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§  Extended Theories of Gravity work very well in cosmology at early and 
late epochs to address Inflation and Dark Energy issues 

       -A.A. Starobinsky, Phys. Lett.B 991, 99 (1980) 
         -S. Capozziello, M. De Laurentis,  Phys. Rep. 509, 167 (2011),  
          -S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011). 
 
§  They have been proposed  to explain galactic and extragalactic dynamics 

without introducing dark matter. 

§  As  simple choice, one assumes a generic function  f(R) of the Ricci scalar 
R (in particular, analytic functions) and searches for a theory of gravity 
having suitable behavior at small and large scale lengths.  

§  These theories need to be confirmed at different scales: for short 
distances, Solar system, spiral galaxies and galaxy clusters, besides 
cosmology 

     S. Capozziello, M. De Laurentis, Annalen der Physik 524, 545 (2012). 

Extended Theories of Gravity  



o  Explaining the observed galactic and extragalactic dynamics using 
gravitational potentials derived from Extended Gravity without DM .  

o   Possible  new fundamental gravitational radii which play  analogue role in 
the case of weak gravitational field at galactic scales, as the Schwarzschild 
radius for strong gravitational field in the vicinity of some massive object 
(we have IR and UV gravitational radii). 

o  New gravitational radii come from the further degrees of freedom of 
Extended Gravity. 

o  Explaining  extragalactic phenomena, such as the baryonic Tully-Fisher 
relation (BFT) of gas-rich galaxies and the fundamental plane (FP) of 
elliptical galaxies   without the  DM hypothesis.  

Motivations 



f(R) gravity 
Let us start from the action 
 
                                                                                                
 
The field equations are 
 
                                                                                                
 
 
 
 
 
Let us consider the power - law case 
 
                                                                                                
with f0 a dimensional constant. 
 



f(R) gravity 
Ø An important point is related to the choice of the power-law action for f(R) 

that could appear non-natural in order to discuss deviations with respect to 
GR. Being n any real number, it is always possible to recast the f(R) power-
law function as 

                                                                                                             
Ø  If we assume small deviation with respect to GR, that is |ε| << 1, it is 

possible to re-write a first-order Taylor expansion as 

                                                                                                           

Ø  one can control the magnitude of the corrections with respect to the 
Einstein gravity. This Lagrangian  has been investigated from Solar System 
up to cosmological scales. In particular, applications to gravitational waves 
(Capozziello et al. 2008, Astropart. Phys.), binary star systems (De 
Laurentis et al. 2012, MNRAS), and neutron stars have been investigated 
(Astashenok, Capozziello, Odintsov  2014, PRD, 2015 JCAP). 



f(R) gravity  
Taking into account the gravitational field generated by a pointlike source 
and solving the field equations  in the vacuum case, we write the metric as: 
                                                                                                     
               
Combining the 00 – vacuum component and the trace of the field equations  
in absence of matter, we get the equation: 
 
                                                                                                                   
 it reduces to: 
 
                                                                                                                   
 
 and the trace equation reads: 
                                                                                                                   



f(R) gravity  
Expressing R00 and R in terms of the above  metric, field equations become a 
system of differential equations for A(r) and B(r). 
 
A physically motivated hypothesis is assuming 
 
                                                                                                                  
 
A general solution is 
 
                                                                                                                   
The parameter is: 
 
                                                                                                                  

Let us search now for a fundamental motivation for power-law f(R) gravity 



The Noether Symmetry Approach 
Let us  assume a static spherically symmetric metric of the form 
 
                                                                                                             
We recast the action  considering the dimensionless curvature  χ =R/R0 
 
                                                                                                             
 
 
The Ricci scalar can be expressed as 
 
                                                                                                             
 
where the prime is the derivative with respect to r. Varying with respect to χ 
gives the Lagrange multiplier 
 
                                                                                                              



The Noether Symmetry Approach  
The point-like Lagrangian reduces to 
 
 
 
 
                                                                                                          
Assuming the regime Rc >> r  and the related weak field approximation, the 
last two terms  are both much smaller than LM

2 fχ. This allows to rewrite  the 
Lagrangian  as 
 
                                                                                                           



The Noether Symmetry Approach 
Solving the Noether vector equation  means to find out the functions αi 
which constitute the components of the Noether vector 
 
                                                                                                     
 
 
                                                                                                     
 
A general form of the Noether vector, related to the Killing equations of the 
model, is: 
 
                                                                                                      
 
 
    where  ki, pi  are constants 



The Noether Symmetry Approach  
The Lie condition  is satisfied for 
 
                                                                                                            
 
          That is for any f(R)= Rn  a Noether Symmetry exists !  
 
The related constant of motion Σ0 is 
 
 
                                                                                                             
 
 
In the case of MOND,  for n = 3/2, C(r) = r2 and, at the lowest order of 
perturbation, A(r) = 1 + 2Φ/c2, the constant of motion is given by 
                                                                                                             



 Sofue & Rubin, 2001, ARA&A, 39, 137  

NGC 1560 

Capozziello et al. 2007, 
MNRAS, 375, 1423 

β = 0.817       n = 3.5 

B - observation 
A - Newtonian 
      prediction 

f(R) gravity 

observed 

Modified gravity and flat rotation curves of spiral galaxies  



Observational constraints for rc from BTF relation 
and circular velocity 

Ø  Starting from the above solution, an excellent agreement between 
theoretical and observed rotation curves of low surface brightness 
galaxies has been obtained for β = 0.817. 

Ø  This can be framed into the BTF relation with the aim to show that the 
new fundamental gravitational radius rc can account for missing matter in 
galaxies. 

 
Ø  Specifically, the empirical BTF relation is a universal relationship 

between the baryonic mass of a galaxy and its rotational velocity of the 
form Mb ∝ vc

4. This follows from the fact that luminosity L traces 
baryonic mass Mb through the mass-to-light ratio γ. The BTF relation can 
be recovered from power-law f(R)  gravity.  



The data from the Baryonic Tully-Fisher 
relation of gas rich galaxies as a test for  
ΛCDM and MOND considering 
D - distance of the galaxy, 
Vc - rotational velocity, 
M* - mass of the stars, 
Mg - mass of the gas 
 
(we used observational data from 
McGaugh, PRL (2011), which are given 
at the internet address: 
http://www.astro.umd.edu/~ssm/data/ 
gasrichdatatable.txt) 
 





Observational constraints for rc from BTF relation 
and circular velocity  

Circular velocity of a point mass, in the Rn  gravity potential, can be found 
in the standard way, that is 
 
 
 
which gives 
 
 
 
(For a detailed explanation  see Capozziello et al., MNRAS (2007) 
 
 



Observational constraints for rc from BTF relation 
and circular velocity  

Considering the Newtonian limit of f(R) gravity and discarding higher order 
terms than O(2), the field equations for a perfect-fluid energy-momentum 
tensor of dust (p  = 0) become: 
 
 
 
 
    ρ - the mass density 
     X = 8πG/c4 - the gravitational coupling 
    R(2) - the Ricci scalar assumed up to the second order approximation 
 
 
 
 
 
 
 
 
 



Observational constraints for rc from BTF relation 
and circular velocity  

Let us proceed step by step to demonstrate that BTF is given by the 
gravitational radius rc. 
 
1.  the Noether symmetries select a power-law for f(R) gravity. This is the     
only general form of f(R) function showing symmetries.  

2. In particular, we assume f(χ) = χn, after introducing the dimensionless 
quantity χ := LM

2R, where R is the Ricci scalar, LM is the length fixed by the 
parameters of the theory, and n any real number. 



Observational constraints for rc from BTF relation 
and circular velocity  

3.  The trace of field Eqs.  can be rewritten as 
 
 
By substituting the power-law, it becomes: 
 
 
 

Here, we are assuming the weak field approximation with d/dχ ∼ 1/χ, 
Δ ∼ − 1/r2 , and matter density ρ ∼ M/r3.  
The second term in the l.h.s. of this Eq. 
is larger than the first if 
 
In this approximation,  the Ricci scalar corresponds to the Gaussian 
curvature and then R ≃ Rc

−2 where Rc is the Gauss curvature radius. 
Immediately we have Rc >> r, and then 



Observational constraints for rc from BTF relation 
and circular velocity  

4. At the second order, the Ricci scalar is 
 
that can be approximated as R ≈ −2Φ/(c2r2) ≈ 2a/(c2r), with Φ the 
gravitational potential and a the acceleration. This gives: 
 
 
 
 
 
which converges to a MOND-like acceleration a ∝ 1/r  if n − 2 = − (n − 1), 
that means n = 3/2. 
 
5. With this value of n, we get the MOND relation 
 
In other words, the weak field limit of f(R) power-law gravity gives MOND 
as a particular case. 



Observational constraints for rc from BTF relation 
and circular velocity  

According to this derivation, the above characteristic length rc of Rn gravity 
can be related to the MOND acceleration constant a0 using the following 
expression 
 
 
Assuming that rotation curve is flat within the measurement uncertainties at 
some finite radius rf, i.e. vc(rf) ≈ vf, then rf could be also related to a certain 
MOND acceleration af > a0. This gives 
 
 
Hence, the BTF relation of Rn gravity expressed in terms of MOND 
accelerations is 
 



Observational constraints for rc from BTF relation 
and circular velocity  

We have to  point out that, in the case of BTFR for spiral galaxies, 
McGaugh (2011) has shown tha,t instead of standard MOND acceleration 
constant a0, one should use a slightly different, empirically calibrated 
constant a (where a0 = 0.8a), while the formula is unchanged. Therefore, for 
our calculations, we use the following expression: 



Region in (af,β) parameter space (shaded green area) where 41 ≤ A ≤ 53 M⊙ 
km−4 s4 according to the relation for M (our BTF relation). Black solid line 
represents the case when A = 51.4 M⊙ km−4 s4   (Mb = A vf

4). 



Observational constraints for rc from BTF relation 
and circular velocity  

- we draw these lines at Mb(vf) graph: 
 
  (i) MOND     Mb = vf

4/(a g) 
 
  (ii) Rn             Mb = 4 a vf

4/(g a1
2 (1 + (1-β) (a/a1)β)2)               

       three Rn cases: n = 3/2, 2, 7/2 (correspond to β = 0.518, 0.667, 0.817) 
       a0  - constant for point source in infinity 
       a  - constant for spiral systems 
             In the case of spiral galaxies, we have a instead of a0 
                     empirical calibration is a0 = 0.8a 
 
  (iii) ΛCDM      Mb = 0.17 Mvir, vf = vvir 
 
- formula for ΛCDM is taken from the paper McGaugh 2012, AJ: 
  Mvir = (4.6 ·105 Msun km–3 s3) vvir

3 
 



Comparison between best fit BTF relations of gas-rich galaxies (for a 
sample of galaxies), in MOND, Rn gravity for values of n = 1.5, 2 and 3.5 
(corresponding are 0.518, 0.667 and 0.817, respectively) and ΛCDM. 



A zoomed part of the previous figure, for a small range of parameters.  
 
Open circles  are observed data from McGaugh (2011). 



The three parameters of FP: surface brightness Ie, effective radius re and 
circular velocity vc, for a sample of elliptical galaxies from Burstein et al 1997. 

The Fundamental Plane of Galaxies 



Basic theory of  Fundamental Plane 
The Fundamental Plane of 
elliptical galaxies is an empirical 
re la t ion between the g lobal 
properties of these galaxies: 
 
log re = a log σ0 + b log Ie + c 
re - effective (half-light) radius (the 
radius within which half of the 
galaxy’s luminosity is contained) 

σ0 - central velocity dispersion 

Ie - mean surface brightness within 
the effective radius 

 

- there is the so-called "tilt" of the 
fundamental plane, with respect to 
the virial plane expectation, 
meaning that the coefficients of its 
equation (a,b,c) differ from those 
predicted by virial theorem (VT): 
when written in logarithmic form, 
the two planes appear to be tilted 
by an angle of ~ 15°. 
 
- VT prediction: a = 2, b = -1 
-  Estimates from data  (Bender et 

al. 1992):  a =1.4 , b = -0.85 

(see e.g.: G. Busarello, M. Capaccioli, S. Capozziello, G. Longo, E. Puddu, 
The relation between the virial theorem and the fundamental plane of 
elliptical galaxies,  Astron. Astrophys. 320, 415 (1997)) 



Recovering the fundamental plane from f(R) 
-To recover the FP using Rn gravity, we have to find relations between  FP 
parameters and values of f(R) potential. In this sense,  the three addends of FP 
have to be connected to f(R) parameters: 
 
1.  addend with re: correlation between re and rc (rc – from Rn potential) 

2. addend with σ0: correlation between σ0 and vvir (vvir - virial velocity in Rn) 
 
3. addend with Ie: correlation between Ie and re (through the rc/re  ratio) 
 
-  for the mass distribution, we take into account the Hernquist profile: 

               ρ(r) = a M / (2 π r (r + a)3), where a = re/(1 + √2) 
 
 see L. Hernquist, ApJ 356, 359 (1990) 
 



The Data 
- We use the data given in Table I by  Burstein,  Bender,  Faber,  
Nolthenius, Global relationships among the physical properties of stellar 
systems,  Astron. J. 114, 1365 (1997). 
These data are the result of the collected efforts over the years  
-  data in ASCI format are given in table 'metaplanetab1’ see 
     arXiv:astro-ph/9707037  
 
column (5): log vc   (km/s) 

column (6): log σ0   (km/s) 

column (7): log re   (kpc) 

column (8): log Ie   (Lsun / pc2) 

 for elliptical galaxies, the circular velocity inside effective radius is vc(re) 
= σ0, for other stellar systems  vc ≠ σ0 

 



Results  
- we plot the graph vc (re) for ellipticals and for other galaxies 

Circular velocity vc as a function of effective radius re for a sample of 
galaxies listed in Table 1 by Burstein et al 1997. 

N e w t o n i a n 
contribution 

correction term from f(R) 



Results  
- circular velocity vc as a function of effective radius re and their 
Newtonian circular velocity vc,N (re ) (open circles) 

 elliptical galaxies (full circles)   other galaxies (crosses) 

zoomed part 

of the figure 



Results  
- relation between rc and re and  for some values of parameter β 

rc / re = 0.1  

rc / re = 0.05  

(β = 0 Newtonian case)  



rc / re = 0.01  

rc / re = 0.001  

Results  



Results  

FP of elliptical 
galaxies with 
calculated circular 
velocity: 
dependence of FP 
parameters (a,b) on 
parameters of f(R) 
gravity. 

The empirical FP relation log re = a log σ0 + b log Ie + c   from f(R) 

re - effective (half-
light) radius 
σ0 - central velocity 
dispersion 
Ie - mean surface 
brightness within re 



Discussion and Conclusions  
Ø We used power-law f(R) gravity to demonstrate the existence of a new 

fundamental gravitational radius. 
 
Ø This radius plays an analog role, in the case of weak gravitational field at 

galactic scales (IR scales) as the Schwarzschild radius in the case of 
strong gravitational field in the vicinity of compact massive objects (UV 
scales). 

 
Ø The radius  emerges as a conserved quantity from Noether’s symmetries 

that exist for any power-law f(R) function. 

Ø Using this new gravitational radius, f(R) gravity is able to explain the 
baryonic Tully-Fisher relation of gas-rich galaxies without DM 
hypothesis. 

Ø MOND is a particular case of f(R) gravity in the weak field limit. 

 



Discussion and Conclusions 

Ø  The same radius is useful to address the FP of elliptical  galaxies. 
 
Ø  The range  0.5≤ β ≤ 0.8  (corresponding to  1.5 ≤ n ≤ 3.5) is in a good 

agreement with observations. These values agree with observational 
constraints on  β obtained by fitting  FP and  MOND.  We do not need  
DM  to explain baryonic Tully-Fisher relation, and even more, ΛCDM  is 
not in satisfactory agreement with observations. 

Ø  For elliptical galaxies rc is proportional to re that is rc ~ 0.01 re. 

Ø Considering the definition of re, we can say that the effective radius 
(defined photometrically as the radius containing half of the luminosity 
of a galaxy) is led by gravity. 

Ø  In perspective, the whole galactic dynamics can be addressed by 
Extended Gravity. 

Ø Work in progress for Faber-Jackson relation, galactic potentials, 
Boltzmann-Vlasov relation, and Virial Theorem. 
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