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Introduction
Noncommutative space(time) algebras are introduced and studied:

• To avoid UV divergences in QFT [Snyder 1947].

• As an arena to formulate QG, inducing ∆x & Lp predicted by
QG arguments [Mead 1966, Doplicher et al 1994-95].

• As an arena for unification of interactions [Connes-Lott,....]

• ...

Fuzzy spaces are particularly appealing: a FS is a family An∈N of
finite-dimensional algebras such that An

n→∞−→ A ≡algebra of
regular functions on an ordinary manifold.
First, seminal example: the Fuzzy Sphere (FS) of Madore [1991]:
An ' Mn(C), generated by coordinates x i (i = 1, 2, 3) fulfilling

[x i , x j ] =
2i√
n2−1

εijkxk , r2 := x ix i = 1, n ∈ N \ {1}; (1)

(1) are covariant under SO(3), but not under the whole O(3); in
particular not under parity x i 7→ −x i .
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In fact Li = x i
√
n2−1/2 make up the standard basis of so(3) in

the irrep (πl ,Vl) characterized by LiLi = l(l + 1), l = 2n+1.
Does the FS approximate the configuration space algebra of a
particle on S2? Problems: a) parity; b) Vl is irreducible, whereas

L2(S2) =
∞⊕
l=0

Vl

= C (S2) (2)

Here fuzzy approximations of QM on Sd (d = 1, 2) solving a),b):

• Ordinary quantum particle in RD (D = d+1), subject to a
potential V (r) with a very sharp minimum on the sphere r = 1.

• By low enough energy-cutoff E ≤ E we ‘freeze’ radial excitations,
make only a finite-dimensional Hilbert subspace HE accessible, and
on it the x i noncommutative à la Snyder; the x i generate the
whole algebra of observables. O(D)-covariant by construction.

• Making E , V ′′(1)� 0 diverge with Λ∈N (while E0 =0), we get
a sequence AΛ of fuzzy approximations of ordinary QM on Sd .
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• On HE the square distance R2 from the origin is not identically
1, but a function of L2 which collapses to 1 in the Λ→∞ limit.

Remarks:

• Our construction is inspired by the Landau model: there
noncommuting x , y obtained projecting QM with a strong
uniform magnetic field B on the lowest energy subspace.

• Physically sound method, applicable to more general contexts.
Imposing a cutoff E on an existing theory can be used to:
• can yield an effective description of a system when our
measurements, or the interactions with the environment,
cannot bring its state to energies E > E ; or even
• may be a necessity if we believe E represents the threshold
for the onset of new physics not accountable by that theory.

• If H is invariant under some symmetry group, then the
projection PE on HE is invariant as well, and the projected
theory will inherit that symmetry.
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General framework

Consider a quantum particle in RD

configuration space with Hamiltonian

H = −1

2
∆ + V (r); (3)

we fix the minimum V0 = V (1) of the
the confining potential V (r) so that
the ground state has energy E0 = 0.
Choose an energy cutoff E fulfilling

V (r) ' V0 + 2k (r−1)2 (4)

if V (r) ≤ E ; so that V (r) has a har-

monic behavior for |r−1|≤
√

E−V0
2k .

Figure 1 : Three-dimensional
plot of V (r)
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Then we restrict to HE ⊂ H ≡ L
2(RD) spanned by ψ with E ≤ E .

This entails replacing every observable A by A:

A 7→ A := PEAPE ,

where PE is the projection on HE . Because
of the behavior of V (r) as k → +∞, we ex-
pect that when both k , E diverge dim(HE )
diverges and we recover standard QM on the
sphere SD−1. The Laplacian in D dimen-
sions decomposes as follows

∆ = ∂2
r + (D − 1)

1

r
∂r −

1

r2
L2. (5)

where Lij := ix j∂i − ix i∂j are the angular momentum components
(in normalized units), and L2 = LijLij is the square angular
momentum, i.e. the Laplacian on the sphere SD−1.


Video.swf
Media File (application/x-shockwave-flash)
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H, Lij ,PE commute. As known, the eigenvalues of L2 are
j (j + D − 2); the Ansatz ψ = f (r)Y (ϕ, ...) (Y are eigenfunctions
of L2 and of the elements of a Cartan subalgebra of so(D); r , ϕ, ...
are polar coordinates) transforms the eigenvalue equation
Hψ = Eψ into this auxiliary ODE in the unknown f (r):[
−∂2

r −
D − 1

r
∂r +

j (j + D − 2)

r2
+ V (r)

]
f (r) = Ef (r); (6)

we must stick to solutions f leading to square-integrable ψ. To
obtain the lowest eigenvalues we don’t need to solve it exactly:
condition (4) allows us to approximate (6) with the eigenvalue
equation of a 1−dimensional harmonic oscillator, by Taylor
expanding V (r), 1/r , 1/r2 around r = 1.
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D=2: O (2)-covariant fuzzy circle

For convenience we look for ψ in the form ψ = e imϕf (ρ), ρ = ln r ;
m ∈ Z ≡ spectrum of L ≡ L12. Expand around ρ = 0; the harm.
osc. approx. of (6) has eigenvalues and (Hérmite) eigenfunctions

E = En,m = 2n
√

2k − 8n(n + 1) + m2 + O
(

1/
√
k
)

(7)

fn,m(ρ) = Nn,m exp

[
− (ρ−ρ̃n,m)2

√
kn,m

2

]
Hn

[
(ρ−ρ̃n,m) 4

√
kn,m

]
,

kn,m = 2(k−En,m+V0), ρ̃n,m =
En,m−V0

kn,m
,

(8)

with n ∈ N0, V0 = −
√

2k+2+O
(

1√
k

)
. Up to O

(
1√
k

)
, (7) gives

Em ≡ E0,m = m2 (9)

i.e. the eigenvalues of the Laplacian L2 on S1, while En,m →∞ as
k→∞ if n>0; can eliminate them by a cutoff E ≤ E < 2

√
2k−2.
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The eigenfunctions of H corresponding to E = Em are

ψm (ρ, ϕ) = Nme
imϕe−

(ρ−ρ̃m)2√km
2 .

Setting Λ:=
[√

E
]
, Em≤E implies

m2 ≤ Λ2 < 2
√

2k− 2 (10)

so that all Em are smaller than
the energy levels corresponding to
n > 0 (see figure). We can recover
the whole spectrum of L2 on S1 by
allowing

√
E , or equivalently Λ, to

diverge with k respecting (10).
We abbreviate HΛ ≡ HE ; clearly
dim(HΛ)=2Λ+1.

Figure 2 : Two-dimensional
plot of V (r) including the
energy-cutoff
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Let x± := x±iy√
2

= re±iϕ. By explicit computations

〈ψn, x
±ψm〉 =

a√
2

[
1 +

m(m ± 1)

2k

]
δnm±1 (11)

with a = 1+ 9
4

1√
2k

+ 137
64k +.... To get rid of a we rescale ξ± := x±

a .

x−, ξ− are resp. the adjoints of x+, ξ+. Then, up to terms O(1/k3/2)

ξ±ψm =


1√
2

[
1 + m(m±1)

2k

]
ψm±1 if −Λ ≤ ±m ≤ Λ−1

0 otherwise,

Lψm = mψm.

(12)

Let R2 := ξ+ξ− + ξ−ξ+, and P̃m be the projection over the 1-dim
subspace spanned by ψm. Eq. (12) implies at leading order
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[
ξ+, ξ−

]
= −L

k
+

[
1+

Λ(Λ+1)

k

]
P̃Λ−P̃−Λ

2
. (13)

Λ∏
m=−Λ

(
L−mI

)
= 0,

(
L
)†

= L, (14)

[
L, ξ±

]
= ±ξ±, ξ+† = ξ−,

(
ξ±
)2Λ+1

= 0. (15)

R2 = 1 +
L

2

k
−
[

1+
Λ(Λ+1)

k

]
P̃Λ+P̃−Λ

2
. (16)

Eq. (13-16) are exact if we adopt (12) as definitions of ξ+, ξ−, L.
To obtain a fuzzy space we can choose k as a function of Λ
fulfilling (10), for example k = Λ2(Λ+1)2, and the commutative
limit will be Λ→∞. Then e.g. (13) becomes

[ξ+, ξ−] =
−L

Λ2(Λ+1)2
+

[
1+

1

Λ(Λ+1)

]
P̃Λ−P̃−Λ

2
. (17)
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• The matched confining potential and energy cutoff lead to a
non-vanishing commutator (between the coordinates) of the
Snyder’s Lie algebra type (apart from the sign and the term
containing the projections), i.e. proportional to L.

• R2 6= 1, but its spectrum (except the highest eigenvalue) is
close to 1 and collapses to 1 as Λ→∞.

• Relations (13-16) are O(2)-invariant, because in the original
model both the commutation relations and H (hence also PE )
are O(2)-invariant.

• The ordered monomials (ξ+)h(L)l(ξ−)n [degrees h, l , n
bounded by (14-15)] make up a basis of the (2Λ+1)2-dim
vector space AΛ :=End(HΛ) (P̃m can be expressed as
polynomials in L).
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• ξ+, ξ− (or equivalently x+, x−) generate the ∗-algebra AΛ (also
L can be expressed as a non-ordered polynomial in ξ+, ξ−).
Below we determine as an alternative set of generators
E+,E− in the (2Λ+1)-dimensional representation of su(2).

• As Λ→∞ [ξ+, ξ−]→0, dim(HΛ)→0, ψm → δ(ρ)e imϕ.

What about ∂±?

As seen, they are not needed as generators of AΛ.
In fact, as expected, ∂± do not go to ∂± as Λ→∞.

On the contrary, L→ L; this is welcome, because in the limit
Λ→∞ all vector fields tangential to S1 are ∝ L.
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Realization of the algebra of observables through Uso(3)

AΛ := End(HΛ) ' MN(C) ' πΛ[Uso(3)], N = 2Λ+1, (18)

where πΛ is the N-dimensional unitary representation of Uso(3).
This is characterized by the condition πΛ(C ) = Λ(Λ + 1), where
C = E aE−a is the Casimir, and E a (a ∈ {+, 0,−}) make up the
Cartan-Weyl basis E a of so(3),

[E+,E−] = E 0, [E 0,E±] = ±E±, E a† = E−a. (19)

To simplify notation drop πΛ. We can realize ξ+, L , ξ− by setting

L = E 0, ξ
±

= f±(E 0)E±,

f+(s) =
1√
2

√
1+s(s−1)/k

Λ(Λ + 1)−s(s−1)
= f−(s − 1).

(20)
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Within the group SU(N) of ∗-automorphisms of MN(C) ' AΛ

a 7→ g a g−1, a ∈ AΛ ' MN , g ∈ SU(N), (21)

a special role is played by the subgroup SO(3) acting through the
representation πΛ, namely g = πΛ

[
e iα
]
, where α ∈ so(3) is a

combination with real coefficients of E 0,E++E−, i(E−−E+).

O(2) ⊂ SO(3) as isometry group. In particular, choosing α = θE 0

amounts to a rotation by an angle θ in the x1x2 plane: L 7→ L and

x± 7→ x ′± = e±iθx± ⇔
{

x ′1 = x1 cos θ + x2 sin θ
x ′2 = −x1 sin θ + x2 cos θ

.

Choosing α = π(E++E−)/
√

2 we obtain a O(2)-transformation
with determinant = −1 in such a plane: E 0 7→ −E 0, E± 7→ E∓.
As f±(−s) = f±(1+s) = f∓(s), this is equivalent to
x1 7→ x1, x2 7→ −x2, L 7→ −L.
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D=3: O (3)-covariant fuzzy sphere
Ansatz ψ = f (r)

r Ym
l (θ, ϕ). Ym

l are the spherical harmonics:

L2 Ym
l (θ, ϕ) = l(l + 1)Ym

l (θ, ϕ) , L3 Y
m
l (θ, ϕ) = mYm

l (θ, ϕ) ,

l ∈ N0, m ∈ Z, |m| ≤ l . Under assumption (4) the harmonic
oscillator approximation of (6) admits the (Hérmite) eigenfunctions

fn,l(r) = Nn,le
− (r−r̃l )

2√kl
2 Hn

(
(r − r̃l)

4
√
kl

)
, n = 0, 1, ....

where kl := 2k+3l(l+1), r̃l = 2k+4l(l+1)
2k+3l(l+1) . E0,0 = 0⇒ V0 =−

√
2k ;

then the energies associated to ψn,l ,m =
fn,l (r)

r Ym
l (θ,ϕ) are

En,l = 2n
√

2k + l(l + 1) + O
(

1/
√

2k
)

Again E0,l = l(l + 1) =: El are the eigenvalues of the Laplacian L2

on S2, while En,l →∞ as k→∞ if n>0.
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We can eliminate them (constrain n = 0) imposing a cutoff

E ≤ Λ(Λ + 1) ≡ E < 2
√

2k, (22)

i.e. projecting the theory on the subspace HΛ⊂L2(R3) spanned by

ψm
l := ψ0,l ,m '

Nl

r
e−

(r−r̃l )
2√kl

2 Ym
l (θ, ϕ), |m| ≤ l , l ≤ Λ. (23)

Clearly dim(HΛ)=(Λ+1)2. Let x0 := z , x± := x±iy√
2

. The action

of xa = r x
a

r (a = −, 0,+) on ψm
l factorizes into the one of r on

f0,l (r)
r and the one of xa

r on Ym
l . After projection we find

xaψm
l = clA

a,m
l ψm+a

l−1 + cl+1A
−a,m+a
l+1 ψm+a

l+1 ,

c0 = cΛ+1 = 0, cl =
√

1 + l2

k 1 ≤ l ≤ Λ
(24)

up to O
(

1/k
3
2

)
, and Aa,m

l ,Ba,m
l are the coefficients determined by

xa

r
Ym
l = Aa,m

l Ym+a
l−1 + A−a,m+a

l+1 Ym+a
l+1 .
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The Li , x
i , i ∈ {1, 2, 3}, fulfill

Λ∏
l=0

[
L

2 − l(l + 1)I
]

= 0,
l∏

m=−l

(
L3 −mI

)
P̃l = 0, (25)

x i† = x i , L
†
i = Li , [Li , x

j ] = iεijhxh,
[
Li , Lj

]
= iεijhLh, (26)

x iLi = 0, [x i , x j ] = iεijh
(
−1

k
+ KP̃Λ

)
Lh (27)

where K = 1
k +

1+Λ2

k
2Λ+1 , L

2
:= LiLi = LaL−a is L2 projected on HΛ,

and P̃l is the projection on its eigenspace with eigenvalue l(l + 1).
Moreover, the square distance from the origin is

R2 := x ix i = 1 +
L

2
+ 1

k
−
[

1 +
(Λ+1)2

k

]
Λ+1

2Λ + 1
P̃Λ. (28)

These relations are exact if we adopt (24) as exact of xa.
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Again:

• [x , x ] = ... and [L, x ] = ... are Snyder-like: [x , x ] = −L/k
(plus the term containing P̃Λ) and vanish as Λ→∞.

• Hence (25-27) are covariant under the whole O(3), including
parity x i 7→−x i , Li 7→Li , contrary to Madore FS.

• R2 6= 1, its spectrum grows with l , but collapses to 1 as
Λ→∞.

• The ordered monomials in xi , Li make up a basis of the
(Λ+1)4-dim vector space A :=End(HΛ)'M(Λ+1)2(C)

(P̃l can be expressed as polynomials in L
2
).

• Actually, x i generate the ∗-algebra A (also the Li can be
expressed as a non-ordered polynomial in the x i ).

To obtain a fuzzy space we can choose k as a function of Λ
fulfilling (22); one possible choice is k = Λ2(Λ + 1)2, and the
commutative limit will be Λ→ +∞.
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Realization of the algebra A of observables through Uso(4)

so(4) ' su(2)⊕ su(2) is spanned by
{
E 1
i ,E

2
i

}3

i=1
fulfilling

[E 1
i ,E

2
j ] = 0, [E 1

i ,E
1
j ] = iεijkE 1

k , [E 2
i ,E

2
j ] = iεijkE 2

k . (29)

Li := E 1
i + E 2

i , Xi := E 1
i − E 2

i make up alternative basis of so(4):

[Li , Lj ] = iεijkLk , [Li ,Xj ] = iεijkXk , [Xi ,Xj ] = iεijkLk . (30)

The Li close another su(2). Passing to generators labelled by
a ∈ {−, 0,+},

[L+, L−] = L0, [L0, L±] = ±L± = [X0,X±], [X+,X−] = L0, (31)

[L±,X∓] = ±X0, [L0,X±] = ±X± = [X0, L±], [La,Xa] = 0(32)

(no sum over a), where L2 = LiLi = LaL−a, X 2 = XiXi = XaX−a.



Introduction General framework D=2:O (2)-covariant fuzzy circle D=3:O (3)-covariant fuzzy sphere Outlook

In the tensor product representation πΛ := π Λ
2
⊗ π Λ

2
of

Uso(4) ' Usu(2)⊗Usu(2) on the Hilbert space VΛ := V Λ
2
⊗ V Λ

2
it

is C 1 := E 1
i E

1
i = Λ

2 ( Λ
2 + 1) = E 2

i E
2
i =: C 2, or equivalently

X · L = L · X = 0, X 2+L2 = Λ(Λ+2) (33)

(we have dropped the symbols πΛ). VΛ admits an orthonormal
basis consisting of common eigenvectors of L2 and L0:

L0 |l ,m〉 = m |l ,m〉 , L2 |l ,m〉 = l(l + 1) |l ,m〉 (34)

with 0 ≤ l ≤ Λ and |m| ≤ l . VΛ,HΛ have the same dimension
(Λ+1)2 and decomposition in irreps of the Li subalgebra; we
identify them setting ψm

l ≡ |l ,m〉. The action of X a on VΛ reads

X a |l ,m〉 = dlA
a,m
l |l − 1,m + a〉 + dl+1B

a,m
l |l + 1,m + a〉 (35)

dl :=
√

(Λ+1)2 − l2
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We can naturally realize La, x
a in πΛ [Usu(2)⊗ Usu(2)].

Define λ :=
√

4L2+1−1
2 ; then λ |l ,m〉 = l |l ,m〉. The Ansatz

La = La, xa = g(λ)X a g(λ), (36)

fulfills (24) and therefore (25-27) provided

g(l) =

√√√√√ ∏l−1
h=0(Λ+l−2h)∏l

h=0(Λ+l+1−2h)

[ l−1
2 ]∏

j=0

1 + (l−2j)2

k

1 + (l−1−2j)2

k

(37)

=

√√√√√ Γ
(

Λ+l
2 +1

)
Γ
(

Λ−l+1
2

)
Γ
(

Λ+1+l
2 +1

)
Γ
(

Λ−l
2 +1

) Γ
(

l
2 +1+ i

√
k

2

)
Γ
(

l
2 +1− i

√
k

2

)
√
k Γ
(
l+1
2 + i

√
k

2

)
Γ
(
l+1
2 −

i
√
k

2

)
The inverse of (36) is clearly X a = [g(λ)]−1 xa [g(λ)]−1.
We have thus explicitly constructed a *-algebra map

AΛ := End(HΛ) ' MN(C) ' πΛ[Uso(4)], N := (Λ+1)2. (38)
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As known, the group of ∗-automorphisms of MN(C) ' AΛ is

b → gbg−1, b ∈ AΛ, g ∈ SU(N).

Again a special role is played by the subgroup SO(4) acting
through the representation πΛ, namely g = πΛ

[
e iα
]
, α ∈ so(4).

O(3) ⊂ SO(4) plays the role of isometry subgroup.

In particular, choosing α = αiLi (αi ∈ R) the automorphism
amounts to a SO(3) transf. (a rotation in 3-dimensional space).

An O(3) transformation with determinant −1 in the X 1X 2X 3

space is parity (Li ,X
i ) 7→ (Li ,−X i ), or equivalently E 1

i ↔ E 2
i , the

only automorphism of so(4) (corresponding to the exchange of the
two nodes in the Dynkin diagram).
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Final remarks and conclusions

For d = 1, 2 we have built a sequence (AΛ,HΛ) of finite-dim,
O(D)-covariant (D = d+1) approximations of QM of a spinless
particle on the sphere Sd ; R2 & 1 collapses to 1 as Λ→∞.

Achieved imposing E ≤ Λ(Λ+d−1) on QM of a particle in RD

subject to a sharp confining potential V (r) on the sphere r = 1.

AΛ are fuzzy approximations of the whole algebra of observables of
the particle on Sd (phase space algebra).

AΛ ' πΛ[Uso(D+1)], with a suitable irrep πΛ of Uso(D+1) on HΛ.

HΛ carries a reducible representation of the Uso(D) subalgebra
generated by the Lij : HΛ =

⊕
irreps fulfilling L2 ≤ Λ(Λ+d−1).

The same decomposition holds for the subspace CΛ ⊂ AΛ of
completely symmetrized polynomials in the x i .

As Λ→∞ these resp. become the decompositions (2) of L2(Sd)
and of C (Sd) acting on L2(Sd).
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Approach seems applicable to d ≥ 3  comparison with literature.

The fuzzy spheres of dimension d = 4 [Grosse, Klimcik, Presnajder
1996], d ≥ 3 [Ramgoolam 2001], are based on End(V ) where V
carries a particular irrep of SO(d + 1); R2 is central, can be set=1.
Snyder-like commutation relations, hence O(d + 1)-covariant.

In [Steinacker 2016-17] fuzzy 4-spheres S4
N through reducible repr.

of Uso(5) obtained decomposing irreps π of Uso(6) with suitable
highest weights (N, n1, n2); so End(V ) ' π[Uso(6)], in analogy
with our result. The elements X i of a basis of SO(6) \ SO(5)
play the role of noncommutative cartesian coordinates.
Hence, the SO(5)-scalar R2 = X iX i is no longer central, but its
spectrum is still very close to 1 only if N � n1, n2;
if n1 = n2 = 0 then R2 ≡ 1, and one recovers the fuzzy 4-sphere
[Grosse, Klimcik, Presnajder 1996].

In our approach R2 ' 1 is guaranteed by adopting
x i = g(L2)X ig(L2) rather than X i as noncommutative cartesian
coordinates, R2 = x ix i .
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