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Extended Theories of Gravity

Extended Theories of Gravity work very well in cosmology at early and
late epochs to address Inflation and Dark Energy issues

-A.A. Starobinsky, Phys. Lett.B 991, 99 (1980)
-S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011),
-S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011).

They have been proposed to explain galactic and extragalactic dynamics
without introducing dark matter.

As simple choice, one assumes a generic function f(R) of the Ricci scalar
R (in particular, analytic functions) and searches for a theory of gravity
having suitable behavior at small and large scale lengths.

These theories need to be confirmed at different scales: for short
distances, Solar system, spiral galaxies and galaxy clusters, besides
cosmology

S. Capozziello, M. De Laurentis, Annalen der Physik 524, 545 (2012).



Motivations

. Explaining the observed galactic and extragalactic dynamics using
gravitational potentials derived from Extended Gravity without DM .

o Possible new fundamental gravitational radui which play analogue role in
the case of weak gravitational field at galactic scales, as the Schwarzschild
radius for strong gravitational field in the vicinity of some massive object
(we have IR and UV gravitational radii).

o New gravitational radii come from the further degrees of freedom of
Extended Gravity.

o Explaining extragalactic phenomena, such as the baryonic Tully-Fisher
relation (BFT) of gas-rich galaxies and the fundamental plane (FP) of
elliptical galaxies without the DM hypothesis.



J(R) gravity

Let us start from the action
A= /d4a:\/—g f(R)+ L]

The field equations are

1
RMV — §g’uVR —

— f/(lR) {%guu [f(R) = Rf{(R)] + [{(R)yw — gWDf’(R)} T

Let us consider the power - law case ~ f(R) = foR"

with f, a dimensional constant.



f(R) gravity

» An important point is related to the choice of the power-law action for f(R)
that could appear non-natural in order to discuss deviations with respect to
GR. Being n any real number, it 1s always possible to recast the f(R) power-

law function as
f(R) o« R'™

» If we assume small deviation with respect to GR, that i1s |g] << 1, it is
possible to re-write a first-order Taylor expansion as

R'™¢ ~ R+ eRlogR + O(€?)

» one can control the magnitude of the corrections with respect to the
Einstein gravity. This Lagrangian has been investigated from Solar System
up to cosmological scales. In particular, applications to gravitational waves
(Capozziello et al. 2008, Astropart. Phys.), binary star systems (De
Laurentis et al. 2012, MNRAS), and neutron stars have been investigated
(Astashenok, Capozziello, Odintsov 2014, PRD, 2015 JCAP).



f(R) gravity

Taking into account the gravitational field generated by a pointlike source
and solving the field equations 1n the vacuum case, we write the metric as:

ds® = A(r)dt* — B(r)dr? — r*dQ?

Combining the 00 — vacuum component and the trace of the field equations
in absence of matter, we get the equation:

R 1 "(R).
it reduces to: oo goo
2n — 1 n—1dA(r)dln R(r)
_ A _
Roo(r) = (r)R(r) B0 dr e
and the trace equation reads: )
R'Hr) = =5 =R (1)

3n



f(R) gravity

Expressing Ry and R in terms of the above metric, field equations become a
system of differential equations for 4A(r) and B(7).

A physically motivated hypothesis is assuming

1 20 (r)
A general solution 1s _ .
<1>(7°):—C;—m 14 <T>
r T

The parameter 1s:

- 12n% —Tn—1—+/36n* + 12n3 — 83n2 + 50n + 1

b 6n2 —4n + 2

Let us search now for a fundamental motivation for power-law f(R) gravity



The Noether Symmetry Approach

Let us assume a static spherically symmetric metric of the form
ds® = A(r)c?dt* — B(r)dr? — C(r)dQ?
We recast the action considering the dimensionless curvature y =R/R,,

C3

A= —foarr / () = Mx = 0)] V=g da

The Ricci scalar can be expressed as
~ Al 20" A'C! A/Q 0/2 9
R="-- |
AC 242 2C¢¢ C

I
A C
where the prime 1s the derivative with respect to ». Varying with respect to y
gives the Lagrange multiplier

dfix)
\ = reake fx



The Noether Symmetry Approach

The point-like Lagrangian reduces to
L%W AfX 0/2
/A | 20

—VA[(2L3 +CX)fx — Cf]

Assuming the regime R. >> r and the related weak field approximation, the
last two terms are both much smaller than L, Sy This allows to rewrite the
Lagrangian as

+ [AC! 4 C o AN+ 241, C'X |+

L =
L%W %0/2

71 |2 + [YA'C" + C i A'X'+ 2Af,,C'X + 24



The Noether Symmetry Approach

Solving the Noether vector equation means to find out the functions «;
which constitute the components of the Noether vector

LxL =0a;VgL+a;VyL=0

0 , 0
+ o, =

X = q;
° 0gq; 23%

A general form of the Noether vector, related to the Killing equations of the
model, 1s:

] — klA - P1,
ag = koC' + po,
az = k3x + ps3.

where k;, p; are constants



The Noether Symmetry Approach

The Lie condition 1is satisfied for

a = {2(1—n)kA, 0, kx}, Fx) =x"

That is for any f(R)= R™ a Noether Symmetry exists !

The related constant of motion % 18

20 — Ozivqu
= L%,n(n — DEATY2Cx" 2 [2(n — 1) A’ — A'X]

In the case of MOND, for n = 3/2, C(r) = r’ and, at the lowest order of
perturbation, A(r) = 1 + 2d/c?, the constant of motion is given by

3
>l = §kr§zM




Modified gravity and flat rotation curves
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Observational constraints for r. from BTF relation
and circular velocity

» Starting from the above solution, an excellent agreement between
theoretical and observed rotation curves of low surface brightness
galaxies has been obtained for /= 0.817.

» This can be framed into the BTF relation with the aim to show that the
new fundamental gravitational radius r. can account for missing matter in
galaxies.

» Specifically, the empirical BTF relation is a universal relationship
between the baryonic mass of a galaxy and its rotational velocity of the
form M; o< vc4. This follows from the fact that luminosity L traces
baryonic mass M}, through the mass-to-light ratio y. The BTF relation can
be recovered from power-law f(R) gravity.



The data from the Baryonic Tully-Fisher
relation of gas rich galaxies as a test for
ACDM and MOND considering

D - distance of the galaxy,

V. - rotational velocity,

M+« - mass of the stars,

M, - mass of the gas

(we used observational data from
McGaugh, PRL (2011), which are given
at the internet address:
http://www.astro.umd.edu/~ssm/data/
gasrichdatatable.txt)
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Observational constraints for r. from BTF relation
and circular velocity

Circular velocity of a point mass, in the R” gravity potential, can be found
in the standard way, that 1s

dP
2 _
vi(r) = r_dr
which gives 5 GM i r B
— 1 1 — —

(For a detailed explanation see Capozziello et al., MNRAS (2007)



Observational constraints for r. from BTF relation
and circular velocity

Considering the Newtonian limit of f(R) gravity and discarding higher order
terms than O(2), the field equations for a perfect-fluid energy-momentum

tensor of dust (p = 0) become:
V2 — — — f"(0)V2R® = Xxp

—3f"(0)V2R®?) — R?) = xp

p - the mass density
X =87G/c* - the gravitational coupling

R® - the Ricci scalar assumed up to the second order approximation



Observational constraints for r. from BTF relation
and circular velocity

Let us proceed step by step to demonstrate that BTF is given by the

gravitational radius r..

1. the Noether symmetries select a power-law for f(R) gravity. This 1s the
only general form of f(R) function showing symmetries.

2. In particular, we assume f(y) = y", after introducing the dimensionless
quantity y := L 1R, where R is the Ricci scalar, Ly is the length fixed by the
parameters of the theory, and n any real number.



Observational constraints for r. from BTF relation
and circular velocity

3. The trace of field Egs. can be rewritten as

PO X = 2700 + 313 Af'(x) = TGk 7

By substituting the power-law, it becomes:

(n=1)  8rGML?
X m M
"(n—2)—3nLA ~
X" ( ) M2 273
Here, we are assuming the weak field approximation with d/dy ~ 1/y,
A ~—1/r2 , and matter density p ~ M/r>.
The second term 1n the 1.h.s. of this Eq. 3In
: : 2
1s larger than the first 1f Rre < S

In this approximation, the Ricci scalar corresponds to the Gaussian
curvature and then R = R.~?> where R, is the Gauss curvature radius.
Immediately we have R. >> r, and then 8rGM

Sncerz(n L)

R(n_l) ~ —




Observational constraints for r. from BTF relation

and circular velocity
4. At the second order, the Ricci scalar 1s Re _ V29— °V.q

that can be approximated as R = —2®/(c2r2) = 2a/(c2r), with @ the
gravitational potential and a the acceleration. This gives:

c2r (87TGM) 1/(n=1)

a =

212\ 3ncr

~ 2=/ (1) (0=2) /(1) =2 (G )Y/ (D)
which converges to a MOND-like accelerationa o< 1/r iftn —2=—(n—1),
that means n = 3/2.

1/2

: : , (CL()GM)

5. With this value of n, we get the MOND relation g =~ —
r

In other words, the weak field limit of f(R) power-law gravity gives MOND
as a particular case.



Observational constraints for r. from BTF relation
and circular velocity

According to this derivation, the above characteristic length r. of R” gravity
can be related to the MOND acceleration constant ay using the following

expression GM
Te =

ao

Assuming that rotation curve 1s flat within the measurement uncertainties at
some finite radius rp 1.€. v.(ry = vy then ry could be also related to a certain

MOND acceleration as> ay. This gives VaoGM ag
re = = — T

af af

Hence, the BTF relation of R" gravity expressed in terms of MOND
accelerations 1s

4aov§

Ga% |1+ (1 - B) (ﬂ)ﬁ_

M =




Observational constraints for r. from BTF relation
and circular velocity

We have to point out that, in the case of BTFR for spiral galaxies,
McGaugh (2011) has shown tha,t instead of standard MOND acceleration
constant ap, one should use a slightly different, empirically calibrated

constant a (where ag = 0.8a), while the formula 1s unchanged. Therefore, for
our calculations, we use the following expression:

4
4avf

Ga% |1+ (1 - B) (i)ﬁ_
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Region in (as,f) parameter space (shaded green area) where 41 <A <53 Mo
km * s* according to the relation for M (our BTF relation). Black solid line
represents the case when A= 51.4 Mo km *# g* (Mp=A vf4).



Observational constraints for r. from BTF relation

and circular velocity
- we draw these lines at M;(vy graph:

(i) MOND M, =v//(a g)

(1) R" My =4 avil(g ai® (1 + (1-B) (@ar)’)?)
three R" cases: n =3/2, 2, 7/2 (correspond to f = 0.518, 0.667, 0.817)
ay - constant for point source in infinity
a - constant for spiral systems
In the case of spiral galaxies, we have a instead of a
empirical calibration 1s ag = 0.8a

(1) ACDM M, =0.17 M., vi= vy

- formula for ACDM 1is taken from the paper McGaugh 2012, AJ:
M, = (4.6 -10° M, km™ s°) v,;;°
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Comparison between best fit BTF relations of gas-rich galaxies (for a
sample of galaxies), in MOND, R” gravity for values of n = 1.5, 2 and 3.5
(corresponding are 0.518, 0.667 and 0.817, respectively) and ACDM.
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Open circles are observed data from McGaugh (2011).



The Fundamental Plane of Galaxies

The three parameters of FP: surface brightness I, effective radius r. and
circular velocity v, for a sample of elliptical galaxies from Burstein et al 1997.



Basic theory of Fundamental Plane

Th.e . Fundan.lenFal Plang .Of - there 1s the so-called "tilt" of the
elliptical galaxies 1s an empirical

relation between the global
properties of these galaxies:

fundamental plane, with respect to
the wvirial plane expectation,
meaning that the coefficients of its

equation (a,b,c) differ from those
logr.=alog oo+ blogl.+c predicted by virial theorem (VT):

r. - effective (half-light) radius (the When written in logarithmic form,

radius within which half of the the two planes appear to be tilted

galaxy’s luminosity is contained) by an angle of ~ 15°.

oy - central velocity dispersion - VT prediction: a =2, b= -1

I, - mean surface brightness within - Estimates from data (Bender et
the effective radius al. 1992): a=1.4,b=-0.85

(see e.g.: G. Busarello, M. Capaccioli, S. Capozziello, G. Longo, E. Puddu,
The relation between the virial theorem and the fundamental plane of
elliptical galaxies, Astron. Astrophys. 320, 415 (1997))



Recovering the fundamental plane from f(R)
-To recover the FP using R" gravity, we have to find relations between FP
parameters and values of f(R) potential. In this sense, the three addends of FP
have to be connected to f(R) parameters:
1. addend with r.: correlation between r. and r. (r. — from R” potential)
2. addend with ay: correlation between 6y and vy (Vyir - virial velocity in R”)
3. addend with I.: correlation between I and r. (through the r./r. ratio)
- for the mass distribution, we take into account the Hernquist profile:

p()=aM/Qnr(r+a)®), where a =r/(1 +2)

see L. Hernquist, ApJ 356, 359 (1990)



The Data

- We use the data given in Table I by Burstein, Bender, Faber,
Nolthenius, Global relationships among the physical properties of stellar
systems, Astron. J. 114, 1365 (1997).

These data are the result of the collected efforts over the years

- data in ASCI format are given in table 'metaplanetabl’ see

arXiv:astro-ph/9707037

Obj Obj Dist log Vg, logo, logr, logl,
Name ID# Code (Mpc) Obs Used (kpc) Lope™?

column (5): log v. (km/s) (1) 2 G @ (6 © D ®
NGC221 8 1 07 1903 1903 —095 3.47

column (6): log o9 (km/s) NGC315 14 1 1072 2546 2546 149 186
NGC720 56 1 358 2392 2392 084 234

column (7): logre (kpc) NGC777 64 1 994 2542 2542 113 2.16
NGC 821 67 1 377 2298 2298 092 2.06

1

NGC 1399 100 264 2491 2491 074 253

column (8): log I. (Lsun / pc?)

for elliptical galaxies, the circular velocity inside effective radius 1s v¢(r,)
= 0, for other stellar systems v, # oy



Results

- we plot the graph v, (r.) for ellipticals and for other galaxies

450 _ s ' . NeWtOnian

100 | ellipticals * {  contribution
other gal.

correction term from f(R)

80 100

Circular velocity v. as a function of effective radius r. for a sample of
galaxies listed in Table 1 by Burstein et al 1997.



Results

- circular velocity v as a function of effective radius r. and their
Newtonian circular velocity ven (e ) (open circles)
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Results

- relation between r. and r. and for some values of parameter f

r,=0.1r, (f = 0 Newtonian case)
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Results
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Results

The empirical FP relation log . = a log o9 + b log I, + ¢ from f(R)

r. - effective (half-
light) radius

oo - central velocity
dispersion

I, - mean surface
brightness within r,

FP of elliptical
galaxies with
calculated circular
velocity:
dependence of FP
parameters (a,b) on
parameters of f(R)
gravity.

a log vctheor +blogl,

B=0.8

rC/re=(1001

" | poos

Q/%zOOI

a=1.60

b =-0.62

b =-0.30

0.1 | 10




Discussion and Conclusions

» We used power-law f(R) gravity to demonstrate the existence of a new
fundamental gravitational radius.

» This radius plays an analog role, in the case of weak gravitational field at
galactic scales (IR scales) as the Schwarzschild radius in the case of
strong gravitational field in the vicinity of compact massive objects (UV
scales).

» The radius emerges as a conserved quantity from Noether’s symmetries
that exist for any power-law f(R) function.

» Using this new gravitational radius, f(R) gravity is able to explain the
baryonic Tully-Fisher relation of gas-rich galaxies without DM
hypothesis.

» MOND is a particular case of f(R) gravity in the weak field limit.



Discussion and Conclusions

» The same radius 1s useful to address the FP of elliptical galaxies.

» The range 0.5< f < 0.8 (corresponding to 1.5 <n <3.5)i1s in a good
agreement with observations. These values agree with observational
constraints on S obtained by fitting FP and MOND. We do not need
DM to explain baryonic Tully-Fisher relation, and even more, ACDM 1s
not in satisfactory agreement with observations.

» For elliptical galaxies r. 1s proportional to r, that is r. ~ 0.01 re,

» Considering the definition of r., we can say that the effective radius
(defined photometrically as the radius containing half of the luminosity
of a galaxy) is led by gravity.

» In perspective, the whole galactic dynamics can be addressed by
Extended Gravity.

» Work in progress for Faber-Jackson relation, galactic potentials,
Boltzmann-Vlasov relation, and Virial Theorem.
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