Trilinear-Augmented Gaugino Mediation

Jörn Kersten

UNIVERSITY OF BERGEN

Based on Jan Heisig, JK, Nick Murphy, Inga Strümke, JHEP **05**, 003 (2017) [arXiv:1701.02313]

Supersymmetry Solves Problems

- Hierarchy problem
- Dark matter
- Anomalous magnetic moment of the muon (?)
- Gauge coupling unification

Supersymmetry Solves Problems

- Hierarchy problem
- Dark matter
- Anomalous magnetic moment of the muon (?)
- Gauge coupling unification
- ... and replaces them by new ones
 - Little hierarchy problem
 - SUSY flavor problem
 - SUSY CP problem
 - μ problem
 - Gravitino problem
 - SUSY discovery problem

Supersymmetry Solves Problems

- Hierarchy problem
- Dark matter
- Anomalous magnetic moment of the muon (?)
- Gauge coupling unification
- ... and replaces them by new ones
 - Little hierarchy problem
 - SUSY flavor problem
 - SUSY CP problem
 - μ problem
 - Gravitino problem
 - SUSY discovery problem → unexpected mass spectrum?

Gravitino Problem

- Energetic decay products destroy nuclei produced in Big Bang Nucleosynthesis
- Distortions of the Cosmic Microwave Background (less constraining)

Gravitino Problem

- Gravitino interacts via gravity
 → extremely weakly
 → lifetime ~ 10⁻² s ... years
- Energetic decay products destroy nuclei produced in Big Bang Nucleosynthesis
- Distortions of the Cosmic Microwave Background (less constraining)

Kawasaki, Kohri, Moroi, Yotsuyanagi, PRD 78 (2008)

Gravitino Problem

- Gravitino interacts via gravity
 → extremely weakly
 → lifetime ~ 10⁻² s ... years
- Energetic decay products destroy nuclei produced in Big Bang Nucleosynthesis
- Distortions of the Cosmic Microwave Background (less constraining)

Kawasaki, Kohri, Moroi, Yotsuyanagi, PRD 78 (2008)

- $ightarrow~T_{
 m R}\lesssim 10^7~{
 m GeV}~{
 m or}~m_{3/2}\gg 1~{
 m TeV}$
- \rightsquigarrow Quite low \textit{T}_{R} (leptogenesis: $\textit{T}_{R} \gtrsim 10^{9}\,\text{GeV})$ or unnatural spectrum
- → Motivation for gravitino LSP

Gravitino Production

• Thermal production at high temperature

$$\Omega_{3/2}^{\mathrm{tp}} h^2 \simeq 0.12 \left(\frac{T_{\mathrm{R}}}{10^9 \, \mathrm{GeV}} \right) \left(\frac{m_{\widetilde{g}}}{10^3 \, \mathrm{GeV}} \right)^2 \left(\frac{30 \, \mathrm{GeV}}{m_{3/2}} \right)$$

Non-thermal production: decay of inflaton, heavier superparticles

Gravitino Production

• Thermal production at high temperature

$$\Omega_{3/2}^{\mathrm{tp}} h^2 \simeq 0.12 \left(\frac{T_{\mathrm{R}}}{10^9 \, \mathrm{GeV}} \right) \left(\frac{m_{\widetilde{g}}}{10^3 \, \mathrm{GeV}} \right)^2 \left(\frac{30 \, \mathrm{GeV}}{m_{3/2}} \right)$$

- Non-thermal production: decay of inflaton, heavier superparticles
- Observed dark matter abundance: $\Omega_{\rm DM} h^2 \simeq 0.12$
- → Gravitino LSP feasible candidate for cold DM

Big Bang Nucleosynthesis with Gravitino LSP

- NLSP long-lived → still problems with BBN (and CMB)
- Charged NLSPs form bound states with nuclei
 → BBN reaction rates change → Overproduction of ⁶Li Pospelov, PRL 98 (2007)
- Bounds depend on kind of NLSP and on Ω_{NLSP}
- Assume Ω_{NLSP} to be given by thermal relic density

Big Bang Nucleosynthesis with Gravitino LSP

- NLSP long-lived → still problems with BBN (and CMB)
- Charged NLSPs form bound states with nuclei
 → BBN reaction rates change → Overproduction of ⁶Li Pospelov, PRL 98 (2007)
- ullet Bounds depend on kind of NLSP and on Ω_{NLSP}
- Assume Ω_{NLSP} to be given by thermal relic density

Gaugino-Mediated Supersymmetry Breaking

- Scenario for SUSY breaking without flavor and CP problems Kaplan, Kribs, Schmaltz, PRD 62 (2000) Chacko, Luty, Nelson, Pontón, JHEP 01 (2000)
- Dark matter candidate: neutralino or gravitino
- Long-lived charged slepton NLSP → unusual LHC phenomenology
- Squarks significantly heavier than sleptons

Buchmüller, JK, Schmidt-Hoberg, JHEP 02 (2006)

Kaplan, Kribs, Schmaltz, PRD **62** (2000) Chacko, Luty, Nelson, Pontón, JHEP **01** (2000)

Kaplan, Kribs, Schmaltz, PRD **62** (2000) Chacko, Luty, Nelson, Pontón, JHEP **01** (2000)

- D dimensions
- D − 4 of them compactified
- 4-dimensional branes
- MSSM matter localized on one brane

Kaplan, Kribs, Schmaltz, PRD **62** (2000) Chacko, Luty, Nelson, Pontón, JHEP **01** (2000)

- D dimensions
- D − 4 of them compactified
- 4-dimensional branes
- MSSM matter localized on one brane
- SUSY broken by field S on 2nd brane

Kaplan, Kribs, Schmaltz, PRD 62 (2000)

- D dimensions
- D − 4 of them compactified
- 4-dimensional branes
- MSSM matter localized on one brane
- SUSY broken by field S on 2nd brane
- In the bulk: gauge fields, gravity

Kaplan, Kribs, Schmaltz, PRD 62 (2000)

- D dimensions
- D − 4 of them compactified
- 4-dimensional branes
- MSSM matter localized on one brane
- SUSY broken by field S on 2nd brane
- In the bulk: gauge fields, gravity
- Soft masses for gauginos, gravitino
- No soft masses for squarks and sleptons
 no flavor problem

Kaplan, Kribs, Schmaltz, PRD **62** (2000) Chacko, Luty, Nelson, Pontón, JHEP **01** (2000)

- D dimensions
- D − 4 of them compactified
- 4-dimensional branes
- MSSM matter localized on one brane
- SUSY broken by field S on 2nd brane
- In the bulk: gauge and Higgs fields, gravity
- Soft masses for gauginos, Higgses, gravitino
- No soft masses for squarks and sleptons
 → no flavor problem

The Higgs Likes Trilinears

Light Higgs mass incl. dominant 1-loop corrections

$$\begin{split} m_h^2 &= m_Z^2 \cos^2 2\beta + m_t^2 \left[\log \frac{M_S^2}{m_t^2} + \frac{X_t^2}{M_S^2} \left(1 - \frac{X_t^2}{12 M_S^2} \right) \right] \cdot \text{const.} \\ M_S^2 &= m_{\tilde{t}_1} m_{\tilde{t}_2} \\ X_t &= A_t - \mu \cot \beta \end{split}$$

The Higgs Likes Trilinears

Light Higgs mass incl. dominant 1-loop corrections

$$\begin{split} m_h^2 &= m_Z^2 \cos^2 2\beta + m_t^2 \left[\log \frac{M_S^2}{m_t^2} + \frac{X_t^2}{M_S^2} \left(1 - \frac{X_t^2}{12 M_S^2} \right) \right] \cdot \text{const.} \\ M_S^2 &= m_{\tilde{t}_1} m_{\tilde{t}_2} \\ X_t &= A_t - \mu \cot \beta \end{split}$$

- A_t = 0 → heavy superparticles needed
- $|A_t| \gtrsim 2M_S \rightsquigarrow SUSY$ in LHC reach

Large trilinears favorable

Trilinears in Gaugino Mediation

- Original version I: Higgs fields on brane
 - √ vanishing trilinear scalar couplings A₀ (at high energy)
 Kaplan, Kribs, Schmaltz, PRD 62 (2000)
- ullet Original version II: Higgses in bulk but only couplings $S^\dagger S H_{u,d}^\dagger H_{u,d}$
 - vanishing trilinear scalar couplings Chacko, Luty, Nelson, Pontón, JHEP 01 (2000)

Trilinears in Gaugino Mediation

- Original version I: Higgs fields on brane
 - → vanishing trilinear scalar couplings A₀ (at high energy)
 Kaplan, Kribs, Schmaltz, PRD 62 (2000)
- Original version II: Higgses in bulk but only couplings $S^{\dagger}SH_{u,d}^{\dagger}H_{u,d}$
 - vanishing trilinear scalar couplings Chacko, Luty, Nelson, Pontón, JHEP 01 (2000)
- ullet Bulk Higgses, all couplings allowed by symmetry (incl. $SH_{u,d}^{\dagger}H_{u,d}$)
 - Non-vanishing trilinears proportional to Yukawa matrices

 Brümmer, Kraml, Kulkarni, JHEP 08 (2012)
 - → Different values possible in up and down sector Heisig, JK, Murphy, Strümke, JHEP 05 (2017)

Boundary Conditions at Compactification Scale

Assuming $1/R \sim M_{GUT}$:

- ullet Gauge couplings $g_1=g_2=g_3=g\simeq 1/\sqrt{2}$
- Gaugino masses $M_1 = M_2 = M_3 = \frac{m_{1/2}}{2}$
- Gravitino mass m_{3/2}
- \bullet Squark and slepton masses $\simeq 0$
- ullet Trilinear couplings $A_0 \leq 0$
- Soft Higgs masses $m_{H_u}^2, m_{H_d}^2 \ge 0$
- $\tan \beta$
- $\operatorname{sign}(\mu) = +1$

Boundary Conditions at Compactification Scale

Assuming $1/R \sim M_{GUT}$:

- ullet Gauge couplings $g_1=g_2=g_3=g\simeq 1/\sqrt{2}$
- Gaugino masses $M_1 = M_2 = M_3 = \frac{m_{1/2}}{2}$
- Gravitino mass m_{3/2}
- \bullet Squark and slepton masses $\simeq 0$
- Trilinear couplings $A_0 \le 0$
- Soft Higgs masses $\emph{m}_{H_{u}}^{2}, \emph{m}_{H_{d}}^{2} \geq 0$
- $\tan \beta$
- $\operatorname{sign}(\mu) = +1$

Running generates non-zero masses at low energies Calculated using SPHENO 3.3.8

Porod, Comput. Phys. Commun. 153 (2003) Porod & Staub, Comput. Phys. Commun. 183 (2012)

Higgs Mass

Calculated using FEYNHIGGS 2.12.2

Heinemeyer, Hollik, Weiglein, EPJC 9 (1999), Comput. Phys. Commun. 124 (2000) Degrassi, Heinemeyer, Hollik, Slavich, Weiglein, EPJC 28 (2003) Frank, Hahn, Heinemeyer, Hollik, Rzehak, Weiglein, JHEP 02 (2007) Hahn, Heinemeyer, Hollik, Rzehak, Weiglein, PRL 112 (2014) Bahl & Hollik, EPJC 76 (2016)

- FEYNHIGGS value ≈ 3 GeV smaller than SPHENO 3
- Agreement with SPHENO 4 Staub & Porod, EPJC 77 (2017)
- Downward shift by ≈ 1 GeV between FH 2.11 and 2.12 (mid-2016)
- Main reason: more accurate calculation of electroweak corrections to MS top mass Bahl & Hollik, EPJC 76 (2016)

NLSP Candidates

- With gravitino LSP: neutralino, stau, or sneutrino NLSP
- Mainly depends on A_0 and $m_{H_d}^2$
- Large stau mixing possible

Heisig, Kersten, Murphy, Strümke, JHEP 05 (2017)

LHC Constraints

- Monte Carlo simulation (PYTHIA 6 + MADGRAPH5_AMC@NLO)
 Sjöstrand, Mrenna, Skands, JHEP 05 (2006)
 Alwall et al., JHEP 07 (2014)
- Stau NLSP: Heavy Stable Charged Particle
 - Applied 8 TeV CMS search (18.8 fb⁻¹) CMS, EPJC **75** (2015)
 - Estimated 13 TeV reach (300 fb⁻¹)
- Neutralino LSP/NLSP, sneutrino NLSP: missing energy
 - Tested against ATLAS searches using CHECKMATE 1
 Drees, Dreiner, Schmeier, Tattersall, Kim, Comput. Phys. Commun. 187 (2015)

Charge and Color Breaking

- Minimum of scalar potential can be at non-zero sfermion vev
- Simple but unreliable bound

$$A_{ au}^2 < 3 \left(m_{H_d}^2 + |\mu|^2 + m_{L_3}^2 + m_{ar{e}_3}^2
ight)$$

Frère, Jones, Raby, NPB **222** (1983) Kounnas, Lahanas, Nanopoulos, Quiros, NPB **236** (1984) Derendinger & Savoy, NPB **237** (1984)

- Large tan β: additional constraint on μ tan β
 Kitahara & Yoshinaga, JHEP 05 (2013)
- More sophisticated analysis needed (waiting for VEVACIOUS 2)

Results

- Parameter space with stau NLSP probed by LHC
- Neutral (N)LSP: no points forbidden, little hope for discovery

Results

- Parameter space with stau NLSP probed by LHC
- Neutral (N)LSP: no points forbidden, little hope for discovery

Heisig, Kersten, Murphy, Strümke, JHEP 05 (2017)

Conclusions

- Gaugino-mediated SUSY breaking allows for large trilinears
- No flavor and CP problems
- Alleviated gravitino problem with gravitino dark matter
- Neutralino or slepton NLSP
- ullet Observed Higgs mass reached for $m_{
 m NLSP} \sim (400\dots 1400)\,{
 m GeV}$
- Neutral NLSP too heavy for LHC
- Stau NLSP metastable → accessible in HSCP searches at LHC

Couplings to Hidden Sector

$$\mathcal{L} \supset \frac{1}{V_{D-4}} \left\{ \frac{1}{M^{D-3}} \left[\frac{h}{4} S W^{\alpha} W_{\alpha} \right]_{F} + \text{h.c.} \right.$$

$$+ \frac{1}{M^{D-3}} \left[S \left(a H_{u}^{\dagger} H_{d}^{\dagger} + b_{u} H_{u}^{\dagger} H_{u} + b_{d} H_{d}^{\dagger} H_{d} \right) + \text{h.c.} \right]_{D}$$

$$+ \frac{1}{M^{D-2}} \left[S^{\dagger} S \left(c_{u} H_{u}^{\dagger} H_{u} + c_{d} H_{d}^{\dagger} H_{d} + (dH_{u} H_{d} + \text{h.c.}) \right) \right]_{D} \right\}$$