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• Protons in LHC beams are fast 
moving charged particles 

The photon PDF of the proton

• For point-like charged particles 
the electromagnetic field (the 
distribution of photons) was 
computed by Fermi, Weizsäcker 
and Williams in the 1920-1930s

A fundamental question is what is the electromagnetic 
field associated to fast moving protons. This is the photon 
parton distribution function (PDF) of the proton
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• But protons are not elementary 
and made up of quarks/gluons



Does the photon PDF matter?

Poor knowledge of photon PDF impacts both New Physics searches 
and precision physics 
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Example: Drell-Yan production 
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Pagani, Tsinikos, Zaro, arXiv:1606.01915

 

1409.1803, 1510.08742, 1603.04874, 1601.07787, 
 1605.03419, 1604.04080,1607.04635, …


Where else do photons enter?  

4

➤ Electroweak corrections to almost any process

➤ Largest uncertainty on VBF Higgs and WH (±few %)

➤ top production 


➤ VV production
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Figure 5: The di↵erential W boson pair production cross sections at
p
s = 13 TeV and 100

TeV with respect to the invariant mass of the pair M

WW

, for W pseudorapidity |⌘| < 4.
The photon–initiated contributions predicted following the approach of Section 2.2 and the
NNPDF3.0QED [8], including the 68% C.L. uncertainty bands are shown, in addition to
the NLO QCD cross section, calculated with MCFM [21], and including the gluon–initiated
box contribution. An uncertainty band due to varying the incoherent component between
x�(x,Q

0

) = 0 and the upper bound of (11) is shown for our prediction.

section for high mass lepton pair production; this could, for example, have an impact on
searches for new heavy particles decaying to lepton pairs. However, it is our finding that
this is not the case. In particular, we can see from Fig. 4 that even up to the highest M

ll

values the predicted contribution from the photon–initiated process is fairly small, ⇠ 10%
of the Drell–Yan. This result is entirely consistent with the expectations from Fig. 2. Thus
we expect no significant contamination from the photon–initiated process. For the FCC case
shown in Fig. 4 (right), which was recently discussed in [7], a similar trend is seen. Moreover,
it is worth emphasising that for both the LHC and FCC cases, tighter cuts on the lepton
transverse momentum p? and pseudorapidity ⌘ will further decrease the relative contribution
from the photon–initiated process, which being due to the t and u channel diagrams is more
strongly peaked towards low p? and high ⌘.

In Fig. 5 we show predictions for the W boson pair production cross sections, again at
the LHC and FCC. We impose the same cuts on the W boson pseudorapidities, and include
no further decays, as in [7], for the sake of comparison. MCFM [21] with MMHT2014NLO [20]
PDFs is used to generate the the QCD WW production process at NLO in ↵

s

, with the gg–
initiated box contribution also included. Again a similar trend is clear, with the NNPDF set
predicting potentially a completely dominant photon–initiated contribution at higher masses,
within very large uncertainties. However, for the LHC our approach predicts instead that
the standard QCD–initiated is dominant, apart from at the very highest masses. On the
other hand for the FCC this is no longer the case: over the mass range considered the �� and
QCD–initiated contributions are generally expected to be comparable in size. In this case a
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Harland-Lang, Khoze, Ryskin 
1607.04635

γγ (NNPDF) 100× larger than qq



Approaches to photon PDF
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elastic inelastic in  
LHAPDF?

Gluck Pisano Reya 2002 dipole model ✘

MRST2004qed ✘ model ✓

NNPDF23qed no separation; fit to data ✓

CT14qed ✘ model  
(data-constrained)

✓

CT14qed_inc dipole model  
(data-constrained)

✓
Martin Ryskin  
2014

dipole  
(only electric part)

model ✘

Harland-Lang, Khoze Ryskin 2016 dipole model ✘

elastic: Budnev, Ginzburg,  
 Meledin, Serbo, 1975



Photon PDF determination
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Here I will discuss a model-independent photon PDF 
determination based on precise DIS data 

➤ Usually DIS seen as photons 
from e- probing proton structureelectron

proton



Photon PDF determination
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Here I will discuss a model-independent photon PDF 
determination based on precise DIS data 

➤ Usually DIS seen as photons 
from e- probing proton structure


➤ But can be viewed as electron 
probing proton’s photonic field 

➤ Everything about unpolarized 
EM electron–proton interaction 
encoded in two structure 
functions F2(x,Q2) & FL(x,Q2)

In will often be useful to use FL instead of F
1

, where

FL(x,Q
2) =

✓
1 +

4m2

px
2

Q2

◆
F
2

(x,Q2)� 2xF
1

(x,Q2) . (25)

This gives us

d�

dxdQ2

=
4⇡↵2

xQ4

✓✓
1� y +

y2

2

✓
1 + 2x2

m2

p

Q2

◆◆
F
2

(x,Q2)� y2

2
FL(x,Q

2)

◆
. (26)

5 The ep ! LX process

We take a �e ! L interaction vertex of the form

V µ =
ig

⇤
(�µ�⌫ � �⌫�µ)q⌫ , (27)

where g2/4⇡ ⌘ ↵ and ⇤ is some scale to ensure correct dimensions for V µ and the mass of
the heavy lepton L is M . Throughout this section we will have a leptonic tensor

Lµ⌫ = � g2

⇤2

Tr (/k(/q�µ � �µ/q)(/k � /q +M)(/q�⌫ � �⌫/q)) (28)

with the convention that the incoming electron momentum is k and the incoming photon
momentum is �q. Note that Lµ⌫ does not include any spin-averaging factors.

5.1 Born �e ! L process

The squared matrix element for the �e ! L process is then obtained by summing over
photon spins, �Lµ⌫gµ⌫ ,

|M2| = 8(d� 2)g2M4

⇤2

(29)

To get the cross section we average over incoming spins, a factor of 1/(2d � 4), include a
flux factor 1/|4k.q| = 1/(2M2) as well as the phasespace, Eq. (46.12) from [?], i.e. a factor
2⇡�(ŝ�M2):

�̂
(0)

�e!L+X(ŝ) =
⇡

4M2

|M2|�(ŝ�M2) = 16⇡2↵
M2

⇤2

�(ŝ�M2) (30)

If we have a flux of photons from the proton given by dn�/dx = f�/p(x), where x is the
momentum fraction carried by the photon, then using s = 2xEpEk, we obtain

� =

Z
dx16⇡2↵

M2

⇤2

�(2xEpEk �M2)f�/p(x) (31)

=

Z
dx

16⇡2↵

⇤2

xf�/p(x)�(x�M2/s) =
16⇡2↵

⇤2

M2

s
f�/p

✓
M2

s

◆
(32)

7

electron
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Photon PDF determination
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Manohar, Nason, GPS & Zanderighi, arXiv:1607.04266 
[ use of BSM inspired by Drees & Zeppenfeld, PRD39(1989)2536 ]

Study a hypothetical (“BSM”) heavy-neutral lepton 
production process and calculate it in two ways


(1) in terms of structure functions (known) 
(2) in terms of photon distribution (unknown)


Equivalence gives us photon distribution

Here I will discuss a model-independent photon PDF 
determination based on precise DIS data 
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proton

neutral lepton l  
(massless)

heavy neutral lepton L  
(mass M)

2

e2/(4⇡) ⌘ ↵ is the QED coupling and the arbitrary scale
⇤ �

p
s is introduced to ensure the correct dimensions.

The crucial observation that we rely on is inspired in
part by Drees and Zeppenfeld’s study of supersymmet-
ric particle production at ep colliders [29]: there are two
ways of writing the heavy-lepton production cross section
�, one in terms of standard proton structure functions,
F
2

(x,Q2) and F
L

(x,Q2), the other in terms of the proton
parton distribution functions (PDFs) f

a/p

(x, µ2), where
the dominant flavour that contributes will be a = �.
Equating the latter with the former will allow us to de-
termine f

�/p

.
We start with the inclusive cross section for l(k) +

p(p) ! L(k0) +X

� =
1

4p · k

Z
d4q

(2⇡)4q4
e2
ph

(q2) [4⇡W
µ⌫

Lµ⌫(k, q)]

⇥ 2⇡�((k � q)2 �M2) , (1)

where q = k � k0, Q2 = �q2, W
µ⌫

(p, q) is the pro-
ton hadronic tensor as defined in [30], and Lµ⌫(k, q) =
1

2

(e2
ph

(q2)/⇤2)Tr
⇣
/k
0 ⇥
/q, �µ

⇤
(/k0 +M)

⇥
�⌫ , /q

⇤⌘
is the lep-

tonic tensor. We define the physical QED coupling

e2
ph

(q2) = e2(µ2)/(1�⇧(q2, µ2, e2(µ2))). (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the lL̄� vertex are renormalised.
For s,M2 � m2

p

, where
p
s is the centre-of-mass en-

ergy and m
p

the proton mass, one obtains

� =
c
0

2⇡

Z
1

x

dz

z

Z
Q

2

max

Q

2

min

dQ2

Q2

↵2

ph

(�Q2)

"✓
2�2z+z2+

2x2m2

p

Q2

+
z2Q2

M2

� 2zQ2

M2

�
2x2Q2m2

p

M4

◆
F
2

(x/z,Q2)

+

✓
�z2 � z2Q2

2M2

+
z2Q4

2M4

◆
F
L

(x/z,Q2)

#
, (3)

where x = M2/s, Q2

min

= x2m2

p

/(1�z), Q2

max

= M2/(1�
z) and c

0

= 16⇡2/⇤2.
The same result in terms of parton distributions can

be written as

� = c
0

X

a

Z
dz

z
�̂
a

(z, µ2)
M2

zs
f
a/p

✓
M2

zs
, µ2

◆
, (4)

where in the MS factorisation scheme

�̂
a

(z, µ2) = ↵(µ2)�(1� z)�
a�

+
↵2(µ2)

2⇡

"
�2+3z� z2+

zp
�q

(z)

✓
ln

M2

µ2

+ ln
(1� z)2

z

◆#
e2
q

�
aq

+ . . . , (5)

with e
q

the charge of quark flavour q and zp
�q

(z) =
1 + (1 � z)2. To understand which terms we choose to
keep, observe that the photon will be suppressed by ↵L
relative to the quark and gluon distributions, which are
of order (↵

s

L)n, where L = lnµ2/m2

p

⇠ 1/↵
s

. The first
term in Eq. (3) is of order ↵2L(↵

s

L)n, the second one is
of order ↵2(↵

s

L)n. We neglect terms that would be of
order ↵3L(↵

s

L)n or ↵2↵
s

(↵
s

L)n. By requiring the equiv-
alence of Eqs. (3) and (5) up to the orders considered, one
obtains (in the MS scheme):

xf
�/p

(x, µ2) =
1

2⇡↵(µ2)

Z
1

x

dz

z

(Z µ2

1�z

Q

2

min

dQ2

Q2

↵2(Q2)

" 
2� 2z + z2 +

2x2m2

p

Q2

!
F
2

(x/z,Q2)

� z2F
L

⇣x
z
,Q2

⌘#
� ↵2(µ2)z2F

2

⇣x
z
, µ2

⌘)
, (6)

where the result includes all terms of order ↵L (↵
s

L)n,
↵ (↵

s

L)n and ↵2L2 (↵
s

L)n. The last term in this equa-
tion is the conversion to the MS scheme, and is small (see
Fig. 2).
From Eq. (6) one can derive expressions up to order

↵↵
s

for the P
�q

, P
�g

and P
��

splitting functions using
known results for the F

2

and F
L

coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [31].
The evaluation of Eq. (6) requires information on F

2

and F
L

. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F

2

and
F
L

,

F el

2

=
[G

E

(Q2)]2 + [G
M

(Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F el

L

=
[G

E

(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q2/(4m2

p

) and G
E

and G
M

are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [32]). A widely used ap-
proximation for G

E,M

is the dipole form G
E

(Q2) =
1/(1 + Q2/m2

dip

)2, G
M

(Q2) = µ
p

G
E

(Q2) with m2

dip

=

0.71 GeV2 and µ
p

' 2.793. The dipole form is of inter-
est for understanding qualitative asymptotic behaviours,
predicting f

�/p

(x) ⇠ ↵(1 � x)4 at large x dominated
by the magnetic component, and f

�/p

(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [33],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f

�/p

(x)
for x . 0.5. The data constrains the form factors for
Q2 . 10 GeV2. At large x, Eq.(6) receives contributions
only from Q2 > x2m2

p

/(1 � x), which implies that the

Wµ⌫(p, q)

� =
1

4p · k

Z
d4q

(2⇡)4q4
e2ph(q

2) [4⇡Wµ⌫ L
µ⌫(k, q)]⇥ 2⇡�((k � q)2 �M2)

STEP 1 
work out a cross section (exact) in terms of F2 and FL struct. fns.

hadronic tensor,  
known in terms of F2 and FL

leptonic tensor,  
calculate with Feynman diag.k

k0

p

q
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proton

neutral lepton l  
(massless)

heavy neutral lepton L  
(mass M)

2

e2/(4⇡) ⌘ ↵ is the QED coupling and the arbitrary scale
⇤ �

p
s is introduced to ensure the correct dimensions.

The crucial observation that we rely on is inspired in
part by Drees and Zeppenfeld’s study of supersymmet-
ric particle production at ep colliders [29]: there are two
ways of writing the heavy-lepton production cross section
�, one in terms of standard proton structure functions,
F
2

(x,Q2) and F
L

(x,Q2), the other in terms of the proton
parton distribution functions (PDFs) f

a/p

(x, µ2), where
the dominant flavour that contributes will be a = �.
Equating the latter with the former will allow us to de-
termine f

�/p

.
We start with the inclusive cross section for l(k) +

p(p) ! L(k0) +X

� =
1

4p · k

Z
d4q

(2⇡)4q4
e2
ph

(q2) [4⇡W
µ⌫

Lµ⌫(k, q)]

⇥ 2⇡�((k � q)2 �M2) , (1)

where q = k � k0, Q2 = �q2, W
µ⌫

(p, q) is the pro-
ton hadronic tensor as defined in [30], and Lµ⌫(k, q) =
1

2

(e2
ph

(q2)/⇤2)Tr
⇣
/k
0 ⇥
/q, �µ

⇤
(/k0 +M)

⇥
�⌫ , /q

⇤⌘
is the lep-

tonic tensor. We define the physical QED coupling

e2
ph

(q2) = e2(µ2)/(1�⇧(q2, µ2, e2(µ2))). (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the lL̄� vertex are renormalised.
For s,M2 � m2

p

, where
p
s is the centre-of-mass en-

ergy and m
p

the proton mass, one obtains

� =
c
0

2⇡

Z
1

x

dz

z

Z
Q

2

max

Q

2

min

dQ2

Q2
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(�Q2)
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M2

�
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✓
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z2Q4

2M4

◆
F
L
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#
, (3)

where x = M2/s, Q2

min

= x2m2

p

/(1�z), Q2

max

= M2/(1�
z) and c

0

= 16⇡2/⇤2.
The same result in terms of parton distributions can

be written as

� = c
0
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a

Z
dz
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, µ2

◆
, (4)

where in the MS factorisation scheme
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(z)
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q
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+ . . . , (5)

with e
q

the charge of quark flavour q and zp
�q

(z) =
1 + (1 � z)2. To understand which terms we choose to
keep, observe that the photon will be suppressed by ↵L
relative to the quark and gluon distributions, which are
of order (↵

s

L)n, where L = lnµ2/m2

p

⇠ 1/↵
s

. The first
term in Eq. (3) is of order ↵2L(↵

s

L)n, the second one is
of order ↵2(↵

s

L)n. We neglect terms that would be of
order ↵3L(↵

s

L)n or ↵2↵
s

(↵
s

L)n. By requiring the equiv-
alence of Eqs. (3) and (5) up to the orders considered, one
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and P
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and F
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. Firstly (and somewhat unusually in a PDF con-
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) and G
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and G
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tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [32]). A widely used ap-
proximation for G

E,M

is the dipole form G
E
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(Q2) = µ
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G
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=
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est for understanding qualitative asymptotic behaviours,
predicting f
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(x) ⇠ ↵(1 � x)4 at large x dominated
by the magnetic component, and f
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(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [33],
which shows clear deviations from the dipole form, with
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Q2 . 10 GeV2. At large x, Eq.(6) receives contributions
only from Q2 > x2m2
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Wµ⌫(p, q)

� =
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4p · k

Z
d4q

(2⇡)4q4
e2ph(q

2) [4⇡Wµ⌫ L
µ⌫(k, q)]⇥ 2⇡�((k � q)2 �M2)

STEP 1 
work out a cross section (exact) in terms of F2 and FL struct. fns.

hadronic tensor,  
known in terms of F2 and FL

leptonic tensor,  
calculate with Feynman diag.k

k0

p

q

2

�, one in terms of standard proton structure functions,
F
2

and F
L

(or F
1

), the other in terms of the proton PDFs
f
a/p

, where the dominant flavour that contributes will be
a = �. Equating the latter with the former will allow us
to determine f

�/p

.
We start with the inclusive cross section for l(k) +

p(p) ! L(k0) + X. Defining q = k � k0, Q2 = �q2 and
x

Bj

= Q2/(2pq), we have

� =
1

4p · k

Z
d4q

(2⇡)4q4
e2
ph

(q2) [4⇡W
µ⌫

(p, q)Lµ⌫(k, q)]

⇥ 2⇡�((k � q)2 �M2) , (1)

where the proton hadronic tensor (as defined
in [32]) is given by W

µ⌫

(p, q) = �g
µ⌫

F
1

(x
Bj

, Q2) +
p
µ

p
⌫

/(pq)F
2

(x
Bj

, Q2) up to terms proportional
to q

µ

, q
⌫

, and the leptonic tensor is Lµ⌫(k, q) =
1

2

(e2
ph

(q2)/⇤2)Tr
⇣
/k
0 ⇥
/q, �µ

⇤
(/k0 +M)

⇥
�⌫ , /q

⇤⌘
. In Eq. (1)

we introduced the physical QED coupling

e2
ph

(q2) = e2(µ2)/(1�⇧(q2, µ2, e2(µ2))), (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-
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where e
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is the charge of quark flavour i and zp
�q

(z) =
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keep, observe that the photon will be suppressed by ↵L
relative to the quark and gluon distributions, which are
of order (↵
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where the result includes all terms of order ↵L (↵
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L)n [33]. Within our accuracy
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tion scheme, the last term in Eq. (6), is small (see Fig. 2).
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known results for the F
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for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F
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text), we will need the elastic contributions to F

2

and
F
L

,

F el

2

(x,Q2) =
[G

E

(Q2)]2 + [G
M

(Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F el

L

(x,Q2) =
[G

E

(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q2/(4m2

p

) and G
E

and G
M

are the elec-
tric and magnetic Sachs form factors of the proton (see
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It has become apparent in recent years that it is important, notably for a range of physics stud-
ies at the Large Hadron Collider, to have accurate knowledge on the distribution of photons in the
proton. We show how the photon parton distribution function (PDF) can be determined in a model-
independent manner, using electron–proton (ep) scattering data, in e↵ect viewing the ep ! e +X

process as an electron scattering o↵ the photon field of the proton. To this end, we consider an
imaginary BSM process with a flavour changing photon–lepton vertex. We write its cross section
in two ways, one in terms of proton structure functions, the other in terms of a photon distribu-
tion. Requiring their equivalence yields the photon distribution as an integral over proton structure
functions. As a result of the good precision of ep data, we constrain the photon PDF at the level of
1�2% over a wide range of x values.

A fast-moving particle generates an associated electro-
magnetic field which can be interpreted as a distribution
of photons, as originally calculated by Fermi, Weizsäcker
and Williams [1–3] for point-like charges. The corre-
sponding determination of the photon distribution for
hadrons, specifically f

�/p

for the proton, has however
been the subject of debate over recent years.

The photon distribution is small compared to that of
the quarks and gluons, since it is suppressed by a power
of the electromagnetic coupling ↵. Nevertheless, it has
been realised in the past few years that its poor knowl-
edge is becoming a limiting factor in our ability to pre-
dict key scattering reactions at CERN’s Large Hadron
Collider (LHC). Notable examples are the production of
the Higgs boson throughW/Z fusion [4], or in association
with an outgoing weak boson [5]. For W±H production
it is the largest source of uncertainty [6]. The photon
distribution is also potentially relevant for the produc-
tion of lepton-pairs [7–11], top-quarks [12], pairs of weak
bosons [13–18] and generally enters into electroweak cor-
rections for almost any LHC process. The diphoton ex-
cess around 750 GeV seen by ATLAS and CMS [19, 20]
has also generated interest in understanding f

�/p

.

The two most widely used estimates of f
�/p

are those
included in the MRST2004QED [21] and NNPDF23QED [22]
parametrisations of the proton structure. In the NNPDF
approach, the photon distribution is constrained mainly
by LHC data on the production of pairs of leptons,
pp ! `+`�. This is dominated by qq̄ ! `+`�, with a
small component from �� ! `+`�. The drawback of
this approach is that even with very small uncertainties
in `+`� production data [8], in the QCD corrections to
qq̄ ! `+`� and in the quark and anti-quark distribu-
tions, it is di�cult to obtain high precision constraints
on f

�/p

.

In the MRST2004QED approach, the photon is instead
modeled. It is assumed to be generated as emissions

from free, point-like quarks, using quark distributions fit-
ted from deep-inelastic scattering (DIS) and other data.
The free parameter in the model is an e↵ective mass-
scale below which quarks stop radiating, which was taken
in the range between current-quark masses (a few MeV)
and constituent-quark masses (a few hundred MeV). The
CT14QED [23] variant of this approach constrains the e↵ec-
tive mass scale using ep ! e� +X data [24], sensitive to
the photon in a limited momentum range through the re-
action e� ! e� [25]. A more sophisticated approach [26]
supplements a model of the photon component generated
from quarks (“inelastic” part) with a calculation of the
“elastic” component (whose importance has been under-
stood at least since the early 1970’s [27]) generated by
coherent radiation from the proton as a whole. This was
recently revived in Refs. [28–30].

In this article we point out that electron-proton (ep)
scattering data already contains all the information that
is needed to accurately determine f

�/p

. It is common
to think of ep scattering as a process in which a pho-
ton emitted from the electron probes the structure of the
proton. However one can equivalently think of it as an
electron probing the photon field generated by the proton
itself. Thus the ep scattering cross section is necessarily
connected with f

�/p

. A simple way to make the connec-
tion manifest is to consider, instead of ep scattering, the
fictitious process l+ p ! L+X, where l and L are neu-
tral leptons, with l massless and L massive with mass M .
We assume a transition magnetic moment coupling of the
form L

int

= (e/⇤)L�µ⌫F
µ⌫

l. Here e2(µ2)/(4⇡) ⌘ ↵(µ2)
is the MS QED coupling evaluated at the scale µ, and the
arbitrary scale ⇤ �

p
s (where

p
s is the centre-of-mass

energy) is introduced to ensure the correct dimensions.

The crucial observation that we rely on is inspired in
part by Drees and Zeppenfeld’s study of supersymmetric
particle production at ep colliders [31]: there are two
ways of writing the heavy-lepton production cross section

2

�, one in terms of standard proton structure functions,
F
2

and F
L

(or F
1

), the other in terms of the proton PDFs
f
a/p

, where the dominant flavour that contributes will be
a = �. Equating the latter with the former will allow us
to determine f

�/p

.
We start with the inclusive cross section for l(k) +

p(p) ! L(k0) + X. Defining q = k � k0, Q2 = �q2 and
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we introduced the physical QED coupling
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(q2) = e2(µ2)/(1�⇧(q2, µ2, e2(µ2))), (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the L̄�l vertex are renormalised.
We find
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where x = M2/(s � m2

p

), m
p

is the proton mass,
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The same result in terms of parton distributions can
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where in the MS factorisation scheme
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where e
i

is the charge of quark flavour i and zp
�q

(z) =
1 + (1 � z)2. To understand which terms we choose to

keep, observe that the photon will be suppressed by ↵L
relative to the quark and gluon distributions, which are
of order (↵

s

L)n, where L = lnµ2/m2

p

⇠ 1/↵
s

. The first
term in Eq. (3) is of order ↵2L(↵

s

L)n, the second one is
of order ↵2(↵

s

L)n. We neglect terms that would be of
order ↵3L(↵

s

L)n or ↵2↵
s

(↵
s

L)n. By requiring the equiv-
alence of Eqs. (3) and (4) up to the orders considered, one
obtains (in the MS scheme):
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where the result includes all terms of order ↵L (↵
s

L)n,
↵ (↵

s

L)n and ↵2L2 (↵
s

L)n [33]. Within our accuracy
↵
ph

(�Q2) ⇡ ↵(Q2). The conversion to the MS factorisa-
tion scheme, the last term in Eq. (6), is small (see Fig. 2).
From Eq. (6) we have derived expressions up to order
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s

for the P
�q

, P
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and P
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splitting functions using
known results for the F

2

and F
L

coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F

2

and F
L

. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F
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and
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where ⌧ = Q2/(4m2

p

) and G
E

and G
M

are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [35]). A widely used ap-
proximation for G

E,M

is the dipole form G
E

(Q2) =
1/(1 + Q2/m2

dip

)2, G
M

(Q2) = µ
p

G
E

(Q2) with m2

dip

=

0.71 GeV2 and µ
p

' 2.793. This form is of interest for
understanding qualitative asymptotic behaviours, pre-
dicting f

�/p

(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf

�/p

(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f

�/p

(x)
for x . 0.5. The data constrains the form factors for
Q2 . 10 GeV2. At large x, Eq. (6) receives contribu-
tions only from Q2 > x2m2

p

/(1 � x), which implies that
the elastic contribution to f

�

/p is known for x . 0.9.
Note that the last term in Eq. (6) does not have an elas-
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proximation for G

E,M

is the dipole form G
E

(Q2) =
1/(1 + Q2/m2

dip

)2, G
M

(Q2) = µ
p

G
E

(Q2) with m2

dip

=

0.71 GeV2 and µ
p

' 2.793. This form is of interest for
understanding qualitative asymptotic behaviours, pre-
dicting f

�/p

(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf

�/p

(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f

�/p

(x)
for x . 0.5. The data constrains the form factors for
Q2 . 10 GeV2. At large x, Eq. (6) receives contribu-
tions only from Q2 > x2m2

p

/(1 � x), which implies that
the elastic contribution to f

�

/p is known for x . 0.9.
Note that the last term in Eq. (6) does not have an elas-
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➤ Lagrangian of interaction: 
(magnetic moment coupling)


➤ Using neutral leptons and taking Λ large, ensures that only 
single-photon exchange is relevant


➤ Answer is exact up to 1/Λ corrections 

2

e2/(4⇡) ⌘ ↵ is the QED coupling and the arbitrary scale
⇤ �

p
s is introduced to ensure the correct dimensions.

The crucial observation that we rely on is inspired in
part by Drees and Zeppenfeld’s study of supersymmet-
ric particle production at ep colliders [29]: there are two
ways of writing the heavy-lepton production cross section
�, one in terms of standard proton structure functions,
F
2

(x,Q2) and F
L

(x,Q2), the other in terms of the proton
parton distribution functions (PDFs) f

a/p

(x, µ2), where
the dominant flavour that contributes will be a = �.
Equating the latter with the former will allow us to de-
termine f

�/p

.
We start with the inclusive cross section for l(k) +

p(p) ! L(k0) +X

� =
1

4p · k

Z
d4q

(2⇡)4q4
e2
ph

(q2) [4⇡W
µ⌫

Lµ⌫(k, q)]

⇥ 2⇡�((k � q)2 �M2) , (1)

where q = k � k0, Q2 = �q2, W
µ⌫

(p, q) is the pro-
ton hadronic tensor as defined in [30], and Lµ⌫(k, q) =
1

2

(e2
ph

(q2)/⇤2)Tr
⇣
/k
0 ⇥
/q, �µ

⇤
(/k0 +M)

⇥
�⌫ , /q

⇤⌘
is the lep-

tonic tensor. We define the physical QED coupling

e2
ph

(q2) = e2(µ2)/(1�⇧(q2, µ2, e2(µ2))). (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the lL̄� vertex are renormalised.
For s,M2 � m2

p

, where
p
s is the centre-of-mass en-

ergy and m
p

the proton mass, one obtains

� =
c
0

2⇡

Z
1

x

dz

z

Z
Q

2

max

Q

2

min

dQ2

Q2

↵2

ph

(�Q2)

"✓
2�2z+z2+

2x2m2

p

Q2

+
z2Q2

M2

� 2zQ2

M2

�
2x2Q2m2

p

M4

◆
F
2

(x/z,Q2)

+

✓
�z2 � z2Q2

2M2

+
z2Q4

2M4

◆
F
L

(x/z,Q2)

#
, (3)

where x = M2/s, Q2

min

= x2m2

p

/(1�z), Q2

max

= M2/(1�
z) and c

0

= 16⇡2/⇤2.
The same result in terms of parton distributions can

be written as

� = c
0

X

a

Z
dz

z
�̂
a

(z, µ2)
M2

zs
f
a/p

✓
M2

zs
, µ2

◆
, (4)

where in the MS factorisation scheme

�̂
a

(z, µ2) = ↵(µ2)�(1� z)�
a�

+
↵2(µ2)

2⇡

"
�2+3z� z2+

zp
�q

(z)

✓
ln

M2

µ2

+ ln
(1� z)2

z

◆#
e2
q

�
aq

+ . . . , (5)

with e
q

the charge of quark flavour q and zp
�q

(z) =
1 + (1 � z)2. To understand which terms we choose to
keep, observe that the photon will be suppressed by ↵L
relative to the quark and gluon distributions, which are
of order (↵

s

L)n, where L = lnµ2/m2

p

⇠ 1/↵
s

. The first
term in Eq. (3) is of order ↵2L(↵

s

L)n, the second one is
of order ↵2(↵

s

L)n. We neglect terms that would be of
order ↵3L(↵

s

L)n or ↵2↵
s

(↵
s

L)n. By requiring the equiv-
alence of Eqs. (3) and (5) up to the orders considered, one
obtains (in the MS scheme):

xf
�/p

(x, µ2) =
1

2⇡↵(µ2)

Z
1

x

dz

z

(Z µ2

1�z

Q

2

min

dQ2

Q2

↵2(Q2)

" 
2� 2z + z2 +

2x2m2

p

Q2

!
F
2

(x/z,Q2)

� z2F
L

⇣x
z
,Q2

⌘#
� ↵2(µ2)z2F

2

⇣x
z
, µ2

⌘)
, (6)

where the result includes all terms of order ↵L (↵
s

L)n,
↵ (↵

s

L)n and ↵2L2 (↵
s

L)n. The last term in this equa-
tion is the conversion to the MS scheme, and is small (see
Fig. 2).
From Eq. (6) one can derive expressions up to order

↵↵
s

for the P
�q

, P
�g

and P
��

splitting functions using
known results for the F

2

and F
L

coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [31].
The evaluation of Eq. (6) requires information on F

2

and F
L

. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F

2

and
F
L

,

F el

2

=
[G

E

(Q2)]2 + [G
M

(Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F el

L

=
[G

E

(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q2/(4m2

p

) and G
E

and G
M

are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [32]). A widely used ap-
proximation for G

E,M

is the dipole form G
E

(Q2) =
1/(1 + Q2/m2

dip

)2, G
M

(Q2) = µ
p

G
E

(Q2) with m2

dip

=

0.71 GeV2 and µ
p

' 2.793. The dipole form is of inter-
est for understanding qualitative asymptotic behaviours,
predicting f

�/p

(x) ⇠ ↵(1 � x)4 at large x dominated
by the magnetic component, and f

�/p

(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [33],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f

�/p

(x)
for x . 0.5. The data constrains the form factors for
Q2 . 10 GeV2. At large x, Eq.(6) receives contributions
only from Q2 > x2m2

p

/(1 � x), which implies that the

Wµ⌫(p, q)

k

k0

p
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It has become apparent in recent years that it is important, notably for a range of physics stud-
ies at the Large Hadron Collider, to have accurate knowledge on the distribution of photons in the
proton. We show how the photon parton distribution function (PDF) can be determined in a model-
independent manner, using electron–proton (ep) scattering data, in e↵ect viewing the ep ! e +X

process as an electron scattering o↵ the photon field of the proton. To this end, we consider an
imaginary BSM process with a flavour changing photon–lepton vertex. We write its cross section
in two ways, one in terms of proton structure functions, the other in terms of a photon distribu-
tion. Requiring their equivalence yields the photon distribution as an integral over proton structure
functions. As a result of the good precision of ep data, we constrain the photon PDF at the level of
1�2% over a wide range of x values.

A fast-moving particle generates an associated electro-
magnetic field which can be interpreted as a distribution
of photons, as originally calculated by Fermi, Weizsäcker
and Williams [1–3] for point-like charges. The corre-
sponding determination of the photon distribution for
hadrons, specifically f

�/p

for the proton, has however
been the subject of debate over recent years.

The photon distribution is small compared to that of
the quarks and gluons, since it is suppressed by a power
of the electromagnetic coupling ↵. Nevertheless, it has
been realised in the past few years that its poor knowl-
edge is becoming a limiting factor in our ability to pre-
dict key scattering reactions at CERN’s Large Hadron
Collider (LHC). Notable examples are the production of
the Higgs boson throughW/Z fusion [4], or in association
with an outgoing weak boson [5]. For W±H production
it is the largest source of uncertainty [6]. The photon
distribution is also potentially relevant for the produc-
tion of lepton-pairs [7–11], top-quarks [12], pairs of weak
bosons [13–18] and generally enters into electroweak cor-
rections for almost any LHC process. The diphoton ex-
cess around 750 GeV seen by ATLAS and CMS [19, 20]
has also generated interest in understanding f

�/p

.

The two most widely used estimates of f
�/p

are those
included in the MRST2004QED [21] and NNPDF23QED [22]
parametrisations of the proton structure. In the NNPDF
approach, the photon distribution is constrained mainly
by LHC data on the production of pairs of leptons,
pp ! `+`�. This is dominated by qq̄ ! `+`�, with a
small component from �� ! `+`�. The drawback of
this approach is that even with very small uncertainties
in `+`� production data [8], in the QCD corrections to
qq̄ ! `+`� and in the quark and anti-quark distribu-
tions, it is di�cult to obtain high precision constraints
on f

�/p

.

In the MRST2004QED approach, the photon is instead
modeled. It is assumed to be generated as emissions

from free, point-like quarks, using quark distributions fit-
ted from deep-inelastic scattering (DIS) and other data.
The free parameter in the model is an e↵ective mass-
scale below which quarks stop radiating, which was taken
in the range between current-quark masses (a few MeV)
and constituent-quark masses (a few hundred MeV). The
CT14QED [23] variant of this approach constrains the e↵ec-
tive mass scale using ep ! e� +X data [24], sensitive to
the photon in a limited momentum range through the re-
action e� ! e� [25]. A more sophisticated approach [26]
supplements a model of the photon component generated
from quarks (“inelastic” part) with a calculation of the
“elastic” component (whose importance has been under-
stood at least since the early 1970’s [27]) generated by
coherent radiation from the proton as a whole. This was
recently revived in Refs. [28–30].

In this article we point out that electron-proton (ep)
scattering data already contains all the information that
is needed to accurately determine f

�/p

. It is common
to think of ep scattering as a process in which a pho-
ton emitted from the electron probes the structure of the
proton. However one can equivalently think of it as an
electron probing the photon field generated by the proton
itself. Thus the ep scattering cross section is necessarily
connected with f

�/p

. A simple way to make the connec-
tion manifest is to consider, instead of ep scattering, the
fictitious process l+ p ! L+X, where l and L are neu-
tral leptons, with l massless and L massive with mass M .
We assume a transition magnetic moment coupling of the
form L

int

= (e/⇤)L�µ⌫F
µ⌫

l. Here e2(µ2)/(4⇡) ⌘ ↵(µ2)
is the MS QED coupling evaluated at the scale µ, and the
arbitrary scale ⇤ �

p
s (where

p
s is the centre-of-mass

energy) is introduced to ensure the correct dimensions.

The crucial observation that we rely on is inspired in
part by Drees and Zeppenfeld’s study of supersymmetric
particle production at ep colliders [31]: there are two
ways of writing the heavy-lepton production cross section

2

�, one in terms of standard proton structure functions,
F
2

and F
L

(or F
1

), the other in terms of the proton PDFs
f
a/p

, where the dominant flavour that contributes will be
a = �. Equating the latter with the former will allow us
to determine f

�/p

.
We start with the inclusive cross section for l(k) +

p(p) ! L(k0) + X. Defining q = k � k0, Q2 = �q2 and
x

Bj

= Q2/(2pq), we have

� =
1

4p · k

Z
d4q

(2⇡)4q4
e2
ph

(q2) [4⇡W
µ⌫

(p, q)Lµ⌫(k, q)]

⇥ 2⇡�((k � q)2 �M2) , (1)

where the proton hadronic tensor (as defined
in [32]) is given by W

µ⌫

(p, q) = �g
µ⌫

F
1

(x
Bj

, Q2) +
p
µ

p
⌫

/(pq)F
2

(x
Bj

, Q2) up to terms proportional
to q

µ

, q
⌫

, and the leptonic tensor is Lµ⌫(k, q) =
1

2

(e2
ph

(q2)/⇤2)Tr
⇣
/k
0 ⇥
/q, �µ

⇤
(/k0 +M)

⇥
�⌫ , /q

⇤⌘
. In Eq. (1)

we introduced the physical QED coupling

e2
ph

(q2) = e2(µ2)/(1�⇧(q2, µ2, e2(µ2))), (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the L̄�l vertex are renormalised.
We find

� =
c
0

2⇡

Z
1� 2xm

p

M

x

dz

z

Z
Q

2

max

Q

2

min

dQ2

Q2

↵2

ph

(�Q2)

"✓
2�2z+z2

+
2x2m2

p

Q2

+
z2Q2

M2

� 2zQ2

M2

�
2x2Q2m2

p

M4

◆
F
2

(x/z,Q2)

+

✓
�z2 � z2Q2

2M2

+
z2Q4

2M4

◆
F
L

(x/z,Q2)

#
, (3)

where x = M2/(s � m2

p

), m
p

is the proton mass,
F
L

(x,Q2) = (1+4m2

p

x2/Q2)F
2

(x,Q2)�2xF
1

(x,Q2) and
c
0

= 16⇡2/⇤2. Assuming that M2 � m2

p

, we have
Q2

min

= x2m2

p

/(1� z) and Q2

max

= M2(1� z)/z.
The same result in terms of parton distributions can

be written as

� = c
0

X

a

Z
1

x

dz

z
�̂
a

(z, µ2)
M2

zs
f
a/p

✓
M2

zs
, µ2

◆
, (4)

where in the MS factorisation scheme

�̂
a

(z, µ2) = ↵(µ2)�(1� z)�
a�

+
↵2(µ2)

2⇡

"
� 2 + 3z+

+ zp
�q

(z) ln
M2(1� z)2

zµ2

#
X

i2{q,q̄}

e2
i

�
ai

+ . . . , (5)

where e
i

is the charge of quark flavour i and zp
�q

(z) =
1 + (1 � z)2. To understand which terms we choose to

keep, observe that the photon will be suppressed by ↵L
relative to the quark and gluon distributions, which are
of order (↵

s

L)n, where L = lnµ2/m2

p

⇠ 1/↵
s

. The first
term in Eq. (3) is of order ↵2L(↵

s

L)n, the second one is
of order ↵2(↵

s

L)n. We neglect terms that would be of
order ↵3L(↵

s

L)n or ↵2↵
s

(↵
s

L)n. By requiring the equiv-
alence of Eqs. (3) and (4) up to the orders considered, one
obtains (in the MS scheme):

xf
�/p

(x, µ2) =
1

2⇡↵(µ2)

Z
1

x

dz

z

(Z µ

2

1�z

x

2

m

2

p

1�z

dQ2

Q2

↵2(Q2)

" 
zp

�q

(z) +
2x2m2

p

Q2

!
F
2

(x/z,Q2)� z2F
L

⇣x
z
,Q2

⌘#

� ↵2(µ2)z2F
2

⇣x
z
, µ2

⌘)
, (6)

where the result includes all terms of order ↵L (↵
s

L)n,
↵ (↵

s

L)n and ↵2L2 (↵
s

L)n [33]. Within our accuracy
↵
ph

(�Q2) ⇡ ↵(Q2). The conversion to the MS factorisa-
tion scheme, the last term in Eq. (6), is small (see Fig. 2).
From Eq. (6) we have derived expressions up to order

↵↵
s

for the P
�q

, P
�g

and P
��

splitting functions using
known results for the F

2

and F
L

coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F

2

and F
L

. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F

2

and
F
L

,

F el

2

(x,Q2) =
[G

E

(Q2)]2 + [G
M

(Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F el

L

(x,Q2) =
[G

E

(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q2/(4m2

p

) and G
E

and G
M

are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [35]). A widely used ap-
proximation for G

E,M

is the dipole form G
E

(Q2) =
1/(1 + Q2/m2

dip

)2, G
M

(Q2) = µ
p

G
E

(Q2) with m2

dip

=

0.71 GeV2 and µ
p

' 2.793. This form is of interest for
understanding qualitative asymptotic behaviours, pre-
dicting f

�/p

(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf

�/p

(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f

�/p

(x)
for x . 0.5. The data constrains the form factors for
Q2 . 10 GeV2. At large x, Eq. (6) receives contribu-
tions only from Q2 > x2m2

p

/(1 � x), which implies that
the elastic contribution to f

�

/p is known for x . 0.9.
Note that the last term in Eq. (6) does not have an elas-
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STEP 2 
work out same cross section in terms of a photon distribution
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hard-scattering cross section  
calculate in collinear factorisation

MS photon distribution:  
TO BE DEDUCED
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2

�, one in terms of standard proton structure functions,
F
2

and F
L

(or F
1

), the other in terms of the proton PDFs
f
a/p

, where the dominant flavour that contributes will be
a = �. Equating the latter with the former will allow us
to determine f

�/p

.
We start with the inclusive cross section for l(k) +

p(p) ! L(k0) + X. Defining q = k � k0, Q2 = �q2 and
x

Bj

= Q2/(2pq), we have

� =
1

4p · k
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e2
ph

(q2) [4⇡W
µ⌫

(p, q)Lµ⌫(k, q)]

⇥ 2⇡�((k � q)2 �M2) , (1)

where the proton hadronic tensor (as defined
in [32]) is given by W

µ⌫

(p, q) = �g
µ⌫

F
1

(x
Bj

, Q2) +
p
µ

p
⌫

/(pq)F
2

(x
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, Q2) up to terms proportional
to q

µ

, q
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, and the leptonic tensor is Lµ⌫(k, q) =
1

2
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(q2)/⇤2)Tr
⇣
/k
0 ⇥
/q, �µ

⇤
(/k0 +M)

⇥
�⌫ , /q

⇤⌘
. In Eq. (1)

we introduced the physical QED coupling

e2
ph

(q2) = e2(µ2)/(1�⇧(q2, µ2, e2(µ2))), (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the L̄�l vertex are renormalised.
We find
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, (3)

where x = M2/(s � m2

p

), m
p

is the proton mass,
F
L

(x,Q2) = (1+4m2

p

x2/Q2)F
2

(x,Q2)�2xF
1

(x,Q2) and
c
0

= 16⇡2/⇤2. Assuming that M2 � m2

p

, we have
Q2

min

= x2m2

p

/(1� z) and Q2

max

= M2(1� z)/z.
The same result in terms of parton distributions can

be written as

� = c
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X
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Z
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�̂
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(z, µ2)
M2

zs
f
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✓
M2

zs
, µ2

◆
, (4)

where in the MS factorisation scheme

�̂
a

(z, µ2) = ↵(µ2)�(1� z)�
a�

+
↵2(µ2)

2⇡

"
� 2 + 3z+

+ zp
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(z) ln
M2(1� z)2

zµ2

#
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i2{q,q̄}

e2
i

�
ai

+ . . . , (5)

where e
i

is the charge of quark flavour i and zp
�q

(z) =
1 + (1 � z)2. To understand which terms we choose to

keep, observe that the photon will be suppressed by ↵L
relative to the quark and gluon distributions, which are
of order (↵

s

L)n, where L = lnµ2/m2

p

⇠ 1/↵
s

. The first
term in Eq. (3) is of order ↵2L(↵

s

L)n, the second one is
of order ↵2(↵

s

L)n. We neglect terms that would be of
order ↵3L(↵

s

L)n or ↵2↵
s

(↵
s

L)n. By requiring the equiv-
alence of Eqs. (3) and (4) up to the orders considered, one
obtains (in the MS scheme):

xf
�/p

(x, µ2) =
1

2⇡↵(µ2)

Z
1
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dz

z

(Z µ
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dQ2

Q2

↵2(Q2)
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�q

(z) +
2x2m2

p

Q2

!
F
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(x/z,Q2)� z2F
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z
,Q2

⌘#

� ↵2(µ2)z2F
2

⇣x
z
, µ2

⌘)
, (6)

where the result includes all terms of order ↵L (↵
s

L)n,
↵ (↵

s

L)n and ↵2L2 (↵
s

L)n [33]. Within our accuracy
↵
ph

(�Q2) ⇡ ↵(Q2). The conversion to the MS factorisa-
tion scheme, the last term in Eq. (6), is small (see Fig. 2).
From Eq. (6) we have derived expressions up to order

↵↵
s

for the P
�q

, P
�g

and P
��

splitting functions using
known results for the F

2

and F
L

coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F

2

and F
L

. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F

2

and
F
L

,

F el

2

(x,Q2) =
[G

E

(Q2)]2 + [G
M

(Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F el

L

(x,Q2) =
[G

E

(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q2/(4m2

p

) and G
E

and G
M

are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [35]). A widely used ap-
proximation for G

E,M

is the dipole form G
E

(Q2) =
1/(1 + Q2/m2

dip

)2, G
M

(Q2) = µ
p

G
E

(Q2) with m2

dip

=

0.71 GeV2 and µ
p

' 2.793. This form is of interest for
understanding qualitative asymptotic behaviours, pre-
dicting f

�/p

(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf

�/p

(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f

�/p

(x)
for x . 0.5. The data constrains the form factors for
Q2 . 10 GeV2. At large x, Eq. (6) receives contribu-
tions only from Q2 > x2m2

p

/(1 � x), which implies that
the elastic contribution to f

�

/p is known for x . 0.9.
Note that the last term in Eq. (6) does not have an elas-

➤ Hard cross section driven by the 
photon distribution at LO

➤ Quarks and gluons come in at higher orders



Accuracy
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➤ Take quark and gluon distributions ~ O(1)

➤ 𝛼 is QED coupling, 𝛼s is QCD coupling, L = ln μ2/mp2


➤ Take L ~ 1/𝛼s , so all (𝛼s L)n ~ 1


➤ Think of 𝛼 ~ (𝛼s)2


➤ To first order, photon distribution ~ (𝛼 L)

➤ We aim to control all terms:


➤ 𝛼 L (𝛼s L)n                            [LO]


➤ 𝛼s 𝛼 L (𝛼sL)n ≣ 𝛼(𝛼s L)n         [NLO — extra 𝛼s or 1/L]


➤ 𝛼2 L2 (𝛼sL)n                          [NLO — extra 𝛼 L]

➤ Matching done at large M2 and μ2 to eliminate higher twists
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STEP 3 
equate them to deduce the photon distribution (LUXqed)

2

�, one in terms of standard proton structure functions,
F
2

and F
L

(or F
1

), the other in terms of the proton PDFs
f
a/p

, where the dominant flavour that contributes will be
a = �. Equating the latter with the former will allow us
to determine f

�/p

.
We start with the inclusive cross section for l(k) +
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⇣
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0 ⇥
/q, �µ

⇤
(/k0 +M)

⇥
�⌫ , /q
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. In Eq. (1)

we introduced the physical QED coupling

e2
ph

(q2) = e2(µ2)/(1�⇧(q2, µ2, e2(µ2))), (2)

where ⇧ is the photon self energy and µ is the renormal-
isation scale. We stress that Eq. (1) is accurate up to
corrections of order

p
s/⇤, since neither the electromag-

netic current nor the L̄�l vertex are renormalised.
We find
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where x = M2/(s � m2

p

), m
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is the proton mass,
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= 16⇡2/⇤2. Assuming that M2 � m2
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, we have
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/(1� z) and Q2
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= M2(1� z)/z.
The same result in terms of parton distributions can

be written as
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where in the MS factorisation scheme
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where e
i

is the charge of quark flavour i and zp
�q

(z) =
1 + (1 � z)2. To understand which terms we choose to

keep, observe that the photon will be suppressed by ↵L
relative to the quark and gluon distributions, which are
of order (↵

s

L)n, where L = lnµ2/m2

p

⇠ 1/↵
s

. The first
term in Eq. (3) is of order ↵2L(↵

s

L)n, the second one is
of order ↵2(↵

s

L)n. We neglect terms that would be of
order ↵3L(↵

s

L)n or ↵2↵
s

(↵
s

L)n. By requiring the equiv-
alence of Eqs. (3) and (4) up to the orders considered, one
obtains (in the MS scheme):
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where the result includes all terms of order ↵L (↵
s

L)n,
↵ (↵

s

L)n and ↵2L2 (↵
s

L)n [33]. Within our accuracy
↵
ph

(�Q2) ⇡ ↵(Q2). The conversion to the MS factorisa-
tion scheme, the last term in Eq. (6), is small (see Fig. 2).
From Eq. (6) we have derived expressions up to order

↵↵
s

for the P
�q

, P
�g

and P
��

splitting functions using
known results for the F

2

and F
L

coe�cient functions and
for the QED �-function. Those expressions agree with
the results of a direct evaluation in Ref. [34].
The evaluation of Eq. (6) requires information on F

2

and F
L

. Firstly (and somewhat unusually in a PDF con-
text), we will need the elastic contributions to F

2

and
F
L

,

F el

2

(x,Q2) =
[G

E

(Q2)]2 + [G
M

(Q2)]2⌧

1 + ⌧
�(1� x) , (7a)

F el

L

(x,Q2) =
[G

E

(Q2)]2

⌧
�(1� x) , (7b)

where ⌧ = Q2/(4m2

p

) and G
E

and G
M

are the elec-
tric and magnetic Sachs form factors of the proton (see
e.g. Eqs.(19) and (20) of Ref. [35]). A widely used ap-
proximation for G

E,M

is the dipole form G
E

(Q2) =
1/(1 + Q2/m2

dip

)2, G
M

(Q2) = µ
p

G
E

(Q2) with m2

dip

=

0.71 GeV2 and µ
p

' 2.793. This form is of interest for
understanding qualitative asymptotic behaviours, pre-
dicting f

�/p

(x) ⇠ ↵(1 � x)4 at large x dominated by
the magnetic component, and xf

�/p

(x) ⇠ ↵ ln 1/x at
small x dominated by the electric component. However
for accurate results, we will rather make use of a recent
fit to precise world data by the A1 collaboration [36],
which shows clear deviations from the dipole form, with
an impact of up to 10% on the elastic part of f

�/p

(x)
for x . 0.5. The data constrains the form factors for
Q2 . 10 GeV2. At large x, Eq. (6) receives contribu-
tions only from Q2 > x2m2

p

/(1 � x), which implies that
the elastic contribution to f

�

/p is known for x . 0.9.
Note that the last term in Eq. (6) does not have an elas-

Result is in the MSbar scheme & reproduces the O(ααs) QED  
splitting functions of Florian, Rodrigo, Sborlini [2015]


NB: obtain same result regardless of hard probe



Alternative approach
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It is also possible to compute the photon PDF starting from its definition in 
terms of operators: matrix element on the proton state of operators that count  
the number of photons of a given momentum fraction. 

‣ In fact, it is simpler to compute higher-order QCD corrections starting from this 
approach 

‣QCD corrections to one order higher (NNLO) recently computed in 1708.01256 

Key observation: the 
interaction of the photon with 
the proton is exactly the 
definition of the hadronic 
tensor 



Data input
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➤ x, Q2 plane naturally 
breaks up into regions 
with different physical 
behaviours and data 
sources


➤ We don’t use F2 and FL 
data directly, but rather 
various fits to data�
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Impact of NNLO 
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Considerable reductions of scale 
uncertainty already at NLO

(Previous estimates of the photon PDF 
were at best LO accurate…)  
LUXqed17 differs from LUXqed in 


• the choice of a scale 


• including expansion of structure 
functions (rather than full expressions)  

Difference well within quoted uncertainty



Contributions to the PDF
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Uncertainties

19

replace CLAS 
resonance fit with 

Christy-Bosted

uncertainty on 
elastic component 

(quoted ⊕  
unpol./pol.)

treatment of 
upper limit of 

Q2 integral  
(μ2/(1-z) v. μ2)

standard PDF 
uncertainty

±50% on R (~FL/
(F2-FL)) in low-Q2 
continuum and 

resonance regions

final total 
uncertainty  

~ 1 – 2%  
(sum in quad. of   

all sources)

linearly stacked uncertainties by source
Error on 

unpolarised fit 



Uncertainties
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Photon becomes the best known parton in the proton 



Uncertainties
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Photon becomes the best known parton in the proton 



Comparison to other PDFs
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central NNPDF result much higher at large x 
(but consistent within errors) 

at small x, with corrected evolution (NNPDF30), about 20% smaller 

ratio to LUXqed



Comparison to other PDFs
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Others are 
numerically 
closer 

Error 
bands don’t 
always 
overlap 
with  

LUXqed, 
but within 
~10-20% 
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What is the momentum 
fraction carried by the photon?

24

gluon 46.8 ± 0.4

valence u 18.2 ± 0.3

valence d 7.5 ± 0.2

light sea quarks 20.7 ± 0.4

charm 2.5 ± 0.1 

bottom 2.5 ± 0.1 

photon 0.426 ± 0.003 

Momentum fraction in % (μ = 100 GeV)



Application to Higgs 
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pp → H W+ (→ l+ν) + X  at 13 TeV

non-photon induced contributions 91.2 ± 1.8 fb

photon-induced contribs (NNPDF23) 6.0 +4.4–2.9 fb

photon-induced contribs (LUXqed) 4.4 ± 0.1 fb

non-photon numbers from LHCHXSWG (YR4) 
including PDF uncertainties



Di-lepton spectrum
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LUXQED photon has few % effect on di-lepton 
spectrum and negligible uncertainties



Di-lepton spectrum
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LUXQED photon has few % effect on di-lepton 
spectrum and negligible uncertainties



Conclusions

27

➤ the photon content of the proton matters both for precision 
physics and LHC searches 


➤ distribution of photons in the proton depends on the non-
perturbative QCD physics of the proton


➤ but perturbative calculations allow us to deduce the photon 
density from measured (non-pert.) proton structure functions 


➤ photon PDF determined using data with 1-2% precision 


➤ LUXqed17_plus_PDF4LHC15_nnlo_100 set available from 
LHAPDF (plus additional plots and validation info available 
from http://cern.ch/luxqed) 

http://cern.ch/luxqed


Conclusions
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“If you think about it, it's awesome: we are 
made of protons, and protons are, in some 
part, made of light... And now we know how 
much of it.”

blog post by Tommaso Dorigo

http://www.science20.com/a_quantum_diaries_survivor/how_much_light_does_a_proton_contain-176396

