35E-01 6.54E-01 9.67E-01 4.82E-01	66.30 8.25 26.25 34.91 19.80	72.60* 9.02* 28.68 38.09 21.57*	0.65 0.69 0.35 0.30 0.74		
5 	59665	2.7539078E+00	1.97E-01	7.15	17.47	0.74	0.49	5
		S	tandard	FKS				

It	Calls	Integral[fb]	Error[fb]	Err[%]	Acc	Eff[%]	Chi2 N	[It]
1	11988	2.9057032E+00	8.35E-02	2.87	3.15*	7.90		
2 3	11962 11936	2.8591952E+00 2.9277880E+00	5.20E-02 4.09E-02	1.82	1.99*	10.91		
4 5	11902 11874	2.8512337E+00 2.8855399E+00	3.98E-02 3.87E-02	1.40 1.34	1.52* 1.46*	13.70 17.15		
	59662	2.8842006E+00	2.04E-02	0.71	1.72	17.15	0.53	5
======								

FKS with resonance mappings

Tools 2017, Corfu, 13.09.17

Lepton colliders: tt and ttH (on- & off-shell) 42/36

- \bigcirc Cross checks for 2 \rightarrow 2 and 2 \rightarrow 4 processes with Sherpa and Munich
- \bigcirc Using massive *b* quarks: no cuts necessary for e⁺e[−] → W⁺W[−]bb
- \bigcirc Full process e⁺e[−] → μ⁺ν_μe[−]ν_ebb exhibits Coulomb singularity:
- Solution: 8% contamination from Higgsstrahlung
- Gentribution from quartic SM vertices

Lepton colliders: tt and ttH (on- & off-shell) 42/36

 \bigcirc Cross checks for 2 \rightarrow 2 and 2 \rightarrow 4 processes with Sherpa and Munich

 $\Gamma_{t \to Wb}^{\text{NLO}} = 1.3681 \,\text{GeV},$

 $\Gamma_{t \to f\bar{f}b}^{\rm NLO} = 1.3475 \, {\rm GeV}.$

- \bigcirc Using massive *b* quarks: no cuts necessary for e⁺e[−] → W⁺W[−]bb
- \bigcirc Full process e⁺e[−] → μ⁺ν_μe[−]ν_ebb exhibits Coulomb singularity:
- ttH production: 8% contamination from Higgsstrahlung
- Contribution from quartic SM vertices

 $\Gamma_{H} = 0.000431 \text{ GeV}$

complex mass scheme:

$$\mu_i^2 = M_i^2 - i\Gamma_i M_i$$
 for $i = W, Z, t, H$ $s_w^2 = 1 - c_w^2 = 1 - \frac{\mu_W^2}{\mu_Z^2}$

 $m_Z = 91.1876 \, \text{GeV},$

 $\Gamma_{t \to Wb}^{\text{LO}} = 1.4986 \,\text{GeV},$

 $\Gamma_{t \to f\bar{f}b}^{\rm LO} = 1.4757 \,\rm{GeV},$

 $m_H = 125 \text{ GeV}$

 $m_b = 4.2 \,\mathrm{GeV},$

The event generator WHIZARD

Lepton colliders: tt and ttH (on- & off-shell) 42/36

- \bigcirc Cross checks for 2 \rightarrow 2 and 2 \rightarrow 4 processes with Sherpa and Munich
- \bigcirc Using massive *b* quarks: no cuts necessary for e⁺e[−] → W⁺W[−]bb
- \bigcirc Full process e⁺e[−] → μ⁺ν_μe[−]ν_ebb exhibits Coulomb singularity:
- ttH production: 8% contamination from Higgsstrahlung
- Contribution from quartic SM vertices

INPUT PARAMETERS:

Differential Results for off-shell $e^+e^- \rightarrow tt$

43 / 36

DES

Top-Forward Backward Asymmetry

$$A_{FB} = \frac{\sigma(\cos\theta_t > 0) - \sigma(\cos\theta_t < 0)}{\sigma(\cos\theta_t > 0) + \sigma(\cos\theta_t < 0)}$$

Gluon emission symmetric in $\theta \Rightarrow$ NLO QCD corrections small

A_{FB} of the top quark

	$e^+e^- \rightarrow$	$A_{FB}^{ m LO}$	$A_{FB}^{ m NLO}$	$A_{FB}^{ m NLO}/A_{FB}^{ m LO}$
	$tar{t}$	-0.535	-0.539	1.013
A_{FB}	$W^+W^-b\overline{b}$	-0.428	-0.426	0.995
	$\mu^+ e^- u_\mu ar u_e b ar b$	-0.415	-0.409	0.986
	$\mu^+ e^- \nu_\mu \bar{\nu}_e b \bar{b}$, without neutrinos	-0.402	-0.387	0.964
$ar{A}_{FB}$	$tar{t}$	0.535	0.539	1.013
	$W^+W^-bar{b}$	0.428	0.426	0.995
	$\mu^+ e^- u_\mu ar u_e b ar b$	0.415	0.409	0.986
	$\mu^+ e^- \nu_\mu \bar{\nu}_e b \bar{b}$, without neutrinos	0.377	0.350	0.928

The event generator WHIZARD

Tools 2017, Corfu, 13.09.17

Resonances: Simplified models

- Resonances might be in direct reach of LHC
- FT framework EW-restored regime: $SU(2)_L \times SU(2)_R$, $SU(2)_L \times U(1)_Y$ gauged
- Include EFT operators in addition (more resonances, continuum contribution)
- Apply T-matrix unitarization beyond resonance ("UV-incomplete" model)

Spins 0, 2 considered, Spin I has different physics (mixing with W/Z)

Resonances: Simplified models

- Resonances might be in direct reach of LHC
- FT framework EW-restored regime: $SU(2)_L \times SU(2)_R$, $SU(2)_L \times U(1)_Y$ gauged
- Include EFT operators in addition (more resonances, continuum contribution)
- Apply T-matrix unitarization beyond resonance ("UV-incomplete" model)

Spins 0, 2 considered, Spin I has different physics (mixing with W/Z)

	isoscalar	isotensor
scalar	σ^0	$ \begin{array}{c} \phi_t^{}, \phi_t^{-}, \phi_t^{0}, \phi_t^{+}, \phi_t^{++} \\ \phi_v^{-}, \phi_v^{0}, \phi_v^{+} \\ \phi_s^{0} \end{array} $
tensor	f^0	$\begin{pmatrix} X_t^{}, X_t^{-}, X_t^{0}, X_t^{+}, X_t^{++} \\ X_v^{-}, X_v^{0}, X_v^{+} \\ X_s^{0} \end{pmatrix}$

Resonances: Simplified models

- Resonances might be in direct reach of LHC
- FFT framework EW-restored regime: $SU(2)_L \times SU(2)_R$, $SU(2)_L \times U(1)_Y$ gauged
- Include EFT operators in addition (more resonances, continuum contribution)
- Apply T-matrix unitarization beyond resonance ("UV-incomplete" model)

Spins 0, 2 considered, Spin I has different physics (mixing with W/Z)

	isoscalar	isotensor
scalar	σ^0	$ \begin{array}{c} \phi_t^{}, \phi_t^{-}, \phi_t^0, \phi_t^+, \phi_t^{++} \\ \phi_v^{-}, \phi_v^0, \phi_v^+ \\ \phi_s^0 \end{array} $
tensor	f^0	$\begin{pmatrix} X_t^{}, X_t^{-}, X_t^{0}, X_t^{+}, X_t^{++} \\ X_v^{-}, X_v^{0}, X_v^{+} \\ X_s^{0} \end{pmatrix}$
•••		

Tensor resonances

- Symmetric tensor $f_{\mu
 u}$
- On-shell: $10 \rightarrow 5$ components
- Tracelessness: $f_{\mu}{}^{\mu} = 0$
- Transversality: $\partial_{\mu}f^{\mu\nu}=0$

- $f^{\mu\nu}$: on-shell $f^{\mu\nu}$
- $\phi: \partial_{\mu}\partial_{\nu}f^{\mu\nu}$
- $A^{\mu}: \partial_{\nu} f^{\mu\nu}$
- σ : $f^{\mu}_{\ \mu}$

Gauge fixing: $\sigma = -\phi$

- Fierz-Pauli conditions not valid off-shell
- Fierz-Pauli propagator has bad high-energy behavior
- Stückelberg formalism to make off-shell behavior explicit
- In the MC: compensator fields \Rightarrow no propagators with momentum factors

The event generator WHIZARD

Data within bounds: $\langle \text{Observable} \rangle = 60.52 \pm 0.22 \quad [n_{\text{entries}} = 6878]$

The event generator WHIZARD

Tools 2017, Corfu, 13.09.17

46/36

LEP Higgs Search

The event generator WHIZARD

Tools 2017, Corfu, 13.09.17

120

130

120

130

Z-lineshape at SLC/LEP I

W-endpoint at the LHC

1400

J.R.Reuter

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

1000

2000

3000

4000

5000

6000

7000

8000

19000

18000

17000

16000

15000

14000

13000

12000

The event generator WHIZARD

0m:31s

0m:29s

0m:28s

0m:26s

0m:25s

0m:23s

0m:21s

0m:20s

Tools 2017, Corfu, 13.09.17