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PLAN

@ What's UG?
e UG at one-loop: The 't Hooft and Veltman computation counterpart

e Tree level Scattering Amplitudes

© The (9—2), factor

© The quartic and Yukawa beta functions

@ The UV behaviour of some S-matrix elements
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What’'s UG?

@ What's Unimodular Gravity (UG)?

It's a gravity theory with action
Sug = _M,g_z/ d"x\/-9 (R[guv] + Lmatt[‘l’iaguv])
BUT with the space of metrics restricted by the condition

g=—1
ie, det g,y is not a dynamical variable!!!!

Hence, additions of the type
Ao / an\/ *Q

are physically irrelevant.

Do Unimodular Gravity and General Relativity 25 September 2017 3/34



UG Eq. of Motion

@ EM = Trace-free equations (TFE)(see book by A. Zee)

1 . _ 1_.,
Ruv — ﬁF”guv = Mz"(Tuy — n T9uv)

obtained by variations of Syg, with momentarily unconstrained
9uv> 9uv — Guv, under traceless variations

0guv = unconstrained variation

@ Now, the 2nd Bianchi identity V,R*¥ = 1 V'R and TFE imply
Vu((n—2)R+2M3"T)=0 = (n—2)R+2M3 "T = -2nC

@ TFE and the previous consistency condition imply

1 _. o _
Ruv — éRguv —Cuv = M/% nTuv

ie, Einstein equations with a cosmological constant term but with g,/ 9 = —1.
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My motivation: Why Unimodular Gravity?

@ 1) Solves in a Wilsonian way the huge disparity between the QFT “prediction" for the
vacuum energy and the experimentally observed cosmological constant: Vacuum energy
is not seen by gravity. See
i) S. Weinberg, Rev. Mod. Phys. 61 (1989) 1
ii) G.F.R. Ellis, H. Van Elst, J. Murugan and J.P. Uzan, Class. Quantum Grav. 28(2011)22
5007
ii) G.F.R Ellis, Gen. Relativ. Gravit. (2014) 46, 1619.

In ii) there is a paragraph that runs thus

“What about experiments? The experimental predictions for the two theories [General Relativity and UG] are the same,
so0 no experiment can tell the difference between them, except for one fundamental feature: the EFE [Einstein’s field
equations](confirmed in the solar system and by binary pulsar measurements to high accuracy) together with QFT
prediction for the vacuum energy density (confirmed by Casimir force measurements) give the wrong answer by many
orders of magnitud; the TFE [UG] does not suffer this problem. In this respect, the TFE [UG] are strongly preferred by
experiment.”

in i), one can read
“In my view, the key question in deciding whether this [UG] is a plausible classical theory of gravitation is whether it can
be obtained as the classical limit of any physically satisfactory quantum theory of gravitation.

@ 2) When ordinary differential geometry is look at from the noncommutative geometry point
of view some kind of quantisation of the volume form seems (at least to me!) to occur. See
i) A. Chamseddine, A. Connes & V. Mukhanov, PRL 114 (2015) no.9, 091302
ii) J.M. Gracia-Bondia, “Notes on quantum gravity and noncommutative geometry",
Lect.Notes Phys. 807 (2010) 3-58
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Quantum Unimodular Gravity as a theory of gravitons:

free theory

@ Redundancies (ie, Gauge symmetries) of UG: Not Full Diff. but
Transverse Diff, since g = —1:

8", = Ve, +Vye, with Vyet =0

@ Redundancies enough to go from 9 mathematical d.o.fto 2
physical d.o.f:

+9 «+ euv(k) polarizations with e,y (k) = evu(k), ei(k)=0
—4 + k" eyy (k) = O(transversalityconditions)

—3 < euv(k) = euv(k) + kuev(k) + kveu(k), kue*(k)=0

+2 + 2 helicity states

@ Actually,J.J. Van der Bij, H. Van Dam and Y.J. NG (Physica 116A (1982)307 showed that
the UG free propagator in Minkowski space yields the propagation of gravitons (massless
helicity 2 particles) between two sources and that the amplitude of this process is the same
as in GR.
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Quantum Unimodular Gravity as a theory of gravitons:

free theory

@ Actually, as shown by E. Alvarez, D. Blas, J. Garriga & E. Verdaguer NPB 756 (2006) 148,
if one asks which quadratic actions on Minkowski of the general type

Squad = Z?:1 c; o0
o) =19, hyedthPe, 63 = —19P hpsd, HHO
0B = 19, hdy ht* 0®) = 19, ha*h

are invariant under linear transverse diff
8anshy, = dye, +dyey  with et =0
one ends up with only two choices, namely

e 1) Fierz-Pauli (corresponding to LDiff) and
e 2) Linear Unimodular Gravity (corresponding to TDiff )

@ Generalizes to curved space: C. Barcelo, R. Carballo-Rubio & L.J.Garay, PRD 89 (2014)
124019.
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UG at one-loop: The 't Hooft and Veltman computation

counterpart

@ A classic paper in quantum GR (one-loop): 't Hooft & Veltman
Ann.Inst.H.Poincare Phys.Theor. A20 (1974) 69-94

@ Another classic paper (two-loop) in quantum GR: Goroff &
Sagnotti Nucl.Phys. B266 (1986) 709-736

@ Carry out the analogous computations for UG and compare with
GR.

@ The 't Hooft and Veltman computation counterpart is technically
involved enough
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Quantum Unimodular Gravity: Interacting theory

@ Quantum Interacting theory defined by a path integral, a la BRST, over configuration space

of

e metric: g,y with § = —1, ghosts: ¢ with V#¢] =0, etc....
But, this is a constrained space which is not linear: Functional integration needs definition.
Our approach: solve the constraints in terms of unconstrained fields as follows:

~ 1 . .

® Guv =(—9) 7 Guv, With gy, unconstrained

o ¢ =(guv0—VuVy—Ru)c”, ¢, unconstrained
This way 2 new redundancies (gauge symmetries) are introduced, namely

e Weyl: guy — €? gy and

e agauge symmetry for the ghost: ¢, — V¢
We have ended with —what is called in the Batalin-Vilkovisky formalism parlance—
first-stage reducible gauge transformations:

e a whole cascade of ghosts and antighosts are to be introduced and
integrated over. SEE NEXT FRAME
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Quantum Unimodular Gravity: Batalin-Vilkovisky field

content

Notation: (field)(™™) | n = Grassmann no., m = Ghost number no.

@ Unimodular Background metric Qﬁ%o) = (fg)*% Juv and quantum gravitational field hLOV'O):

Juv = Guv + (7@)% Buv
@ Transverse Diffeomorphisms
@ Ghost fields: c,i ) (from TDiff of huv ), $(02) (from transversality of cl)
@ Antighosts and auxiliary fields couples
o (bﬁ””. fﬁo‘o)) to gauge-fix the symmetry parametrized by cflm)
° (&((()02'?,71:(1-*1)) and (¢'(%9) /(1) to gauge-fix the symmetry parametrized by
$©
@ Weyl transformations
@ Ghost fields: c(") (from Weyl of h5")
@ Antighosts and auxiliary fields couple
@ (b1 £(0.0)) to gauge-fix Weyl
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Background BRST transformations

@ The FULL BRST operator

S=Sp+Sy

acting of the fields is introduced, so that
@ s3,=0,s7 =0and {sp,sw} =0
@ s, sSp and sy all have Grassmann no. = 1 and ghost no = 1.

@ sp, coming form the TDiff, and sy coming from Weyl
transformations, act on the fields as follows:
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Background BRST transformations definition

field H Sp Sw
qu 0 0
huy Vuel +Vvel +¢PTVphuy +VucPThyy +VyePThyy | 26D (Guy + huy)
ORI (@) (PTV,eTY) + V4902 0
$(02) 0 0
(1.-1) (0,0)
bu(0 0 fu 0
fu 0 0
2(0.-2) 71 0
7= 0 0
¢/ (0.0) /(1) 0
71?/(1‘1) 0 0
o) CTPVPC(U) 0
b(1A—1) chVpb(1.—1) f(0.0)
f(0.0) CTpr f(OAO) 0

where (Q")" denotes the inverse of the operator Quy = Guv — Ruv,

V. and Ry, defined with respect to gy
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Quantum UG: The DeWitt effective action

@ The DeWitt effective action W([g,]

eW1gw] — /@huvﬂcu Dby D, TEDTIC I DcTbDf  eSucluvthinl+iSq

Sualguv] = —MB 2 [ d"X R[(~g) 7 guv]
St = [ d"x s(X1p+ Xw),

@ Xyp and Xy are to be chosen so that the term quadratic in the
quantum fields is the closest to a minimal —the large energy
behaviour is of Laplacian (to some power) type— differential
operator: See JHEP 1508 (2015) 078.

@ Recall that W[g,y] is gauge-invariant when g, satisfies the
classical equations of motion (ie, it's on-shell)
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Quantum UG: Nonminimal Operator

The operator involving hyy, f and ¢’ is non-minimal. We need to use
the Barvinsky & Vilkovisky technique (A. O. Barvinsky and

G. A. Vilkovisky, Phys. Rept. 119, 1 (1985)) to compute it.

The non minimal piece can be written

S= /an \UAFAB\UB
haY
c
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Barvinsky & Vilkovisky method

The main idea is to introduce a parameter A in the non-minimal part of
the operator

Fas(VIL) = 1as0+ AJb VoV + Mag = Dag(VIA) + Mag 0 <A <1
so the effective action can be defined as

dF(A) A, -,
i’ G4 )]

w(1) = W(O)—;/O1 dA' Tr

And if we find the inverse of F in the sense
F(V)K(V)=0"+ M(V)

we can expand the Green function as a power series in M
A~ .. N I
_ _1\P
G=-K) (-1) M,,Dm(p+1) + ...
p=0
so the trace can be computed with some effort and help from
Mathematica’s xAct. Indeed,—
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Quantum UG: An involved trace
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Quantum UG: logarithmic UV divergencies

By doing this we find (the UV divergent part of) the off-shell effective
action

11 119 va 1 359 y o1 3
W= s — /d“x (wﬂwﬁﬁﬂ By <W - %) R AN + (227 ?> R2>
We can get the on-shell result using the equations of motion of the

background field
1
Ruv — ZRg“V =0
1
Ru R =4 R°
R = constant

and
Es = RyvepR**P — 4R, R*Y + R?
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Quantum UG: logaritmic On-shell UV divergencies

The one loop on-shell DeWitt effective action reads

1 1 119 83
on-shell _ 4 uvpo _ 2| _
Wee 167r2n—4/dx<90 Auvpofl 120R>

11, /119 83
_16n2n4/dx<90E4 120R>

This is physically irrelevant, in contrast with GR with a Cosmological
Constant term (Christensen-Duff, NPB 170[FSI] (1980) 480)

1 53 _ 522
GR 4, (93 o 022 o
We 16712(n4)/ Vigld'x <45 ST A)
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Tree level Scattering Amplitudes |

Tree level scattering amplitudes, in UG, are constructed from the
unimodular gravity propagator

i i P —n+2 2i [ kyksm kykym
P;'ljﬁpc:ﬁ(nucnw‘*‘nupnva) o m—nNre < pRotluy | Kukv pc)

TR a@m(n—2) WMo T (T ga K
2in kykykoko

n-2 k6
and 3-point, 4-point etc vertices,

uv.po,ap pv,po,aB.ni
v %
(p1,p2,p3) (p1,p2,p3,p4) *

which are daunting
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Tree level Scattering Amplitudes Il

(2+n)(p1 PP POtV naB e gvo N <2+N) (py.pp)n %P VP
- 2n

n2 2n3

uv.po.af _ i,
V(P1-P2«P3) = IK,/{ -

2”ﬁvnpcpmpa

+ - 1 P2 +%nmrrlvap§1p§7

N 1% nve ol ph N 2nPHyPoplpy
n n

(24n)nv oo of

2n2

2n B ypoplt
n2

—2nPonvPpfpl —n*vnhepl pf

n
oY 2”apnﬁvpcpp
2y v 2 + (py.p2)n“Y nPonHe

.#: Symmetrization over (py,uv); (p2.po); (P3,aB); p4.nA)and uv, po, ap, ni
2+n) (p3-p4)g"¥ gP % g% g 2+n>(p3vp4)g*“’_q“ﬁg"’lg"C7

Vuv.pcr.rxﬁ.nl _i2

(p1.2.p3,p4) At P
(2+ﬂ)(P3.p4)9“’7gP“9“9“/‘ <2+n)(p3.p4>guvgpngaﬁgvl (2+n)(ps,p4)gupgaﬁgv1cgvA
+ 2n N B = + 2
- (ps-p4)9“‘;e:‘2’“9“”7gﬁ N (p3.p4)9“vi‘”7g“"g 1 ghn gao B py P
G L QR Y Gl L .
+w fg#“gﬂvgﬁlpgpffZgwgppf,Mngf _ (2+,,>g“v29"‘:gmpgpg
n

aNo gV, A VP A po P ac Ay P
9" gﬁp§p4 Pl 92" 3Ry 599 g” PP}
n

a oV ph
gHP g*P gno py p}
n

gHVgPn gal oS pﬁ ghn gpagv). pcpﬁ
+Zgungp/lgavpg'p£_2 5 3% o > 374 +zgp.pg(z)tgncpé/pﬁ_2

gHvgPngaBpgph  ghvgpoganpkpf  guvgem gaop of ghP 9@ Vo ph pff
42 34 + o 3M4 = 374 +gypg(xvgn6p§p?7 — 374
_ghvgPogPplpl  ghPg*Pgvoplpl  ghPg®ogvBplpl  ghVgPegoPplpk
3 + 2 2 n +2 2

. . Hp gan gvo gBA
— 3 (P3-pa)g"" gP* g*' gOF — (p3.ps)g"P g%¥ g1 gt + W}
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Tree level Scattering Amplitudes Il

@ Can we use modern on-shell techniques to compute tree level
scattering amplitudes?
Not with our UG propagator, since it has higher order poles in the
momentum. Then

@ Is there a gauge (Lorentz covariant) in which the propagator has a
simple pole?
No, if we are to reproduce Newton’s law in the non relativistic limit
(See Eur.Phys.J. C76 (2016) no.10, 554)—> Dead End

@ To carry out a non trivial check we computed (with the help of
Mathematica and FORM) the first nontrivial MHV amplitudes

/(17,27;3%,4%),  /(1727;3%,47 5%)

and verified that they agree the corresponding amplitudes in
GENERAL RELATIVITY.
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Tree level Scattering Amplitudes IV

To give you a flavour of the lengthy computations one has to carry out,
let us list the type diagrams to be worked out

4 0;uMJf

— et

Y»r.rmnk
B (r,27 8% 57
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Tree level Scattering Amplitudes V

9(17,27:8+4* 5%) = -l o onh o)

_ iK% (er.p2)?(en.83)? (ea-P2)?(e5.P3)° K3 (e1.P2)?(e2.83)° (£4.P3)? (e5.P2)°
(P1+P2)?(Pa-+ps)? (P +p2)?(Pa+ps)?

K3 (e1.p2)?(e2-64)? (€3-P2)?(e5.03)° _ 2iK3(e1.P2)?(€2-24)% (€5-P2)?(€5.P2) (€5-P3)
(P1+p2)?(patps)? (p1+p2)?(pa-+ps)?

+ 2ix3(e1.P2)?(€2.€3) (£2.24) (£3.P2) (€4.P2) (e5.P2) (€5.P3) _ 2iK>(&1.P2)?(€2.23)(€2-€4)(€3.P2)(£4.P3) (€5.P2) (€5.Pa)
(P1+P2)2(Pa+ps)? (P1+p2)2(Pa+ps)?

+2iK3(€1 P2)?(£2-€3)° (£4.P2) (4-P3) (€5.P2) (€5-P3) + 2ix°(&1.P2)? (€2-€3)(€2-€4) (€3.P2) (€4.P2) (€5.P3)°
(p1+p2)2(Pa+ps)? (P1+P2)2(pa+ps)?

o 2”('3(81 P2 )2 (62.83)(82.84)(83.p2)(84.p3)(£5.p2 )2
(P1-+p2)?(Pa-+ps)?
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Lepton anomalous magnetic moment |

@ Another classic computation in GR+Matter is Gravitational
contribution to the (g-2) factor of leptons’s: Berends & Gastmans
PLB 55 (1975) 311

@ The relevant part of QED coupled to UG reads

sQED_fZ/d XFy F“"+/d (ig - Afm)wfg'/d”xT’”f)varO(l@).
hp.v = hyy — *hp Nuv

THY = L 3+ TH)y— R0 4y TRyt Y PPV 4 L Fop FOPAY
e

SU(FHAY 7V Ay

\N

hyy is the graviton field

@ FOR UG, unlike for GR, T*¥ couples to f;,w, NOT to hy,!!!
@ We need

GR
(s (K)o (—K)) = Ao (K) + Buvpo (k)
(GR) B
Byuvpo(k) = 2k2 ( NueMvp + MupTve = 7= 2”#\/%6)7
Auvpcr(k)z 2i Kukvnpo+koksnuv 2in kﬂkvkpko-.

2Ry 2 k)
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Lepton anomalous magnetic moment |l

@ The UG contributions to the (g — 2), factor are given by

(g-2)Y¢ = 2m?®  lim Fg(q—z).
! q2/m2—0- m2)’

where F» <,‘777—2> is obtained from the structures of the form

ic*Pqp
2m

4 (j‘!@i(:f N9 A4 Y-
3 ( ’
p ¢ S ?
¢ 5 /

, .
~iem?k R (L) u(p) u(p), oM =[],

which occur in

53 3
F(;; \®
1
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Lepton anomalous magnetic moment Il

@ The dn‘ference between the GR and UG contributions to the
(g —2); coming from the prewous dlagrams read

Contribution from the diagram in fig. 1

. mPK2 A 1 1 m?

—le—g ﬁ@[z( Y- |“( )+3)}D(P) pU(P)
Contribution from the diagrams in fig. 2:
2 -2 2
o 2 s O () 1 9)]uE) T ufp)
Contribution from the diagrams in flg. 3:
2.2 2 i
io e 2 ez 4L () +9)]a(e) T u(p)

@ EACH CONTRIBUTION IS UV DIVERGENT, BUT THE SUM OF
ALL OF THEM VANISHES!!

Do Unimodular Gravity and General Relativity 25 September 2017 26 /34



Lepton anomalous magnetic moment |V

@ CONCLUSION:
@ GR and UG YIELD the SAME CONTRIBUTION to the (g —2),
FACTOR(at least in DIM REG and DIM RED)

@ This result is surprising since the (g — 2), gravitational contribution
is not an OBSERVABLE: the counterterm

/d“ () g W) Fun ()

can be added to the bare action —we are dealing with a
nonrenormalizable theory.
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The quartic and Yukawa beta functions |

@ A FACT: In peturbatively renormalizable field theories the coupling constant beta functions
have invaluable physical information.

@ In Phys.Rev.Lett. 104 (2010) 081301, the GR corrections to the beta functions of the
quartic, A and Yukawa, g couplings was computed in the MS scheme in the de Donder

gauge:
1
GR _ GR _ 2l me 2
g _*472 meA. P 167r2 {mdé]*m‘”{q”
my = mass of the Scalar, my = mass of the fermion

@ |Interesting results due to the NEGATIVE value both of them in the SM case, or so it was
thought!!!
@ So, we decided to carry out the very same type of computations in the UG case and found

1 3
UG _ UG _ 2 a2
FZ =0 Bg” = qgp kMg

@ HENCE, ONE IS TEMPTED TO CONCLUDE THAT GR # UG AT THE QUANTUM LEVEL
@ WRONG CONCLUSION!!!
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The quartic and Yukawa beta functions Il

@ INDEED: The beta functions defined as in Phys.Rev.Lett. 104
(2010) 081301( ie, by a textbook’s standard MULTIPLICATIVE
renormalization) lack intrinsic physical meaning, for they turn out
to be gauge dependent

@ We have obtained —for GR— that for a generalised de Donder

gauge
/.an a(al-lhuv — %&,h)Z’
one has
BER_L;,Tz 2’”3(21”‘)1 85
B5° =t {milg - (g +o) [+ mb[-1- (3 + o) 5}
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The quartic and Yukawa beta functions IlI

e ..WHAT'S MORE

@ By introducing a NONMULTIPLICATIVE (but local) MS WAVE FUNCTION
RENORMALIZATION (as did, in the YM case, J.Ellis & N. Mavromatos Phys.Lett. B711
(2012) 139)

Q0 =1"Z,2,'2,"%9. 2y, =1+ 62y.2, =1+52,,
;
do=¢+ §5Z¢¢a
1 1 1
Yy =W+ éazw+ S K2mZ oW + §b1 KEmE W, my, = (14 8Zm, )My,
Ty— Ut %azwm %31 K28, o + %m K2mE g,
m% = (1 +62mw)m¢4

one obtains that - e
ﬁg =0= ﬁg

@ SO THAT BSR and BYG have no intrinsic physical meaning.
g g

@ Analogous analysis for B3R and BJF. See PLB 773 (2017) 585.

@ In this regard there is no disagreement between GR and UG (ie, both contributions to g4
and f3; can be set to zero by nonmultiplicative MS field renormalizations), but this does not
settle the question of the physical equivalence between GR and UG coupled to the A¢*
and Yukawa theories.

@ Similar to what happens in GR w.r.t the gauge couplings: J. Ellis &N. Mavromatos
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The UV behaviour of S-matrix elements |

@ To check whether UV divergent behaviour of the GR contributions
to the S-matrix elements of the 2¢* and Yukawa theory agree with
those of UG, we decided to compute such behaviour for the
scattering processes

PHo0+0 & VYU UL,

at one-loop

@ After a lengthy computation we have shown that the GR and UG
contributions agree, although this agreement is achieved after
summing over all Feynman diagrams.
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The UV behaviour of S-matrix elements I

@ The one-loop diagrams of order k2 are

= TDuP
-

2
gl

\

DRI
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The UV behaviour of S-matrix elements Il

@ FOR GR, the divergences read (we are onshell)

DIPI =~y szg/l(1 +13 +a])(72)
Res = — 167’128.K2m3/1(1 +13 +a])(72)

DN1PI = — 1, k22 A(~5/6)

FINAL RESULT = — -, k2m?A(~5/6)

@ FOR UG, the divergences read (we are onshell)

D1PI=0

Res=0

DN1PI = —@xzmgk(—ws)

FINAL RESULT = — 16;29 Kngx(fs/S)

@ THERE IS COMPLETE AGREEMENT BETWEEN GR AND

@ The same conclusion for ¥ 4+ WV — W + WV (details in S.
Gonzalez-Martin and CPM, forthcoming paper)
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CONCLUSION

@ As far as we can tell there is no difference between quantum GR
and quantum UG when the Cosmological Constant vanishes

@ Plenty of work still to be done:

@ eg, does UG come from String Theory ? Recall the evidence that
UG and GR have the same S-matrix.

@ Goroff and Sagnotti computation
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