Recent results from ALICE at LHC

Giuseppe E Bruno

Outline:

- Introduction to heavy ion collisions
- recent Pb-Pb results: a selection
- "small systems": pp and p-Pb results
- future
- summary

Confinement: a crucial feature of QCD

But we cannot get free quarks out of hadrons: "colour confinement"

The QCD phase transition

Lattice QCD calculations indicate that, at a *critical* temperature around 160 MeV, strongly interacting matter undergoes a phase transition to a new state where the quarks and gluons are no longer confined into

How hot is a medium of $T \sim 160 \text{ MeV}$?

15 M °K

100,000 times hotter than the Sun core

hadrons

EXPONENTIAL HADRONIC SPECTRUM AND QUARK LIBERATION

N. Cabibbo and G. Parisi, Phys. Lett. B59 (1975) 67

The exponentially increasing spectrum proposed by Hagedorn is not necessarily connected with a limiting temperature, but it is present in any system which undergoes a second order phase transition. We suggest that the "observed" exponential spectrum is connected to the existence of a different phase of the vacuum in which quarks are not confined.

Fig. 1. Schematic phase diagram of hadronic matter. ρ_{R} is the density of baryonic number. Quarks are confined in phase I and unconfined in phase II.

The phase diagram of QCD, today

Finite Temperature QCD on the Lattice ($\mu_B=0$)

How do we study bulk QCD matter?

- We can heat and/or compress a large volume of QCD matter
- Done in the lab by colliding heavy nuclei at high energies

Exploring the QCD phase diagram

- regime of
 "transparency"
 - very high T, μ_b≅0
 - LHC and top RHIC energy
- high density regime:
 - partial stopping of the nucleons in collisions
 - physics of FAIR@GSI and NICA@JINR

04/09/17

04/09/17

The ALICE Detector

ALICE data-taking in Run-2

System	Year	√s _{nn} (TeV)	L _{int}
рр	2015-2016	13	~14 pb ⁻¹
рр	2015 (~4 days)	5.02	~100 nb ⁻¹
p-Pb	2016	5.02	~3 nb ⁻¹
p-Pb	2016	8.16	~20 nb ⁻¹
Pb-p	2016	8.16	~20 nb ⁻¹
Pb-Pb	2015	5.02	~0.4 nb ⁻¹

☐ Goals for 2017-18:

- Pb-Pb: reach 1/nb target
- pp 13 TeV: reach 40/pb target
- High statistics pp 5 TeV sample

from pp to Pb-Pb collisions at LHC

The paradigm

Pb-Pb Collisions (√s_{NN} = 2.76, 5 TeV)

- Core business: create and characterize the QGP
- Centrality

pp Collisions ($\sqrt{s} = 0.9 - 13 \text{ TeV}$)

Reference data

to be revised later on !

p-Pb Collisions (\subseteq SNN = 5, 8 TeV)

- Control experiment
- "Cold nuclear matter" effects (e.g. modifications to PDF)

Recent Pb-Pb results

Hadron production and flow in Pb-Pb collisions at 5 TeV

Identified hadron spectra at 5 TeV

- \square High-precision p_T distributions for π, K, p in 10 centrality classes
 - Measured using five different identification techniques
- □ Blue-shift of MPV of p_T in central collisions, more pronounced for heavier hadrons

Fit with hydrodynamic-inspired model

- Collective expansion with common flow velocity (β_t) superimposed to thermal motion (T \sim 100 MeV)
- Largest ever β_T ~ 0.65 in central Pb-Pb collisions at 5 TeV

Identified hadron spectra at 5 TeV

- High-precision p_T
 distributions for π, K, p in
 10 centrality classes
 - Measured using five different identification techniques
- Blue-shift of MPV of p_T in central collisions, more pronounced for heavier hadrons

- Fit with hydrodynamic-inspired model
 - Collective expansion with common flow velocity (β_t) superimposed to thermal motion (T \sim 100 MeV)
- Largest ever <β_T>~ 0.65 in central Pb-Pb collisions at 5 TeV

04/09/17

Azimuthal anisotropy

Almond shaped overlap region in geom. space

strong in-plane expansion due to pressure gradients

anisotropy in momentum space

$$\frac{dN}{d(\varphi - \psi_{RP})} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos(n[\varphi - \psi_{RP}])$$

$$v_2 = \left\langle \cos \left[2(\varphi - \psi_{RP}) \right] \right\rangle$$

100μs 600μs 1000μs 2000μs

Fermionic lithium-6 atoms

Elliptic flow at 5 TeV

Mass ordering at p_T <2 GeV/c → hydro-dynamic flow, very small viscosity More precise Run-2 data (esp. ϕ meson) reveal baryon vs. meson grouping at higher pT (2-6 GeV/c) → quark-level flow + recombination?

Resonances are powerful tools to probe the hadronic phase after chemical freeze-out

Lifetime [fm/c]: ρ [1.3] < K* [4.2] < Λ * [12.6] < Ξ ⁰* [21.7] < ϕ [46.2]

Lifetime [fm/c]: ρ [1.3] < K* [4.2] < Λ * [12.6] < Ξ ⁰* [21.7] < ϕ [46.2]

04/09/17

Lifetime [fm/c]: ρ [1.3] < K* [4.2] < Λ * [12.6] < Ξ ⁰* [21.7] < ϕ [46.2]

04/09/17

G E Bruno

Lifetime [fm/c]: ρ [1.3] < K* [4.2] < Λ * [12.6] < Ξ ⁰* [21.7] < ϕ [46.2]

04/09/17

G E Bruno

Lifetime [fm/c]: ρ [1.3] < K* [4.2] < Λ * [12.6] < Ξ ^{0*} [21.7] < ϕ [46.2]

04/09/17

Short-lived resonances exhibit suppression→ suggests elastic scattering as dominant mechanism

Hard probes of A-A collision

- Hard probes in nucleusnucleus collisions:
 - produced at the very early stage of the collisions in partonic processes with large Q²
 - pQCD can be used to calculate initial cross sections
 - traverse the hot and dense medium
 - can be used to probe the properties of the medium

04/09/17

Nuclear modification factor

- Without nuclear effects, the production of hard probes in A-A is expected to scale with the number of nucleon-nucleon collisions N_{coll} (binary scaling)
- □ Observable: nuclear modification factor

$$R_{\rm AA} = \frac{1}{N_{\rm coll}} \frac{\mathrm{d}N_{\rm AA} / \mathrm{d}p_{\rm T}}{\mathrm{d}N_{\rm pp} / \mathrm{d}p_{\rm T}} = \frac{1}{T_{\rm AA}} \frac{\mathrm{d}N_{\rm AA} / \mathrm{d}p_{\rm T}}{\mathrm{d}\sigma_{\rm pp} / \mathrm{d}p_{\rm T}} \sim \frac{\rm QCD\ medium}{\rm QCD\ vacuum}$$

- Effects from the hot and deconfined medium created in the collision → breakup of binary scaling → R_{AA}≠1
 - Parton energy loss via gluon radiation and collisions in the medium
- But also initial state effects (e.g. nuclear modification of PDFs) may lead to R_{AA}≠1
 - Need control experiments: p-A collisions + medium-blind probes (photons, W, Z)

PbPb measurement

Nuclear modification of unidentified particles

- The easiest way to study "jet quenching"
- physics interpretation:
 - scattered parton (high p_t) looses energy while traversing the medium
 - collisional energy loss
 - radiative energy loss (gluonstrahlung)

Nuclear modification of identified particles

light flavour vs. charm vs. beauty hadrons (or jets)

- quenching vs. colour charge of partons
 - heavy flavour hadron comes from quark ($C_R = 4/3$)
 - light flavour from (p_T-dep) mix of quark and gluon (C_R = 3) jets
- , **,**
- quenching vs. mass of partons
 - heavy flavour predicted to suffer less energy loss
 - □gluonstrahlung (dead cone effect)
 - □collisional loss
 - beauty vs charm
- □ Expectations: $\Delta E_g > \Delta E_q > \Delta E_c > \Delta E_b$ → naively: $R_{AA}^h < R_{AA}^D < R_{AA}^B$

considering different pt distributions and fragmentations:

$$R_{AA}^{h} \approx R_{AA}^{D} < R_{AA}^{B}$$

Open heavy Flavour

04/09/17

G E Bruno

Run-1 main results

- □ Indication of mass dependent suppression $R_{AA}(b) > R_{AA}(c)$
 - D-meson R_{AA} significantly smaller than the R_{AA} of non-prompt J/ ψ (CMS) in central collisions

Run-1 main results

- □ Indication of mass dependent suppression $R_{AA}(b) > R_{AA}(c)$
 - D-meson R_{AA} significantly smaller than the R_{AA} of non-prompt J/ψ (CMS) in central collisions

Examples of 2 models describing the mass dependence of the energy loss in the QGP

Run-2 results

- \square D meson nuclear modification factor R_{AA} at 5 TeV
 - Uncertainties reduced by a factor ~2 (in 30-50%)
 - Similar R_{AA} as at 2.76 TeV: consistent with higher QGP opacity, given the harder dN/dp_{T}
- □ Charm flows → models describe data with thermalisation time ~3-8 fm/c
- \square First ever measurement of D_s flow (large uncertainties)

Evidence of charm flowing with the medium at LHC

- final results from ALICE
 - much improved with respect to RUN2 data
- in agreement with CMS results (covering higher p_t range)
- \square D⁰ v_2 < charged particle v_2

Constraining the models in the charm sector

- \square stringent constraint to models aiming at describing both R_{AA} and V_2
 - both radiative energy loss (e.g., needed to describe the high $p_{\rm T}$ region) and collisional one necessary to match the results

JETS

Jet-structure modifications

☐ First measurement of jet mass in Pb-Pb (and in p-Pb):

$$M = \sqrt{p^2 - p_T^2 - p_z^2}.$$
 $p_z = \sum_{i=1}^n p_{T_i} \sinh \eta_i, \;\; p = \sum_{i=1}^n p_{T_i} \cosh \eta_i$

- Large M: soft constituents far from jet axis
- Small M: few hard constituents close to axis
- $\langle M_{\text{quark jet}} \rangle < \langle M_{\text{gluon jet}} \rangle$

- p-Pb baseline described by PYTHIA and HERWIG
- No significant modification of jet structure in central Pb-Pb wrt p-Pb
- Pb-Pb better described by PYTHIA than by generators with gluon radiation in a QGP

Heavy Flavour: quarkonia

colour screening in QGP and ccreening in QGP and cc

J/ψ production at $\sqrt{s_{NN}} = 5$ TeV

- At 2.76 TeV a significant suppression wrt pp was measured: expected as an effect of colour screening (melting of the charmonium state)
- The suppression is smaller than at **0.2 TeV**, in central collisions and low p_T : described by models with **re-generation from c quarks in the QGP**
- \square New results at 5 TeV: similar R_{AA} as at 2.76 TeV

J/ψ production at $\sqrt{s_{NN}} = 5$ TeV

- At 2.76 TeV a significant suppression wrt pp was measured: expected as an effect of colour screening (melting of the charmonium state)
- The suppression is smaller than at **0.2 TeV**, in central collisions and low p_T : described by models with **re-generation from c quarks in the QGP**
- \square New results at 5 TeV: similar R_{AA} as at 2.76 TeV
 - hint of lower reduction at p_T 2-6 GeV/c at forward rapidity
 - at low p_T lower reduction at mid- than forward rapidity
 → consistent with regeneration scenario

J/ψ elliptic flow at 5 TeV

- Unambiguous observation of non-zero J/ ψ v₂ in semi-central (20-40%) Pb-Pb collisions at 5 TeV for J/ ψ with 0 < p_T < 12 GeV/c
- \Box J/ψ v₂(p_T) increases with p_T up to about 0.11 at 4 < p_T < 6 GeV/c

- In the framework of transport models, the large v_2 values measured can only be achieved by including a strong J/ ψ regeneration component from recombination of thermalized charm quarks in the QGP
 - Dominant at low p_T (< 4 GeV/c), dying out at high p_T
- The large values of the J/ψ v₂ at high p_T are a challenge to models ...

Hidden versus Open charm v2

- Similar magnitude
- Consistently suggesting that charm quark flows!

Quarkonium production

- role of regeneration to be understood
- Y(2S) is 4 times more suppressed than Y(1S)

Small systems: pp and pPb

The paradigm

- Core business: create and characterize the QGP
- Centrality

pp Collisions ($\sqrt{s} = 0.9 - 13 \text{ TeV}$)

Reference data

to be revised later on!

p-Pb Collisions (\squares snn = 5, 8 TeV)

- Control experiment
- "Cold nuclear matter" effects (e.g. modifications to PDF)

Two recent examples within the paradigm: p-Pb at 8 TeV

- Charged-particle multiplicity distribution, $dN_{ch}/d\eta$, measured using tracklets in the pixel detector
- \square Inclusive J/ ψ at forward and backward rapidity with p-Pb and Pb-p

- Reduction of particle production in the "p-going" direction, where small-x gluons in the Pb nucleus are probed
 - Described by models with nuclear-PDFs or gluon saturation (CGC), or energy loss
- Essential reference for the role of these effects in Pb-Pb

04/09/17 G E Bruno 49

Small systems: pp and pPb

Revisiting the paradigm

striking properties observed in very high multiplicity p-Pb and pp collisions at LHC, which resemble those due to collectivity/ QGP-like properties of the Pb-Pb systems

one of the major surprise at the LHC so far

low multiplicity pp (majority of events)

high multiplicity pp (very rare events)

... not only ALICE

CMS famous papers of 2010 (pp) and 2012 (pPb)

The intriguing small systems

Strangeness enhancement

- Among first proposed signatures of the QGP
 - Rafelski, Müller, PRL48(1982)1066
- Observed in A-A at SPS, then at RHIC and LHC

Strangeness enhancement in pp!

- Among first proposed signatures of the QGP
 - Rafelski, Müller, PRL48(1982)1066
- Observed in A-A at SPS, then at RHIC and LHC

Nature Phys. 13 (2017) 535-539

New ALICE experiment results show novel phenomena in proton collisions

04/09/17

G E Bruno

54

Strangeness enhancement in pp!

- Among first proposed signatures of the QGP
 - Rafelski, Müller, PRL48(1982)1066
- Observed in A-A at SPS, then at RHIC and LHC

- Now in high-multiplicity pp (and p-Pb)!
- Adds to other similarities, also seen by the other experiments, e.g. collectivity
- QGP in high-mult. pp?
- New directions for research!

Nature Phys. 13 (2017) 535-539

Strangeness enhancement: energy dependence?

ALICE after Run-2

- Major upgrade during LS2
- Strategy driven by these main physics goals:
 - HF mesons and baryons
 - Charmonium states
 - Di-leptons from QGP radiation and low-mass vector mesons
 - Light nuclei and Hyper-nuclei
- \square Improve tracking resolution at low $p_{\scriptscriptstyle au}$
 - increase granularity, reduce material thickness
- Large minimum-bias statistics (no dedicated trigger possible)
 - write all Pb-Pb interactions at 50 kHz (x50 faster)

Run 3+4: increase of MB sample **x100** wrt Run2

ALICE after Run-2

04/09/17

G E Bruno

bechmark studies: B mesons

 \square B \rightarrow D⁰+X (barrel) and B \rightarrow J/ ψ +X (barrel & MFT)

 \square fully reconstructed beauty mesons (B- \rightarrow D⁰ π +)

bechmark studies: HF baryons

\square Λ_c and Λ_b

Summary

- ALICE is producing a large number of results from Run-2
- Measurements in Pb-Pb collisions with improved precision are providing a more detailed insight on the QGP workings
- Small systems (pp and p-Pb) continue to reveal unexpected results that open the search for the smallest droplet of QGP
- The ALICE Upgrade is gearing up in view of installation in the next LS

European Institute for Sciences and Their Applications

Corfu Summer Institute 17th Hellenic School and Workshops on Elementary Particle Physics and Gravity 04/09/17 Corfu, Greece 201

SPARES

Flow of unidentified charged particles

PRL 105 25230 (2010); PRL 116, 132302 (2016)

- ☐ The flow increases by about 30% w.r.t. RHIC. The system produced at the LHC behaves as a very low viscosity fluid (a perfect fluid)
 - \blacksquare constraints dependence of η /s versus temperature

Model references

```
- POWLANG: EPJ C 75 (2015) 121;
- TAMU: arXiv:1401.3817;
- MC@HQ+EPOS: PRC 89 (2014) 014905;
- WHDG: Nucl. Phys. A 872 (2011) 256;
- BAMPS: PLB 717 (2012) 430;
arXiv:1310.3597v1[hep-ph];
- Cao,Quin, Bass: PRC 88 (2013);
- Vitev:: PRC 80 (2009) 054902;
- Djordjevic: PRL 737 (2014) 298
- CUJET 3.0: Chin. Phys. Lett. 32 no. 9, (2015) arXiv:1411.3673 [hep-ph].
- PHSD: arXiv:1512.00891
```


${\sf J/\psi}$ in p-Pb at 8 TeV

