

Resonant ATOM MAJORANA MIXING

Mainly based on:

- Neutrinoless Double Electron Capture as a Tool to Measure the ve Mass, J. B., A. De Rujula, C. Jarlskog, Nucl. Phys. B223 (1983) 15
- Developments and papers in the last decade triggered by atomic Traps
- Stimulated transitions in resonant Atom Majorana Mixing,
 J. B., A. Segarra, arXiv:1706.08328 [hep-ph]

José Bernabéu Alejandro Segarra IFIC-Valencia

Outline

- Massive Neutrinos
- Neutrinoless Double Beta Decay
- Neutrinoless Double Electron Capture
- Atom Majorana Mixing
- Resonant Enhancement
- Time History
- Spontaneous Observables
- Stimulated Transitions
- Outlook

MASSIVE NEUTRINOS

Neutrino Flavour Oscillations observed in atmospheric, solar, reactor and accelerator sectors have demonstrated that

NEUTRINOS HAVE MASS AND FLAVOUR MIXING

Two mass differences and Three Mixings already measured

Most important Open Questions:

ARE NEUTRINOS DIRAC OR MAJORANA PARTICLES?

 $\bar{\nu}_R m_D \nu_I$ Needs sterile v_R Origin by Standard Higgs Doublet Beyond Standard Origin

 $\bar{\nu}_L^c m_M \nu_L$ Breaks Global Lepton Number

CP-Violating Flavour Phase and (?) Two CPV Majorana Phases

$$\mathsf{U} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} & c_{13} & 0 & s_{13}e^{-i\delta} \\ & 0 & 1 & 0 \\ & -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Absolute Neutrino Mass Scale
- Neutrino Mass Spectrum Hierarchy → normal, inverted
- (2,3) Mixing above or below 45 degrees?

Neutrinoless Double BetaDecay

$$^{A}Z \rightarrow ^{A}(Z+2) + 2e^{-}$$

- ΔL=2 process, only if Majorana v
- Signature: T_{ee} = Q
- Background by 2v mode with T_{ee} < Q

$$m_{\beta\beta} \equiv \sum_i U_{ei}^2 \, m_{\nu_i}$$

[S. Pascoli, CERN Courier, July-August 2016]

Neutrinoless Double Electron Capture

$${}^{A}Z + 2e^{-} \rightarrow {}^{A}(Z-2)^{*}$$

$$m_{\beta\beta} \equiv \sum_i U_{ei}^2 \, m_{\nu_i}$$

Majorana Mixing $M_{21}{\sim}m_{\beta\beta}^* \left\langle F_{21} \right\rangle M_{0\nu}$

- ΔL = 2 mixing, only if Majorana v,
 X-ray emission
- Signature: T_{YY} = Q
- No intrinsic background on the resonance

 M_{0v} from nuclear QRPA (Faessler et al, PRC(2012)) and IBM (Iachello et al, PRC (2014))

ATOM MAJORANA MIXING

Two–state Hamiltonian $\mathbb{H} = \mathbb{M} - \frac{i}{2}\,\mathbb{\Gamma} = \left| \begin{array}{cc} M_1 & M_{21}^* \\ M_{21} & M_2 \end{array} \right| - \frac{i}{2}\,\left| \begin{array}{cc} 0 & 0 \\ 0 & \Gamma \end{array} \right|$

Non-orthogonal eigenstates: $[\mathbb{M}, \mathbb{\Gamma}] \neq 0$, $\langle \lambda_S | \lambda_L \rangle = \alpha - \beta$

$$|\lambda_L\rangle = |1\rangle + \alpha |2\rangle,$$

 $E_L \approx M_1,$
 $\Gamma_L \approx |\alpha|^2 \Gamma,$

$$|\lambda_S\rangle = |2\rangle - \beta^* |1\rangle$$
,
 $E_S \approx M_2$,
 $\Gamma_S \approx \Gamma$.

$$\alpha = \frac{M_{21}}{\Delta + \frac{i}{2} \Gamma}$$
$$\beta = \frac{M_{21}}{\Delta - \frac{i}{2} \Gamma}$$

Resonant Enhancement

$$ho$$
 = $^{152}{
m Gd}
ightarrow \, ^{152}{
m Sm}$ = Eliseev et al, PRL (2011) $\Delta \sim 30 \, \Gamma$

$$\Delta \sim \Gamma$$

$$|\alpha|^2 = 10^{-54} \left[\frac{|m_{\beta\beta}|}{0.1 \text{ eV}} \right]^2$$

$$\alpha = \frac{M_{21}}{\Delta + \frac{i}{2}\Gamma}$$
$$\beta = \frac{M_{21}}{\Delta - \frac{i}{2}\Gamma}$$

$$\beta = \frac{M_{21}}{\Delta - \frac{i}{2}\,\Gamma}$$

- Intense experimental searches looking for a better fulfilment of the Resonance Condition.
- Precise measurement of atomic masses achievable due to the development of atomic traps.

Time History

$$\left| \left\langle ^A (Z-2)^* \right| ^A Z(t) \right\rangle \right|^2 = |\alpha|^2 \left\{ 1 + e^{-\Gamma t} - 2e^{-\frac{1}{2}\Gamma t} \cos(\Delta \cdot t) \right\}$$

- \triangleright Different time-scales given by $|\Delta|$, Γ and Γ_{L}
- For observable times, the system has evolved to three "stationary" states

$$\tau_S \ll t \ll \tau_L \implies \begin{cases} P_L(t) \approx 1 - \Gamma_L t \\ P_S(t) \approx 0 \\ P_{g.s.}(t) \approx |\alpha|^2 \Gamma t \end{cases}$$

AT Produced 10,18 \$ 17 \$ 15 \$

 $\frac{10^{1}}{10^{9}} \sqrt{t}$

47 - 1990 \$ 41

Spontaneous Observables

> Spontaneous emission

$$P_L(\Delta t) \approx 1 - \Gamma_L \, \Delta t$$

$$\tau_L \sim 10^{29} \text{ yr}$$

Daughter atom population

$$P_{\rm g.s.}(t) \approx |\alpha|^2 \Gamma t_0$$

1 mole Gd from T_{Earth} includes 20 000 Sm atoms

$$|g.s.\rangle$$

Stimulated transitions

> Stimulated emission

$$\frac{\mathrm{d}N_L^{\mathrm{st}}}{\mathrm{d}t} = G \frac{\mathrm{d}N_L^{\mathrm{sp}}}{\mathrm{d}t}$$

$$G = \hbar (\hbar c)^2 \frac{\pi^2}{(\hbar \omega)^3} \frac{dN}{dt dS} \left[\frac{d\omega}{\omega} \right]^{-1}$$

Natural population inversion!

 $\hbar\omega \sim \text{tens of keV}$

Generation of X-ray flashes

To generate the extremely short and intense X-ray laser flashes bunches of high-energy electrons are directed through special arrangements of magnets (the green-blue structure).

European XFEL / Marc Hermann, tricklabor

Click on the image to see it full size.

- 100 fs pulse
- 100 nm spot size
- 20W mean power

 $G \sim 100$

Stimulated transitions II

Daughter Atom
Absorption Spectrum

Laser:

- 100 fs pulse
- 40 μm spot size
- 5 W mean power

$$\frac{\mathrm{d}N_{\mathrm{g.s.}}}{\mathrm{d}t}\bigg|_{\mathrm{abs}} = -60\% \, N_{\mathrm{g.s.}} \, \left[\frac{100 \, \mathrm{ns}}{\tau}\right] \, \mathrm{fs}^{-1}$$

The daughter atom can be excited to any of its atomic levels!

> Typical atomic lifetimes of ¹⁵²Sm range from 10 to 1000 ns

Outlook

- Neutrinoless double electron capture is a quantum Majorana Mixing between two atoms, generated by ΔL = 2 Majorana mass neutrino, which provides enhanced observables under the resonance condition.
- ➤ Intense experimental searches looking for a better candidate. Today's best one, ¹⁵²Gd, is still a factor 30 away of the resonance, implying a **1000 factor** loss in any observable.
- ➤ Time evolution of these mixed states presents the phenomenon of **Atom Oscillations**. At observable times, the description is the same as any 3-level atomic system with natural **population inversion**.
- Many interesting observables besides spontaneous emission: probes of daughter atom population (both geochemical and optical) and XFEL-stimulated X-ray emission.

Thank you very much for your attention

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} e^{i\alpha_{1/2}} & 0 & 0 \\ 0 & e^{i\alpha^{2/2}} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$