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INTRODUCTION

Introduction
Noncommutative space(time) algebras are introduced and studied:

e To avoid UV divergences in QFT [Snyder 1947].

e As an arena to formulate QG, inducing Ax 2 L, predicted by
QG arguments [Mead 1966, Doplicher et al 1994-95].

e As an arena for unification of interactions [Connes-Lott,....]

Fuzzy spaces are particularly appealing: a FS is a family A,cn of
finite-dimensional algebras such that A, A =algebra of
regular functions on an ordinary manifold.

First, seminal example: the Fuzzy Sphere (FS) of Madore [1991]:
Ap =~ M,(C), generated by coordinates x' (i = 1,2, 3) fulfilling
2i

715"1'ka7 r2 = XiXizl, I’IEN\{]-}; (1)

') = —

(1) are covariant under SO(3), but not under the whole O(3); in
particular not under parity x' — —x".
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In fact L' = x'v/n2—1/2 make up the standard basis of so(3) in
the irrep (), V)) characterized by L'L' = I(/ + 1), | = 2n+1.
Does the FS approximate the configuration space algebra of a
particle on S$2? Problems: a) parity; b) V/ is irreducible, whereas

LM =pv
/=0
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Here fuzzy approximations of QM on S9 (d = 1,2) solving a),b):
e Ordinary quantum particle in RP (D = d+1), subject to a
potential V/(r) with a very sharp minimum on the sphere r = 1.

e By low enough energy-cutoff E < E we ‘freeze’ radial excitations,
make only a finite-dimensional Hilbert subspace Hz accessible, and
on it the x' noncommutative a la Snyder; the x' generate the
whole algebra of observables. O(D)-covariant by construction.

e Making E, V(1) > 0 diverge with A€ N (while Eg=0), we get
a sequence Ay of fuzzy approximations of ordinary QM on S¢.
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e On Hg the square distance R2 from the origin is not identically
1, but a function of L2 which collapses to 1 in the A — oo limit.

Remarks:

e Our construction is inspired by the Landau model: there
noncommuting x, y obtained projecting QM with a strong
uniform magnetic field B on the lowest energy subspace.

e Physically sound method, applicable to more general contexts.
Imposing a cutoff E on an existing theory can be used to:
can yield an effective description of a system when our
measurements, or the interactions with the environment,
cannot bring its state to energies E > E; or even
may be a necessity if we believe E represents the threshold
for the onset of new physics not accountable by that theory.
e If H is invariant under some symmetry group, then the
projection Pz on Hg is invariant as well, and the projected
theory will inherit that symmetry.
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General framework

Consider a quantum particle in RP
configuration space with Hamiltonian

H = —%A LV )

we fix the minimum Vo = V/(1) of the
the confining potential V(r) so that
the ground state has energy Eg = 0.
Choose an energy cutoff E fulfilling

V(r) ~ Vo +2k(r—1)* (4)

|f V(r) S E, o) that V(r) has a har_ Figure 1 : Three-dimensional
Ey, Plot of V(r)

monic behavior for [r—1[<y/=52.
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Then we restrict to Hg C H = L£2(RD) spanned by ¢ with E < E.
This entails replacing every observable A by A:

A Z = PEAPE’ le=exp(7 5)

where Pg is the projection on Hz. Because = ™
of the behavior of V(r) as k — +00, we ex-
pect that when both k, E diverge dim(Hg)
diverges and we recover standard QM on the
sphere SP~1. The Laplacian in D dimen-
sions decomposes as follows

Vo+ vV2k(r— 1)

|
=

(r

1 1 05 1 15
A:8,2+(D—1);8r—r—2L2. (5) r
where Lj := ix/0; — ix'0; are the angular momentum components
(in normalized units), and L? = L;L; is the square angular
momentum, i.e. the Laplacian on the sphere SP~1.
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H, Lij, Pg commute. As known, the eigenvalues of L? are
J(+ D —2); the Ansatz ¢p = f(r)Y(¢p,...) (Y are eigenfunctions
of L2 and of the elements of a Cartan subalgebra of so(D); r, ¢, ...
are polar coordinates) transforms the eigenvalue equation
Hv = Ev into this auxiliary ODE in the unknown f(r):

P D—18r+j(j+D—2)

r r2

+V(r)| f(r) = Ef(r);  (6)

we must stick to solutions f leading to square-integrable ¢. To
obtain the lowest eigenvalues we don't need to solve it exactly:
condition (4) allows us to approximate (6) with the eigenvalue
equation of a 1—dimensional harmonic oscillator, by Taylor
expanding V(r), 1/r, 1/r? around r = 1.
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D=2: 0 (2)-covariant fuzzy circle

For convenience we look for ¢ in the form ¢ = e™?f(p), p=Inr;
m € Z = spectrum of L = L15. Expand around p = 0; the harm.
osc. approx. of (6) has eigenvalues and (Hérmite) eigenfunctions

E= E,,,m:Qn@—8n(n+1)+m2+0(l/ﬁ> (7)

~n m 2~/kn m ~
fn,m(p) = Nn,m exp |:_W2):| H, [(P_Pn,m) \4/kn,m )
Kn,m = 2(k_En,m+ Vo), ﬁn,m = En,m_VO’

kn,m

(8)

with n e N, Vp = —\/ﬂ+2+o(ﬁ). Up to o(ik), (7) gives

Em = Eom = m’? (9)

i.e. the eigenvalues of the Laplacian L2 on S, while Enm — 00 as
k— oo if n>0; can eliminate them by a cutoff
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The eigenfunctions of H corresponding to E = E,,, are

_ (ppm)*VEm
2 .

U (P, ) = Nme'™e
Setting \:= [\/f} E,, <E implies

(10)

so that all E, are smaller than
the energy levels corresponding to
n > 0 (see figure). We can recover
the whole spectrum of L2 on St by
allowing VE, or equivalently A, to
diverge with k respecting (10).
We abbreviate Hp = Hp,; clearly
dim(Hp)=2A+1.

AEI'IA‘[I;IM S T

FVi=-\2k

Figure 2 : Two-dimensional
plot of V(r) including the
energy-cutoff
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Let x* := X%y = ret’¥. By explicit computations

noxm) = 55 1+ M0

with a = l—i-g\/l—

X, & are resp. the adjoints of X*,£*. Then, up to terms O(1/k3/?)

—i—éi’l%— To get rid of a we rescale £+ =

oy = % [1+ m(me1) } i1 i =A< +m< A1
0 otherwise, (12)

me = ml/)m-

Let R? :=&FTE™ +€7¢1, and P., be the projection over the 1-dim
subspace spanned by 9,. Eq. (12) implies at leading order
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ene) =g+ AR By
A
[T @mi)=o, (D' =1, (14)
m=—AN\

L] =+¢*, ¢ft=¢, ()M =0 (15

72 ~ ~
L AA+1)] Pr+P_p
2

=14+ -1 .
Re=1+ L [+ - ] .

(16)

Eq. (13-16) are exact if we adopt (12) as definitions of £*,¢7 L.
To obtain a fuzzy space we can choose k as a function of A
fulfilling (10), for example k = A2(A+1)2, and the commutative
limit will be A — co. Then e.g. (13) becomes

1 |Pr—P_
:| A . A (17)

—L
(€7 ¢ 1= A N(A+12 [1+/\(A+1)
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The matched confining potential and energy cutoff lead to a
non-vanishing commutator (between the coordinates) of the
Snyder’s Lie algebra type (apart from the sign and the term
containing the projections), i.e. proportional to L.

R? # 1, but its spectrum (except the highest eigenvalue) is
close to 1 and collapses to 1 as A — oo.

Relations (13-16) are O(2)-invariant, because in the original
model both the commutation relations and H (hence also Pg)
are O(2)-invariant.

The ordered monomials (£+)"(L)/(¢7)" [degrees h,/,n
bounded by (14-15)] make up a basis of the (2A+1)?-dim
vector space Ap:=End(Hp) (Pm can be expressed as
polynomials in L).
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o {7,§ (or equivalently X, X™) generate the x-algebra A (also
L can be expressed as a non-ordered polynomial in £1,£7).
Below we determine as an alternative set of generators

E™, E~ in the (2A+1)-dimensional representation of su(2).
e As A — oo [€F,67]—0, dim(Hp) =0, ¥m — d(p)e™.

What about 047

As seen, they are not needed as generators of Ap.
In fact, as expected, d+ do not go to O+ as A — cc.

On the contrary, L — L; this is welcome, because in the limit
A — oo all vector fields tangential to S* are oc L.
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Realization of the algebra of observables through Uso(3)

Ap = End(Hp) = My(C) = ma[Uso(3)], N =2A+1, (18)

where 7y is the N-dimensional unitary representation of Uso(3).
This is characterized by the condition mA(C) = A(A + 1), where
C = E?E? is the Casimir, and E? (a € {+,0,—}) make up the
Cartan-Weyl basis E? of so(3),

[EY,ET]=E°  [E°Ef]==+E*,  ET=E2 (19
To simplify notation drop mp. We can realize ¢+, L,£~ by setting

=E% € =f(E9)EY,

(20)
1 1+s(s—1)/k
fils) = V2 \/A(/\ +1)—s(s—1) (s =1).

~|
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Within the group SU(N) of x-automorphisms of My(C) ~ Ap
arrgag ', acAy~My, geSUN),  (21)

a special role is played by the subgroup SO(3) acting through the
representation ma, namely g = 7 [€’®], where a € s0(3) is a
combination with real coefficients of E®, E*+E~ i(E~—E™).

0(2) € SO(3) as isometry group. In particular, choosing o = §E°
amounts to a rotation by an angle 6 in the X'x? plane: L — L and

2 o 7 — otifxt o s

X't =x!cosf +x?sin 6

X% = —x'sinf + X% cos 6
Choosing a = m(E*+E~)/+/2 we obtain a O(2)-transformation
with determinant = —1 in such a plane: E® — —EC, E* — ET.
As fi(—s) = fi(1+s) = f=(s), this is equivalent to

Xt x X2~ —x2, L— —L.
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D=3: O (3)-covariant fuzzy sphere
Ansatz ¢ = @Ylm (0,¢). Y/" are the spherical harmonics:

L2Y(0,0) = I(1+1)Y["(0,¢), L3 Y/™(0, ) = mY["(0, ),

I € Ng, m € Z,|m| < I. Under assumption (4) the harmonic
oscillator approximation of (6) admits the (Hérmite) eigenfunctions

r—rn 2 k
fo(r) = Nn,,e—i( el ((r —7) JI,) . n=0,1,..

where ki := 2k+31(14+1), = 35t Eoo =0 = Vo=—v2k;
fn I(r)

then the energies associated to ¢, m = == Y/"(0,p) are

Eny =202k +1(1 4+ 1) + 0 (1/V2K)

Again Eg; = I(/ 4+ 1) =: E; are the eigenvalues of the Laplacian L2
on S?, while En — 00 as k— o0 if n>0.
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We can eliminate them (constrain n = 0) imposing a cutoff
, (22)
i.e. projecting the theory on the subspace Ha C £?(R3) spanned by

N, _(=2)*VE
U= dom e e T YP(0,g), Iml <1, <A (23)

Clearly dim(Hp)=(A+1)%. Let x° 1=z, x* := X%y The action

of x2=rX (a= —,0,+) on 9" factorizes into the one of r on
fo,1(r)

27 and the one of = on Y/™. After projection we find

wa,/,m _ a,m_;m+a —a,m+a_ m+a
XM= gAY+ an AL Y

CoZC/\+1:0, C/Z\/l—k% 1</ <A

up to O <l/k%) and A,a’m, B,a’m are the coefficients determined by

(24)

a
X

m __ apa,my,sm+ta —a,m+ay,/m+a
TY/ =AY I+ ALST YA
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The L;,x', i € {1,2,3}, fulfill

/

A
I1 [Zz — I+ 1)/} =0, [ @G-mnp=o, (25)

1=0 m=—/

Y"T = ?i, Z:F = Z,’, [Z,’,Yj] = I'€ijh?h, [ZMZJ] = ieijhzha (26)
<iT i oy i (L 5\ T
x'L; =0, [x', %] =ie¥ _E—i_KPA Ly (27)

A2 _ _
where K = Ly e, [P:=TLL = L[, is L? projected on Hy,
and P is the projection on its eigenspace with eigenvalue /(/ + 1).
Moreover, the square distance from the origin is

’+1 [1 (/\+1)2] A+1 ~

R? =x%X%x =1+ Pl Eyert (28)

These relations are exact if we adopt (24) as exact of X?.
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Again:

e [x,X] = ... and [L,X] = ... are Snyder-like: [X,X] = —L/k
(plus the term containing Pp) and vanish as A — co.

Hence (25-27) are covariant under the whole O(3), including
parity X;— —Xx;, L;— L;, contrary to Madore FS.

R? # 1, its spectrum grows with /, but collapses to 1 as
N — .

The ordered monomials in X;, L; make up a basis of the
(A+1)*-dim vector space A:=End(Hp)~ M 1y2(C)
(ﬁ/ can be expressed as polynomials in ZZ).

Actually, X; generate the x-algebra A (also the L; can be
expressed as a non-ordered polynomial in the X;).

To obtain a fuzzy space we can choose k as a function of A
fulfilling (22); one possible choice is k = A2(A + 1)?, and the
commutative limit will be A — +oc.
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Realization of the algebra A of observables through Uso(4)

so(4) ~ su(2) @ su(2) is spanned by {E}, E,?}?:l fulfilling

[E} E7] =0, [E} Ell=is"™EL,  [E7 E7] =i E7. (29)
L := E} + E?, X;:= E} — E? make up alternative basis of so(4):
[Li, L] =i Ly, [Li, X] = igP Xy, [X;, X;] = i Ly. (30)

The L; close another su(2). Passing to generators labelled by
ae{-,0,+},

[L+7 L—] - L07 [L07 L:t] - j:L:|: - [X07X:t]7 [X+7X—] = L07 (31)
[L:Ev X$] = :l:X()a [LOa X:t] = :I:X:I: = [X07 L:t]v [L87 Xa] = 0(32)

(no sum over a), where [2= L;L; = L,L_,, X?= X;X; = XaX_,.
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In the tensor product representation mp = A ® ™ of

Uso(4) ~ Usu(2) ® Usu(2) on the Hilbert space Vp := V% ® V% it

is Ct:= E}E} = §(5 + 1) = E?E? =: C2, or equivalently
X-L=L-X=0, X?*+1?>=N\AN+2) (33)

(we have dropped the symbols 7p). Vi admits an orthonormal
basis consisting of common eigenvectors of L2 and Ly:

Lo|l,m) =m|l,m), L3I, m) = I(I +1)|I, m) (34)

with 0 </ < A and |m| < /. Vj,Ha have the same dimension
(A+1)? and decomposition in irreps of the L; subalgebra; we
identify them setting ¢{” = |/, m). The action of X2 on V reads

X2, m) = dAP" |1 =1, m+ a) + di41B™" |1+ 1, m + a) (35)

dy:=y/(A+1)2 = I?



D=3:0 (3)-COVARIANT FUZZY SPHERE
We can naturally realize L,, X* in mp [Usu(2) ® Usu(2)].
Define \ := 7““22*171; then \|/,m) = I|l,m). The Ansatz

™~

a= L, X7 = g()‘) Xag()‘)’ (36)

fulfills (24) and therefore (25-27) provided

-1 [5] (F-2j)2
_ 1
g() = | l=olNE22D PEIE (37)
[Th—o(A+14+1=2h) 5 1+ F=35
(3+1-1F)

r(A1) T r(z+1+7”)r
+gE) (1)
)

T

>‘
Ln

\ TR TR ) Var (g

The inverse of (36) is clearly X2 = [g()\)] 71 X7 [g(\)] !
We have thus explicitly constructed a *-algebra map

Ap = End(Hp) ~ My(C) ~ ma[Uso(4)], N := (A+1)%. (38)
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As known, the group of x-automorphisms of My (C) ~ A, is
b — gbg™1, be Apn, g € SU(N).

Again a special role is played by the subgroup SO(4) acting
through the representation mp, namely g = mp [e], a € so(4).
O(3) C SO(4) plays the role of isometry subgroup.

In particular, choosing o = a;L; («j € R) the automorphism
amounts to a SO(3) transf. (a rotation in 3-dimensional space).
An O(3) transformation with determinant —1 in the X1X2X3
space is parity (L;, X') = (L;, —X'), or equivalently E} <+ E?, the
only automorphism of so(4) (corresponding to the exchange of the
two nodes in the Dynkin diagram).
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Final remarks and conclusions

For d = 1,2 we have built a sequence (Ap, Hn) of finite-dim,
O(D)-covariant (D = d+1) approximations of QM of a spinless
particle on the sphere S9; R? > 1 collapses to 1 as A — oo.
Achieved imposing E < A(A+d—1) on QM of a particle in RP
subject to a sharp confining potential V/(r) on the sphere r = 1.
Ap are fuzzy approximations of the whole algebra of observables of
the particle on S¢ (phase space algebra).

Ap ~ mp[Uso(D+1)], with a suitable irrep mp of Uso(D-+1) on Ha.
Hp carries a reducible representation of the Uso(D) subalgebra
generated by the L;:  Ha = @irreps fulfilling L2 < A(A+d—1).
The same decomposition holds for the subspace Cp C Ap of
completely symmetrized polynomials in the X'.

As A — oo these resp. become the decompositions (2) of £2(S9)
and of C(S9) acting on £2(S9).
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Approach seems applicable to d > 3 ~» comparison with literature.

The fuzzy spheres of dimension d = 4 [Grosse, Klimcik, Presnajder
1996], d > 3 [Ramgoolam 2001], are based on End(V') where V
carries a particular irrep of SO(d + 1); R? is central, can be set=1.
Snyder-like commutation relations, hence O(d + 1)-covariant.

In [Steinacker 2016-17] fuzzy 4-spheres Sy, through reducible repr.
of Uso(5) obtained decomposing irreps 7 of Uso(6) with suitable
highest weights (N, nq, n2); so End(V') >~ m[Uso(6)], in analogy
with our result. The elements X' of a basis of SO(6) \ SO(5)
play the role of noncommutative cartesian coordinates.

Hence, the SO(5)-scalar R? = XX is no longer central, but its
spectrum is still very close to 1 only if N > ny, no;

if n1 = np = 0 then R2 = 1, and one recovers the fuzzy 4-sphere
[Grosse, Klimcik, Presnajder 1996].

In our approach R? ~ 1 is guaranteed by adopting
x' = g(L?)X'g(L?) rather than X' as noncommutative cartesian
coordinates, R? = x'x' .
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