

# Gauged U(I) clockwork

Hyun Min Lee

Chung-Ang University, Korea



Based on arXiv: 1708.03564

Workshop on the Standard Model and Beyond Corfu, Greece, Sept 2-10, 2017.

# Outline

- Introduction & motivation
- Gauged U(I) clockwork
- Examples: DM mediator, B-meson decays
- Conclusions

Taken from Giudice, McCollough

# Intensity vs energy frontiers

 Complementary direct probes for new physics with light particles or heavy particles.

[SHiP physics case, 1504.04855]



# New physics at weak scales

- Two hierarchically different masses: Planck scale vs weak scale in SM + GR.
- New symmetry protects Higgs mass against large quantum corrections and predicts new particles with sizable couplings at weak scale.



No direct hint yet for new physics at weak scales.



# New physics below weak scale

- QCD axion, sterile neutrinos, new long-range force, self-interacting dark matter, etc.
- New particles could be produced at low-energy experiments, such as ADMX, Belle-II, SHiP, etc.
- How new physics couples so weakly to the SM?



[llten et al, 2016]

## Flavors of the SM

• The quark mixing in the SM well parametrized and no FCNC at tree level due to GIM mechanism.

$$\frac{-g}{\sqrt{2}}(u_L, c_L, \overline{t_L})\gamma^{\mu} W^+_{\mu} V_{\text{CKM}} \begin{pmatrix} d_L \\ s_L \\ b_L \end{pmatrix} + \text{h.c.}, \qquad V_{\text{CKM}} \equiv V_L^u V_L^{d\dagger} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

 But, we don't know the origin of neutrino masses and flavor structure.

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} - \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{e\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$



 Flavor violation is a precise probe of new physics at high scales, complementary to direct searches at the LHC



## Beyond WIMP DM

- Various evidences for dark matter from galaxy rotation curves, CMB, and gravitational lensing, etc.
- No direct evidence for WIMP DM  $\rightarrow$  light or heavy?
- Simulation with CDM (cusp) overshoots galaxy rotation curves. (small-scale problems) → self-interacting DM?



## Clockwork mechanism

• Multiple copies of symmetries are broken down to one symmetry by nearest neighbor interactions.

# Effective couplings

Effective couplings of massless mode depend on the locations of external fields.



## UV-complete scalar CW

• **Continuum limit:**  $\phi(x,y) = \phi_j(x), y = ja, (y = \pi R \equiv Na)$ 



# Applications & generalization

• Axion-like scalars

[Nilles, Kim, Peloso, 2014; Choi, Im, 2015; Kaplan, Rattazzi, 2015]

$$V = \Lambda_1^4 \sum_{j=0}^{N-1} \cos\left(\frac{\phi_j}{f} - q \frac{\phi_{j+1}}{f}\right) + \Lambda_2^4 \cos\left(\frac{\phi_N}{f} + \delta\right), \quad \Lambda_1 \gg \Lambda_2$$
$$\bigvee V_{\text{eff}} = \Lambda_2^4 \cos\left(\frac{\tilde{\phi}_0}{f_{\text{eff}}} + \delta\right), \quad f_{\text{eff}} = q^N f.$$

See also K. Choi's talk!

• Fields with other spins

[Giudice, McCollough, 2016]

Fermion clockwork

e.g. neutrino masses

Tensor clockwork

spin-2 graviton

Vector clockwork



topic of this talk!

# Gauged U(I) clockwork

• N+I local U(I)'s broken down to U(I) by link fields:  $U(1)_0 \times U(1)_1 \times \cdots \times U(1)_N \rightarrow U(1)$  [HML, 2017]



- Similar localization of massless mode at j=0 for q>1.
- Each U(I) gauge boson is expanded as

$$A^{j}_{\mu}(x) = \frac{N_{0}}{q^{j}} \tilde{A}^{0}_{\mu}(x) + \sum_{k=1}^{N} a_{jk} \tilde{A}^{j}_{\mu}(x).$$

# Couplings to external fields

• Fermion interactions

$$\mathcal{L}_{ ext{fermion}} = i ar{\psi} \gamma^{\mu} \Big( \partial_{\mu} + i g (v_{\psi} + a_{\psi} \gamma^5) A^l_{\mu}(x) \Big) \psi(x).$$

$$\mathcal{L}_{\rm f,int} = -g\bar{\psi}(x)\gamma^{\mu}(v_{\psi} + a_{\psi}\gamma^5)\psi(x)\left(\frac{N_0}{q^l}\tilde{A}^0_{\mu}(x) + \sum_{k=1}^N a_{lk}\tilde{A}^k_{\mu}(x)\right).$$

"milicharge" effective couplings

Boson interactions

Remaining U(I) gauge boson has a naturally small mass due to extra Higgs field with milicharge.

## UV-complete U(I) CW

• 5d kinetic term for Higgs requires new link fields S<sub>i</sub>.





5d limit is U(I) with dilaton coupling + decoupled Higgs.

# U(I)' as dark matter mediator

• Clockwork for an anomaly-free U(I) has interactions to dark matter  $\chi$  at j=0 and SM fermions f at j=N.



## U(I)' as dark matter mediator



#### Self-interacting dark matter



## SIMP mechanism





# B-meson decays from U(I)'

B-meson 2-3σ anomalies at LHCb might hint at violation of lepton flavor universality.



Minimal choice for bottom quark and non-LFU:

 $U(1)_{B_3-L_3}$  + lepton flavor mixing [Alonso et al, 2017]

or mixing with  $U(1)_{L_{\mu}-L_{\tau}}$ [Bian, Choi, Kang, HML, 2017]

U(1)' clockwork & B-decays U(I)<sub>B-L</sub> clockwork with first two families and third family localized at different sites. Effective family-dependent B-L:  $U(1)_{B_3-L_3}$  $[U(1)_{B-L}]^{N+1}$ Y  $j = 0 \quad 1 \quad 2 \qquad \qquad N-1 \quad N$  $\mu^+$ 3rd F Ist, 2nd F  $\Delta \mathcal{H}_{\text{eff},\bar{b}\to\bar{s}\mu^+\mu^-} = -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \frac{\alpha_{em}}{4\pi} C_9^{\mu,\text{NP}} \mathcal{O}_9^{\mu}, \quad C_9^{\mu,\text{NP}} = -\frac{8xy\pi^2\alpha_{Z'}}{3\alpha_{em}} \left(\frac{v}{m_{Z'}}\right)^2$ B-meson G-fit:  $C_9^{\mu,\text{NP}} = -1.10$   $m_{Z'} = \left(xy \frac{\alpha_{Z'}}{\alpha_{em}}\right)^{1/2} 1.2 \text{ TeV}.$ [Crivellin et al, 2017]

### Model constraints



• Neutrino trident production (CHARM-II, CCFR, NuTeV)



cf. similar bounds from tau decay.

#### Parameter space

[Bian, Choi, Kang, HML, 2017]



 LHC dimuon and tau decay/neutrino scattering are complementary in constraining B/L charges.

# Conclusions

- Clockwork mechanism can explain effective small or large couplings due to the localization of fields, without a hierarchy of couplings.
- Scalar clockwork based on shift symmetry might allows for a common existence of QCD and large effective decay constants for axion.
- Gauged U(I) clockwork provides a mechanism to generate hierarchical gauge couplings, identified with a 5d massless U(I) with dilaton background.
- We showed examples with DM mediators and flavor-dependent U(1)' for B-meson anomalis.