Higgs (SM and BSM) in ATLAS and CMS

Yann Coadou on behalf of the ATLAS and CMS collaborations

CPPM Marseille

Workshop on the Standard Model and Beyond Corfu, Greece, 4 September 2017

Corfu Summer Institute 17th Hellen: School and Workshops on Elementary Earliste Physics and Grout Corfu. Grouts 201

- 4 July 2012: ATLAS & CMS announce discovery of Higgs-like particle
 - ▶ Phys.Lett. B716 (2012) 1-29 and
 ▶ Phys.Lett. B716 (2012) 20 (1)
 - >7300 citations each
- March 2013: several papers on properties
 - new particle IS "a Higgs boson"
- December 2013: Nobel Prize in physics to Englert&Higgs, "... which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider"

Higgs boson production @ LHC

Higgs boson decay

- $b\bar{b}$, $\tau\tau$: high yield, low S/B, coupling to fermions
- WW: high yield, low mass resolution
- $ZZ(4\ell)$, $\gamma\gamma$: high mass resolution (full decay reconstruction)
- μμ: very small yield, 2nd generation fermions
- Most Higgs boson decays accessible at LHC
- All predictions fixed once Higgs mass known
- Deviations \Rightarrow clear sign of new physics!

Run 1 legacy

- Mass determined to 0.2% precision (stats limited) PRL114(2015)191803
- Observation of gluon-gluon fusion and vector boson fusion
- Observation of bosonic decays: $H \rightarrow ZZ$, $H \rightarrow \gamma\gamma$, $H \rightarrow WW$
- Coupling to fermions not fully established:
 - $H \rightarrow \tau \tau$ observed via ATLAS+CMS combination
 - $H \rightarrow b\bar{b}$ below evidence
 - $t\bar{t}H$ not observed
- Production and decay rates measured to 20–60%
- Tests of spin/parity favour spin-0, CP-even

\Rightarrow Very SM-like, need more precision

• Shown today: only new 2015+2016 Run 2 results

▶ arXiv:1706.09936

- Uncertainty on μ reduced by factor ${\sim}2$ with respect to Run 1
- Starting to approach SM theory uncertainty

🎽 Discovery channel: $H o \gamma \gamma$

 $\widehat{\mu} = 1.16^{+0.15}_{-0.14} = 1.16^{+0.11}_{-0.10} \text{ (stat.)} \stackrel{+0.09}{_{-0.08}} \overline{\text{(syst.)}} \stackrel{+0.06}{_{-0.05}} \overline{\text{(theo.)}}$

 $\mu = 0.99 \stackrel{+0.14}{_{-0.14}} = 0.99 \stackrel{+0.12}{_{-0.11}} (\text{stat.}) \stackrel{+0.06}{_{-0.05}} (\text{exp.}) \stackrel{+0.06}{_{-0.05}} (\text{theory})$

- Precision similar to ZZ despite lower S/B
- ullet Uncertainty on μ also reduced by factor ${\sim}2$ with respect to Run 1

Syst.

126.5 m, [GeV]

125.11±0.42 (±0.21±0.36) GeV

124.98 \pm 0.28 (\pm 0.19 \pm 0.21) GeV

126

ATLAS:

- $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$ comb.
- Individual masses compatible to 0.4σ ۲
- e/μ sub-channels also compatible ۰
- $H \rightarrow \gamma \gamma$ systematically limited

CMS:

- $H \rightarrow ZZ$ only
- 3D fit to $m_{4\ell}$, mass uncertainty and ZZ background discriminator
- Kinematic fit to leading lepton pair 4-momenta $\Rightarrow ~~10\%$ uncertainty improvement
- Single channel measurement competitive with ATLAS+CMS Run 1 combination

 $H \rightarrow \gamma \gamma$

124

Combined

124.5

$125.26 \pm 0.20 \text{ (stat)} \pm 0.08 \text{ (syst)} \text{GeV}$

125.5

$arphi \hspace{0.1 cm} H \to \gamma \gamma + H o ZZ$ combination: inclusive XS $_{oldsymbol{a}}$

- Good agreement between SM prediction 55.6^{+2.4}_{-3.4} pb and observed total cross section 57.0^{+6.0}_{-5.9} (stat.) ^{+4.0}_{-3.3} (syst.) pb
- \bullet Uncertainties: experimental ${\sim}12\%,$ theory ${\sim}5\%$
- Run 1 \Rightarrow Run 2: theory precision improved by factor 2 (ggH @ N³LO QCD + PDF4LHC \checkmark YR4 arXiv:1610.07922)

Cross section by production mode

- Shown: signal strength $\mu_i = \frac{\sigma_i}{(\sigma_i)_{SM}}$ (assuming SM branching fractions)
- $\bullet~ggF$ very consistent with SM
- VBF excess in ATLAS (both $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$): SM compatibility p-value 5%

Simplified template cross sections (STXS)

- Extend signal strength approach, splitting phase space into mutually exclusive "production bins", with $|y_H| < 2.5$
- Agreement between ATLAS, CMS and theorists on bin choices:
 - maximise experimental sensitivity
 - minimise dependence on theory assumptions

 \Rightarrow use experimental categories to measure cross sections in production bins

Stage $0^{(+)}$:

 $H \rightarrow ZZ^* \rightarrow 4\ell$ (* arXiv:1706.09936)

40.77 expected events

9.69 expected events

4 expected events

08 expected events

Untagged

VBF-1jet

tagged

VBF-2iet

tagged

VH-hadronic

tagged

35.9 fb⁻¹ (13 TeV)

aaH

VBF WH. W→X

WH W→/v

 $ZH, Z \rightarrow X$

ZH. Z→2/

trH tr→0/+X

ttH. tt→1/+X

ttH. tt→2/+X

• Merge categories that are statistically limited

ATLAS-CONF-2017-047

$^{\circ}$ STXS $H ightarrow \gamma \gamma + H ightarrow ZZ$

- MVA to separate production modes
- Both absolute and normalised to SM prediction
- Small excess seen in 2-jet events (both $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$)

Simplified template cross section measurements

- Targeting ggF, with $H\to\gamma\gamma$ and $H\to ZZ$
- Njets: sensitive to production mode composition and gluon emission
- More and more differential variables being investigated: p_T of leading associated jet, $|y_{\gamma\gamma}|$, $|\Delta y_{\gamma\gamma}|$, $|\cos \theta^*|$, $m_{\ell^3 \ell^4}$, ...

Large p_{T} sensitive to:

- perturbative QCD predictions
- new heavy particles coupling to the Higgs boson
- modifications of top Yukawa coupling

$\mathbf{\mathcal{V}}$ Differential measurements: Higgs boson p_{T}

Large p_{T} sensitive to:

- perturbative QCD predictions
- new heavy particles coupling to the Higgs boson
- modifications of top Yukawa coupling

WHINNI OPSI + XI

100 150 200

p_(H) (GeV)

99-H (POWHEG) + XH XH = VBF + VH + ttH (POWHEG) (LHC HXSWG YR4. m =125.09 GeV

• ATLAS-CONF-2017-045

ATLAS-CONF-2017-032

▶ YR3 arXiv:1307.1347

$$\sigma(i \to H \to f) = \kappa_i^2 \sigma_i^{\rm SM} \frac{\kappa_f^2 \Gamma_f^{\rm SM}}{\kappa_H^2 \Gamma_H^{\rm SM}}$$

- κ 's computed at LO in SM
- κ's other than those varied fixed to 1 (=SM)
- κ_f vs. κ_V: loops resolved (assume SM structure only)
- $\kappa_f < 0$ excluded at more than 95% CL
- κ_g vs. κ_γ : capture extra loop contributions \Rightarrow could see new physics in loops
- Well compatible with SM

ATLAS-CONF-2017-047 $H \rightarrow \gamma \gamma + H \rightarrow ZZ$

CPPM

- $H
 ightarrow b ar{b}$ dominant Higgs boson decay mode (58%)
- Best accessible via $VH \rightarrow \ell \ell' b \bar{b}$ with V = W, Z, $\ell = e, \mu, \nu \Rightarrow 0/1/2$ charged leptons
- Tevatron's most sensitive channel (2.8 σ) at 125 GeV PRL109(2012)071804
- Run 1: ATLAS+CMS 2.6σ (3.7σ expected) JHEP08(2016)045
- Just luminosity increase not enough: already systematics limited ⇒ Hard work on objects, mass reconstruction, bkgd understanding, pileup handling, MVA (BDT in both ATLAS and CMS)

 \bigotimes VH($\rightarrow b\bar{b}$) validation: VZ($\rightarrow b\bar{b}$)

• Validation of performance and systematics understanding on $VZ(\rightarrow b\bar{b})$ with dedicated BDT

- signal strength: $\mu_{VZ} = 1.02 \pm 0.22$
- significance: 5.0σ (4.9 σ exp)
- Yann Coadou (CPPM) Higgs (SM and BSM) in ATLAS and CMS

- signal strength: $\mu_{VZ} = 1.11^{+0.12}_{-0.11}(\text{stat.})^{+0.22}_{-0.19}(\text{syst.})$
- significance: 5.8σ (5.3σ exp)
 Corfu2017, 4/09/17

19/41

$\bigvee \bigvee VH(\rightarrow b\bar{b})$ evidence

Run 2:

- ATLAS: 3.5σ (3.0σ exp)
- CMS: 3.3σ (2.8σ exp)
- Run 1 + Run 2:
 - ATLAS: 3.6σ (4.0σ exp) $\mu = 0.90 \pm 0.18(\text{stat.})^{+0.21}_{-0.19}(\text{syst.})^{\oplus 1.5}_{20}$
 - CMS: 3.8σ (3.8σ exp) $\mu = 1.06^{+0.31}_{-0.29}$

▶ arXiv:1708.03299

- ATLAS: 3.5σ (3.0σ exp)
- CMS: 3.3σ (2.8σ exp)
- Run 1 + Run 2:
 - ATLAS: 3.6σ (4.0σ exp) $\mu = 0.90 \pm 0.18(\text{stat.})^{+0.21}_{-0.19}(\text{syst.})^{\oplus}$
 - CMS: 3.8σ (3.8σ exp) $\mu = 1.06^{+0.31}_{-0.29}$

▶ arXiv:1708.03299

Inclusive boosted H ightarrow bb

• Look for ggF with $H \rightarrow b\bar{b}$ in single large jet (double *b*-tagged), recoiling against high- p_{T} ISR jet

otal Background

- $p_{T}(H) > 450$ GeV (background rejection, more sensitive to new physics)
- First observation of boosted $Z \rightarrow bb$ 35.9 fb⁻¹ (13 TeV)

Preliminary double-b tag > 0.5

Events / 7 GeV 8000

7000

6000

5000

4000

3000

2000

1000

CMS Preliminary

3

2.5

2

1.5

0.5

∆ log L(data)

N

14

12

10

8

6

4

35.9 fb⁻¹ (13 TeV)

21/41

- Run 1: observation only via ATLAS+CMS combination JHEP08(2016)045
- Use $e\mu$, $e\tau_{had}$, $\mu\tau_{had}$, $\tau_{had}\tau_{had}$ decays, categorised in 0-jet, VBF (at least two jets with high m_{jj} , $\Delta\eta_{jj}$) and boosted (the rest)
- First single experiment observation of $H \to \tau \tau$

$\sum \sum Looking for t \overline{t} H$

- Run 1 ATLAS+CMS combination: $\mu = 2.3^{+0.7}_{-0.6}$, 4.4 σ (2.0 σ expected)
- Already several single analyses around 2σ expected sensitivity
- More full Run 2 results expected soon
- Evidence in $ML/H \rightarrow \gamma \gamma$. Observation of $t\bar{t}H$ just around the corner?

	ATLAS		CMS		
13 fb ⁻¹ 36 fb ⁻¹	μ	obs (exp)	μ	obs (exp)	
$H ightarrow bar{b}$	$2.1^{+1.0}_{-0.9}$	2.3σ (1.2 σ)	-0.2 ± 0.8	$<$ 0 σ	
Multilepton	$2.5^{+1.3}_{-1.1}$	2.2σ (1.3σ)	1.5 ± 0.5	3.3σ (2.5σ)	
$ au_{had} + X$			$0.7^{+0.6}_{-0.5}$	$1.4\sigma (1.8\sigma)$	
$H \to \gamma \gamma$	0.5 ± 0.6	$1.0\sigma (1.8\sigma)$	$2.2^{+0.9}_{-0.8}$	3.3σ (1.5σ)	
$H \rightarrow ZZ$	< 6.9@95% CL	\sim 0 σ	$0.0^{+1.2}_{-0.0}$	$<$ 0 σ	
• ATLAS $H \rightarrow \gamma \gamma$ • ATLAS-CONF-2017-045 • CMS $t\bar{t}H\tau$ • CMS-PAS-HIG-17-003					
• CMS $H \rightarrow \gamma \gamma$ • CMS-PAS-HIG-16-040 • CMS $t\bar{t}H$ ML • CMS-PAS-HIG-17-004					
• ATLAS $H \rightarrow ZZ$ • ATLAS-CONF-2017-043 • CMS tH • CMS-PAS-HIG-17-005					
• CMS $H \rightarrow ZZ$	▶ arXiv:1706.09936	(see C. Wang fo	or ATLAS 3 ℓ)	
nn Coadou (CPPM) — Higg	s (SM and BSM) in ATLAS a	and CMS	Corfu201	7, 4/09/17 23/41	

Because one SM Higgs boson is not enough!

BSM Higgs scenarios

- Decays
 - From Run 1, branching fraction to BSM decays only constrained to < 34% at 95% CL (assuming $\kappa_V \leq 1$)
 - If new particles too heavy, deviations in Higgs decay properties may be only place showing signs of new physics
 - Could have enhanced decay rates to known modes, decay in forbidden channels (LFV), to BSM particles (undetected dark matter, light scalars, ...)
 - Additional Higgs particles
 - only one Higgs doublet (SM) or more complex Higgs sector?
 - additional singlet: h, H
 - two Higgs doublet models (2HDM): h, H, A, H^{\pm}
 - two doublets + singlet model
 - SM doublet + triplet models: $H^{\pm\pm}$
 - Heavy resonances decaying to SM Higgs boson(s)

JHEP08(2016)045

$\underline{\mathsf{BSM}\ A/H} \to \tau\tau$

- In MSSM (and all 2HDM type II), enhanced heavy Higgs couplings to down-type fermions (τ, b) for large tan β
- (τ , b) for large tan β Target ggF (bbH) with $\frac{1}{2}$ *b*-jet veto (*b*-tag)

- Use $\tau_{lep}\tau_{had}$ and $\tau_{had} \tau_{had}$ channels
 - Measured in several scenarios (hMSSM, m_{μ}^{mod+})

Yann Coadou (CPPM) — Higgs (SM and BSM) in ATLAS and CMS

Data

Multije

 $\Box Z/\gamma^* \rightarrow \tau \tau$

 $W \rightarrow \tau v$

Others

A+H (300

A+H (500

— A+H (800

W Uncertainty

Observed

-- Expected

± 1σ

 $\pm 2\sigma$

1500

m₄ [GeV]

Top

400 500

ATLAS 2015

1000

ATLAS

500

1000

10

Γ_X/m_X [%]

- During early Run 2, various high mass $\gamma\gamma$ excesses triggered high hopes for new physics
- Improved photon ID, calibration
- No serious excess in full dataset

 10^{5}

Yann Coadou (CPPM) — Higgs (SM and BSM) in ATLAS and CMS

1500

Corfu2017, 4/09/17

BSM $H \rightarrow ZZ$

- $H \rightarrow ZZ \rightarrow 4\ell/\ell\ell\nu\nu$ (ggF and VBF)
- Two local excesses around 240 and 700 GeV (3.6 σ local, 2.2 σ global) in 4 ℓ channel (700 GeV excluded by $\ell\ell\nu\nu$)
- Combined: mild excess around 700 GeV (2σ local, $< 1\sigma$ global)
- Interpreted in narrow and large width scenarios, 2HDM type I and II

Data

800 1000 120 m_{at} [GeV]

ZZ

ti+V. VVI

Zuiets th

TLAS Preliminary

vs = 13 TeV, 36.1 fb

 $\rightarrow ZZ \rightarrow UUU$

-enriched

10

10⁶

10

10⁻⁻

Singly/doubly charged Higgs bosons

- No full 2015+2016 statistics analyses yet for charged Higgs bosons
- Only recent publication: CMS VBF fermiophobic $H^{\pm} \rightarrow WZ$ with 15.2 fb⁻¹

▶ arXiv:1705.02942

- Doubly charged Higgs ATLAS-CONF-2017-• $H^{\pm\pm}H^{\mp\mp} \rightarrow \ell^+\ell^+\ell^-\ell^-$
 - $2/3/4\ell$ signal regions
 - No evidence of signal
 - Limits around 800 GeV, and still above 450 GeV with $Br(H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}) = 10\%$

- Analysed many final states
- With 36 fb⁻¹:
 - $b\bar{b}\ell\nu\ell\nu$ arXiv:1708.04188
 - bbττ arXiv:1707.02909
 bbγγ CMS-PAS-HIG-17-008
 - *bbbb* CMS-PAS-B2G-16-026
- Look for resonances

• And for SM non-resonant HH production:

σ/σ_{SM} 95% CL (exp)				
3	13	36 /fb	ATLAS	CMS
bĪ	θνι	,		< 79(89)
bł	σττ			< 30(29)
bł	$\gamma\gamma$		< 117(161)	< 19(17)
bł	bb		< 29(38)	< 342(308)
W	$W\gamma\gamma$	γ	< 747(386)	

BSM Higgs to invisible

- Higgs decay to undetected dark matter
- Monojet: ggF + extra jet
- Requires good understanding of missing transverse momentum

35.9 fb⁻¹ (13 TeV)

Z(vv)+iets

WW/W7/77

CMS Preliminary

monoiet

Anomalous couplings: flavour violation

Lepton flavour violation

- FCNC highly suppressed in SM, bounds on $\mu \rightarrow e\gamma$ or $\mu \rightarrow 3e$ but not on $H \rightarrow e\tau$ or $H \rightarrow \mu\tau$
- No excess found (8 TeV 2.4 σ excess excluded)
- Obs. (exp.) upper limits: $B(H \rightarrow \mu \tau) < 0.25(0.25)\%$ and $B(H \rightarrow e \tau) < 0.61(0.37)\%$ at 95% CL

- Search for $t \to qH(\to \gamma\gamma)$
- Reconstruct $m_{\gamma\gamma j}$
- Limits: $< 2.2 \times 10^{-3}$ for $t \rightarrow cH$, $< 2.4 \times 10^{-3}$ for $t \rightarrow uH$

$\begin{array}{c} \text{CMSPetermary} & 35.0 \text{ b}^{-1} (13.74) \\ \hline \begin{array}{c} \hline \\ \hline \\ \hline \\ 10^{-2} \\ \hline \\ 10^{-4} \\ \hline \\ 10^{-3} \\ \hline 10^{-3} \\ \hline \\ 10^{-3} \\ \hline 10^{-3} \\ \hline 10^{-3}$

arXiv:1707.01404

Conclusions

- _____
- Higgs physics did not stop with 2012 discovery
- Particle very much SM Higgs-like
- New measurements with full 2015+2016 dataset (\sim 36 fb⁻¹ per experiment) well under way
 - increased statistics
 - improved analysis techniques
 - better theory calculations and generators
 - \Rightarrow most results now surpass Run 1
- Very rich research programme to look for possible deviations from SM predictions:
 - precision measurements of production cross sections and branching fractions
 - search for new Higgs bosons
 - Higgs bosons in new heavy resonance decays
- Many measurements still limited by end of Run 2: see HL-LHC prospects by L. Iconomidou-Fayard (ATLAS) and V. Rekovic (CMS)
- https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults
- https://twiki.cern.ch/twiki/bin/view/AtlasPublic/Winter201713TeV
- http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG/
- http://cms-results.web.cern.ch/cms-results/public-results/publications/HIG

Backup

👺 Higgs boson width

- Direct measurement with on-shell production, $105 < m_{4\ell} < 140$ GeV
- No assumption on BSM physics
- $\Gamma_H < 1.10$ GeV at 95% CL
- Limited by 4ℓ mass resolution (about 1 GeV)

• Match experimental categories with production bins

ex: $H \rightarrow ZZ^* \rightarrow 4\ell$ (Atlas-Conf-2017-043)

Rare processes: $H ightarrow \mu \mu$

- Probe second generation fermion coupling
- Difficulty to see it: already sign that Higgs coupling to fermions correlated with mass
- Search for narrow $m_{\mu\mu}$ mass peak over continuum
- BDT to define two VBF regions and one ggF (split in six from $\mu\mu \eta$ and $p_{\rm T}$)
- Completely driven by statistics (syst: 2.2%)

		95% CL limit	
	μ	Obs.	Exp.
Run 2	-0.1 ± 1.5	$\mu <$ 3.0	$\mu <$ 3.1
Run 1&2	-0.1 ± 1.4	$\mu < 2.8$	$\mu <$ 2.9

- ATLAS+CMS sensitivity $\sim 2\sigma$ by end of Run 2
- Other rare processes: $H \to Z\gamma$ arXiv:1708.00212 $H \to \rho\gamma$ and $H \to \phi\gamma$ • ATLAS-CONF-2017-057

ATLAS √s = 13 TeV, 36.1 fb⁻¹

- No evidence for SM $H \rightarrow Z\gamma$ yet
- Upper limit: $\mu < 6.6$ @ 95% CL
- No excess at high mass

Events / 20 GeV 10² 10²

10

 10^{-1}

10-2

 Data Background fit

BSM $H \rightarrow WW$

- $H \rightarrow WW \rightarrow \ell \nu qq$
- VBF and non-VBF selections
- Boosted (one large-R jet) and resolved (two small-R jets) analyses
- No excess
- Interpreted in narrow width scenario

Entries / 0.075 TeV

10

ATLAS Preliminary

vs = 13 TeV. 36.1fb WW Signal Region (HP)

VBF Category

▶ ATLAS-CONF-2017-051

Data

W+iets

Single t

Dibosons Z+iets Post-fit uncertainty

HVT VBF Model Ź 1200 GeV (×500)

$\mathsf{BSM}\ X\to HV$

- $H \rightarrow b\bar{b}$
- $V \to \ell \ell, \ell \nu, \nu \nu$ ATLAS-CONF-2017-055 and $V \to q \bar{q}'$ arXiv:1707.06958
- Resolved ($V \rightarrow \ell \ell$ only) and boosted (both) analyses
- 3.3 σ local excess (2.2 σ global) in qq analysis

Anomalous HVV couplings

- Use both production and decay information about coupling
- Based on ME discriminators, including angular observables
- Use $H \rightarrow 4\ell$ in VBF, VH (with at least two jets) and ggF (not-VBF, not-VH) modes
- Fractional cross sections and phases:

$$f_{ai} = |a_i|^2 \sigma_i / \sum |a_j|^2 \sigma_j$$
, and $\phi_{ai} = \arg(a_i / a_1)$

No deviation from SM

Parameter	Observed	Expected
$f_{a3}\cos(\phi_{a3})$	$0.00^{+0.26}_{-0.09} \ [-0.38, 0.46]$	$0.000^{+0.010}_{-0.010} \ [-0.25, 0.25]$
$f_{a2}\cos(\phi_{a2})$	$0.01^{+0.12}_{-0.02} \ [-0.04, 0.43]$	$0.000^{+0.009}_{-0.008} \ [-0.06, 0.19]$
$f_{\Lambda 1} \cos(\phi_{\Lambda 1})$	$0.02^{+0.08}_{-0.06} \ [-0.49, 0.18]$	$0.000^{+0.003}_{-0.002} \ [-0.60, 0.12]$
$f_{\Lambda 1}^{Z\gamma}\cos(\phi_{\Lambda 1}^{Z\gamma})$	$0.26^{+0.30}_{-0.35}$ [-0.40, 0.79]	$0.000^{+0.019}_{-0.022}$ [-0.37, 0.71]

 See also

 ATLAS-CONF-2017-032
 for limits on contact interactions within framework of pseudo-observables
 EPJC75(2015)341

 Yann Coadou (CPPM) — Higgs (SM and BSM) in ATLAS and CMS