Double Field Theory

Corfu Summer Institute
17th Hetho selato and -

Double Field Theory

 Hull \& Zwiebach- From sector of String Field Theory. Features some stringy physics, including T-duality, in simpler setting
- Strings see a doubled space-time
- Necessary consequence of string theory
- Needed for non-geometric backgrounds
- What is geometry and physics of doubled space?

Strings on a Torus

- States: momentum p, winding w
- String: Infinite set of fields $\psi(p, w)$
- Fourier transform to doubled space: $\psi(x, \tilde{x})$
- "Double Field Theory" from closed string field theory. Some non-locality in doubled space
- Subsector? e.g. $g_{i j}(x, \tilde{x}), b_{i j}(x, \tilde{x}), \phi(x, \tilde{x})$
- T-duality is a manifest symmetry

Double Field Theory

- Double field theory on doubled torus
- General solution of string theory: involves doubled fields $\psi(x, \tilde{x})$
- Real dependence on full doubled geometry, dual dimensions not auxiliary or gauge artifact. Double geom. physical and dynamical
- Strong constraint restricts to subsector in which extra coordinates auxiliary: get conventional field theory locally. Recover Siegel's duality covariant formulation of (super)gravity

Extra Dimensions

- Torus compactified theory has charges arising in SUSY algebra, carried by BPS states
- Pm_{m} Momentum in extra dimensions
- Z_{A} : wrapped brane \& wound string charges
- But $\mathrm{P}_{\mathrm{M}}, \mathrm{Z}_{\mathrm{A}}$ related by dualities. Can Z_{A} be thought of as momenta for extra dimensions?
- Space with coordinates X^{M}, Y^{A} ?

Extended Spacetime

- Supergravity can be rewritten in extended space with coordinates X^{M}, Y^{A}. Duality symmetry manifest.
- But fields depend only on X^{M} (or coords related to these by duality).
- Gives a geometry for non-geometry:T-folds
- Actual stringy symmetry of theory can be quite different from this sugra duality: Background dependence?
- In string theory, can do better... DOUBLE FIELD THEORY, fields depending on X^{M}, Y_{M}.

M-Theory

- II-d sugra can be written in extended space.
- Extension to full M-theory?
- If M-theory were a perturbative theory of membranes, would have extended fields depending on X^{M} and 2-brane coordinates Y_{MN}
- But it doesn't seem to be such a theory
- Don't have e.g. formulation as infinite no. of fields. Only implicit construction as a limit.
- Extended field theory gives a dualitysymmetric reformulation of supergravity

Double Field Theory

- String field theory gives complete formulation of perturbative closed string in CFT Zwiebach background
- Iterative construction of infinite number of interactions
- Non polynomial. Homotopy Lie algebra (violation of Jacobi's associativity etc)
- String field theory for torus gives infinite set of fields depending on doubled coordinates

String Field Theory on Minkowski Space

String field

$$
\begin{gathered}
\Phi[X(\sigma), c(\sigma)] \\
X^{i}(\sigma) \rightarrow x^{i}, \text { oscillators }
\end{gathered}
$$

Expand to get infinite set of fields

$$
g_{i j}(x), b_{i j}(x), \phi(x), \ldots, C_{i j k \ldots l}(x), \ldots
$$

Integrating out massive fields gives field theory for

$$
g_{i j}(x), b_{i j}(x), \phi(x)
$$

String Field Theory on a torus

String field

$$
\Phi[X(\sigma), c(\sigma)]
$$

$$
X^{i}(\sigma) \rightarrow x^{i}, \tilde{x}_{i}, \text { oscillators }
$$

Expand to get infinite set of double fields
$g_{i j}(x, \tilde{x}), b_{i j}(x, \tilde{x}), \phi(x, \tilde{x}), \ldots, C_{i j k \ldots l}(x, \tilde{x}), \ldots$
Seek double field theory for

$$
g_{i j}(x, \tilde{x}), b_{i j}(x, \tilde{x}), \phi(x, \tilde{x})
$$

Free Field Equations ($\mathrm{B}=0$)

$L_{0}+\bar{L}_{0}=2$

$$
p^{2}+w^{2}=N+\bar{N}-2
$$

$$
\begin{aligned}
& L_{0}-\bar{L}_{0}=0 \\
& \quad p_{i} w^{i}=N-\bar{N}
\end{aligned}
$$

Free Field Equations ($\mathrm{B}=0$)

$L_{0}+\bar{L}_{0}=2$

$$
p^{2}+w^{2}=N+\bar{N}-2
$$

Treat as field equation, kinetic operator in doubled space

$$
G^{i j} \frac{\partial^{2}}{\partial x^{i} \partial x^{j}}+G_{i j} \frac{\partial^{2}}{\partial \tilde{x}_{i} \partial \tilde{x}_{j}}
$$

$$
L_{0}-\bar{L}_{0}=0
$$

$$
p_{i} w^{i}=N-\bar{N}
$$

Treat as constraint on double fields

$$
\Delta \equiv \frac{\partial^{2}}{\partial x^{i} \partial \tilde{x}_{i}} \quad(\Delta-\mu) \psi=0
$$

Free Field Equations ($\mathrm{B}=0$)

$L_{0}+\bar{L}_{0}=2$

$$
p^{2}+w^{2}=N+\bar{N}-2
$$

Treat as field equation, kinetic operator in doubled space

$$
L_{0}-\bar{L}_{0}=0 \begin{gathered}
G^{i j} \frac{\partial^{2}}{\partial x^{i} \partial x^{j}}+G_{i j} \frac{\partial^{2}}{\partial \tilde{x}_{i} \partial \tilde{x}_{j}} \\
p_{i} w^{i}=N-\bar{N} \quad d s^{2}=G_{i j} d x^{i} d x^{j}+G^{i j} d \tilde{x}_{i} d \tilde{x}_{j}
\end{gathered}
$$

Treat as constraint on double fields

$$
\Delta \equiv \frac{\partial^{2}}{\partial x^{i} \partial \tilde{x}_{i}} \quad(\Delta-\mu) \psi=0
$$

Laplacian for metric

$$
d s^{2}=d x^{i} d \tilde{x}_{i}
$$

$$
\begin{gathered}
g_{i j}(x, \tilde{x}), b_{i j}(x, \tilde{x}), \phi(x, \tilde{x}) \\
N=\bar{N}=1 \\
p^{2}+w^{2}=0 \\
p \cdot w=0
\end{gathered}
$$

"Double Massless"

DFT gives $O(D, D)$ covariant formulation

O(D,D) Covariant Notation

$$
\begin{aligned}
& X^{M} \equiv\binom{\tilde{x}_{i}}{x^{i}} \partial_{M} \equiv\binom{\tilde{\partial}^{i}}{\partial_{i}} \\
& \eta_{M N}=\left(\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right) \quad M=1, \ldots, 2 D \\
& \Delta \equiv \frac{\partial^{2}}{\partial x^{i} \partial \tilde{x}_{i}}=\frac{1}{2} \partial^{M} \partial_{M}
\end{aligned}
$$

Constraint

$$
\partial^{M} \partial_{M} A=0
$$

Weak Constraint or
on all fields and parameters weak section condition

Arises from string theory constraint

$$
\left(L_{0}-\bar{L}_{0}\right) \Psi=0
$$

- Weakly constrained DFT non-local. Constructed to cubic order Hull \& Zwiebach
- ALL doubled geometry dynamical, evolution in all doubled dimensions
- Restrict to simpler theory: STRONG CONSTRAINT
- Fields then depend on only half the doubled coordinates
- Locally, just conventional SUGRA written in duality symmetric form

Strong Constraint for DFT

$$
\partial^{M} \partial_{M}(A B)=0
$$

$$
\left(\partial^{M} A\right)\left(\partial_{M} B\right)=0
$$

on all fields and parameters
If impose this, then it implies weak form, but product of constrained fields satisfies constraint.

This gives Restricted DFT, a subtheory of DFT
Locally, it implies fields only depend on at most half of the coordinates, fields are restricted to null subspace N .
Looks like conventional field theory on subspace N

Strong Constraint for DFT

$$
\partial^{M} \partial_{M}(A B)=0
$$

$$
\left(\partial^{M} A\right)\left(\partial_{M} B\right)=0
$$

on all fields and parameters
If impose this, then it implies weak form, but product of constrained fields satisfies constraint.

This gives Restricted DFT, a subtheory of DFT
Locally, it implies fields only depend on at most half of the coordinates, fields are restricted to null subspace N .
Looks like conventional field theory on subspace N

- Siegel's duality covariant form of (super)gravity
- In string theory, T-duality acts on torus or fibres of torus fibration, relates local modes and winding
- Winding modes: doubling of torus or fibres
- Other topologies may not have windings, or have different numbers of momenta and windings. No T-duality. No doubling?
- DFT 'background independent' HHZ. Can write on doubling of any space. What is double if not derived from string theory?

Generalised T-duality transformations: HHZ

$$
X^{\prime M} \equiv\binom{\tilde{x}_{i}^{\prime}}{x^{\prime i}}=h X^{M}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{\tilde{x}_{i}}{x^{i}}
$$

h in $\mathrm{O}(\mathrm{d}, \mathrm{d} ; \mathrm{Z})$ acts on toroidal coordinates only

$$
\begin{gathered}
\mathcal{E}_{i j}=g_{i j}+b_{i j} \\
\mathcal{E}^{\prime}\left(X^{\prime}\right)=(a \mathcal{E}(X)+b)(c \mathcal{E}(X)+d)^{-1} \\
d^{\prime}\left(X^{\prime}\right)=d(X)
\end{gathered}
$$

Buscher if fields independent of toroidal coordinates Generalisation to case without isometries

$$
X^{M}=\binom{\tilde{x}_{m}}{x^{m}} \quad \xi^{M}=\binom{\tilde{\epsilon}_{m}}{\epsilon^{m}}
$$

Linearised Gauge Transformations

$$
\begin{aligned}
\delta h_{i j} & =\partial_{i} \epsilon_{j}+\partial_{j} \epsilon_{i}+\tilde{\partial}_{i} \tilde{\epsilon}_{j}+\tilde{\partial}_{j} \tilde{\epsilon}_{i} \\
\delta b_{i j} & =-\left(\tilde{\partial}_{i} \epsilon_{j}-\tilde{\partial}_{j} \epsilon_{i}\right)-\left(\partial_{i} \tilde{\epsilon}_{j}-\partial_{j} \tilde{\epsilon}_{i}\right) \\
\delta d & =-\partial \cdot \epsilon+\tilde{\partial} \cdot \tilde{\epsilon} . \quad \text { Invariance needs constraint }
\end{aligned}
$$

Diffeos and B-field transformations mixed.
If fields indep of \tilde{x}_{m}, conventional theory $g_{i j}(x), b_{i j}(x), d(x)$ ϵ^{m} parameter for diffeomorphisms
$\tilde{\epsilon}_{m}$ parameter for B-field gauge transformations

Generalised Metric Formulation

Hohm, H \&Z

$$
\mathcal{H}_{M N}=\left(\begin{array}{cc}
g^{i j} & -g^{i k} b_{k j} \\
b_{i k} g^{k j} & g_{i j}-b_{i k} g^{k l} b_{l j}
\end{array}\right)
$$

2 Metrics on double space $\quad \mathcal{H}_{M N}, \eta_{M N}$

$$
\mathcal{H}^{M N} \equiv \eta^{M P} \mathcal{H}_{P Q} \eta^{Q N}
$$

Constrained metric

$$
\mathcal{H}^{M P} \mathcal{H}_{P N}=\delta^{M}{ }_{N}
$$

Generalised Metric Formulation

Hohm, H \&Z

$$
\mathcal{H}_{M N}=\left(\begin{array}{cc}
g^{i j} & -g^{i k} b_{k j} \\
b_{i k} g^{k j} & g_{i j}-b_{i k} g^{k l} b_{l j}
\end{array}\right)
$$

2 Metrics on double space $\quad \mathcal{H}_{M N}, \eta_{M N}$

$$
\mathcal{H}^{M N} \equiv \eta^{M P} \mathcal{H}_{P Q} \eta^{Q N}
$$

Constrained metric

$$
\mathcal{H}^{M P} \mathcal{H}_{P N}=\delta^{M}{ }_{N}
$$

Covariant $\mathrm{O}(\mathrm{D}, \mathrm{D})$ Transformation

$$
\begin{array}{ll}
h_{M}^{P} h^{Q}{ }_{N} \mathcal{H}_{P Q}^{\prime}\left(X^{\prime}\right)= & \mathcal{H}_{M N}(X) \\
X^{\prime}=h X & h \in O(D, D)
\end{array}
$$

$O(D, D)$ covariant action

$$
\begin{gathered}
S=\int d x d \tilde{x} e^{-2 d} L \\
L=\frac{1}{8} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{N} \mathcal{H}_{K L}-\frac{1}{2} \mathcal{H}^{M N} \partial_{N} \mathcal{H}^{K L} \partial_{L} \mathcal{H}_{M K} \\
-2 \partial_{M} d \partial_{N} \mathcal{H}^{M N}+4 \mathcal{H}^{M N} \partial_{M} d \partial_{N} d
\end{gathered}
$$

-Lagrangian L CUBIC in fields!

- Indices raised and lowered with $\eta_{M N}$
$\cdot \mathrm{O}(\mathrm{D}, \mathrm{D})$ covariant (in $\mathbb{R}^{2 D}$)

2-derivative action

$$
S=S^{(0)}(\partial, \partial)+S^{(1)}(\partial, \tilde{\partial})+S^{(2)}(\tilde{\partial}, \tilde{\partial})
$$

Write $S^{(0)}$ in terms of usual fields
Gives usual action (+ surface term)

$$
\int d x \sqrt{-g} e^{-2 \phi}\left[R+4(\partial \phi)^{2}-\frac{1}{12} H^{2}\right]
$$

$S^{(0)}=S(\mathcal{E}, d, \partial)$

2-derivative action

$$
S=S^{(0)}(\partial, \partial)+S^{(1)}(\partial, \tilde{\partial})+S^{(2)}(\tilde{\partial}, \tilde{\partial})
$$

Write $S^{(0)}$ in terms of usual fields
Gives usual action (+ surface term)

$$
\int d x \sqrt{-g} e^{-2 \phi}\left[R+4(\partial \phi)^{2}-\frac{1}{12} H^{2}\right]
$$

$S^{(0)}=S(\mathcal{E}, d, \partial)$
$S^{(2)}=S\left(\mathcal{E}^{-1}, d, \tilde{\partial}\right) \quad$ T-dual!
$S^{(1)} \quad$ strange mixed terms

$O(D, D)$ covariant action

$$
\begin{gathered}
S=\int d x d \tilde{x} e^{-2 d} L \\
L=\frac{1}{8} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{N} \mathcal{H}_{K L}-\frac{1}{2} \mathcal{H}^{M N} \partial_{N} \mathcal{H}^{K L} \partial_{L} \mathcal{H}_{M K} \\
-2 \partial_{M} d \partial_{N} \mathcal{H}^{M N}+4 \mathcal{H}^{M N} \partial_{M} d \partial_{N} d
\end{gathered}
$$

Gauge Transformation

$$
\begin{aligned}
& \delta_{\xi} \mathcal{H}^{M N}=\xi^{P} \partial_{P} \mathcal{H}^{M N} \\
& +\left(\partial^{M} \xi_{P}-\partial_{P} \xi^{M}\right) \mathcal{H}^{P N}+\left(\partial^{N} \xi_{P}-\partial_{P} \xi^{N}\right) \mathcal{H}^{M P}
\end{aligned}
$$

Write as "Generalised Lie Derivative"

$$
\delta_{\xi} \mathcal{H}^{M N}=\widehat{\mathcal{L}}_{\xi} \mathcal{H}^{M N}
$$

Generalised Lie Derivative

$$
\widehat{\mathcal{L}}_{\xi} A_{M}^{N} \equiv \xi^{P} \partial_{P} A_{M}^{N}
$$

$$
+\left(\partial_{M} \xi^{P}-\partial^{P} \xi_{M}\right) A_{P}{ }^{N}+\left(\partial^{N} \xi_{P}-\partial_{P} \xi^{N}\right) A_{M}^{P}
$$

Usual Lie derivative, plus terms involving $\eta_{M N}$

$$
\begin{aligned}
\widehat{\mathcal{L}}_{\xi} A_{M}{ }^{N} & =\mathcal{L}_{\xi} A_{M}^{N} \\
& -\eta^{P Q} \eta_{M R} \partial_{Q} \xi^{R} A_{P}{ }^{N} \\
& +\eta_{P Q} \eta^{N R} \partial_{R} \xi^{Q} A_{M}^{P}
\end{aligned}
$$

Strong Constraint: Gauge symm ~ diffeos and b-field trans $\underline{O(D, D)} \quad X^{\prime}=h X$
Symmetry for flat doubled space $\quad M=\mathbb{R}^{2 D}$
B-shifts and $G L(D, \mathbb{R})$ arise from local symmetries. Isometries: if fields indep of some coords, more of $O(D, D)$ can arise from local symmetries

HHZ

Torus spacetime $\quad N=\mathbb{R}^{n-1,1} \times T^{d} \quad M=\mathbb{R}^{2 n-2,2} \times T^{2 d}$
$\mathrm{O}(\mathrm{D}, \mathrm{D})$ broken to subgroup containing B-shifts and

$$
O(n, n) \times O(d, d ; \mathbb{Z})
$$

General Spacetime: No natural action of O(D,D)

Strong Constraint: Gauge symm ~ diffeos and b-field trans O(D,D) $\quad X^{\prime}=h X$

Symmetry for doubled space $\quad M=\mathbb{R}^{2 D}$
Torus spacetime $\quad N=\mathbb{R}^{n-1,1} \times T^{d} \quad M=\mathbb{R}^{2 n-2,2} \times T^{2 d}$
$O(D, D)$ broken to subgroup containing B-shifts and

$$
O(n, n) \times O(d, d ; \mathbb{Z})
$$

B-shifts and $G L(n, \mathbb{R}) \times G L(d, \mathbb{Z})$ arise from local symmetries.

General Spacetime: No natural action of O(D,D)

Generalized scalar curvature

$$
\begin{aligned}
& \mathcal{R} \equiv 4 \mathcal{H}^{M N} \partial_{M} \partial_{N} d-\partial_{M} \partial_{N} \mathcal{H}^{M N} \\
& \quad-4 \mathcal{H}^{M N} \partial_{M} d \partial_{N} d+4 \partial_{M} \mathcal{H}^{M N} \partial_{N} d \\
& \quad+\frac{1}{8} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{N} \mathcal{H}_{K L}-\frac{1}{2} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{K} \mathcal{H}_{N L} \\
& \qquad S=\int d x d \tilde{x} e^{-2 d} \mathcal{R} \\
& \text { Gauge Symmetry } \quad \delta_{\xi} \mathcal{R}=\widehat{\mathcal{L}}_{\xi} \mathcal{R}=\xi^{M} \partial_{M} \mathcal{R} \\
& \delta_{\xi} e^{-2 d}=\partial_{M}\left(\xi^{M} e^{-2 d}\right)
\end{aligned}
$$

Generalized scalar curvature

$$
\begin{aligned}
& \mathcal{R} \equiv 4 \mathcal{H}^{M N} \partial_{M} \partial_{N} d-\partial_{M} \partial_{N} \mathcal{H}^{M N} \\
& \quad-4 \mathcal{H}^{M N} \partial_{M} d \partial_{N} d+4 \partial_{M} \mathcal{H}^{M N} \partial_{N} d \\
& \quad+\frac{1}{8} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{N} \mathcal{H}_{K L}-\frac{1}{2} \mathcal{H}^{M N} \partial_{M} \mathcal{H}^{K L} \partial_{K} \mathcal{H}_{N L} \\
& \qquad S=\int d x d \tilde{x} e^{-2 d} \mathcal{R} \\
& \text { Gauge Symmetry } \quad \delta_{\xi} \mathcal{R}=\widehat{\mathcal{L}}_{\xi} \mathcal{R}=\xi^{M} \partial_{M} \mathcal{R} \\
& \delta_{\xi} e^{-2 d}=\partial_{M}\left(\xi^{M} e^{-2 d}\right)
\end{aligned}
$$

Field equations give gen. Ricci tensor

Gauge Algebra

Parameters Σ^{M}
Gauge Algebra $\quad\left[\delta_{\Sigma_{1}}, \delta_{\Sigma_{2}}\right]=\delta_{\left[\Sigma_{1}, \Sigma_{2}\right]_{C}}$

$$
\left[\widehat{\mathcal{L}}_{\xi_{1}}, \widehat{\mathcal{L}}_{\xi_{2}}\right]=-\widehat{\mathcal{L}}_{\left[\xi_{1}, \xi_{2}\right]_{\mathrm{C}}}
$$

C-Bracket:
$\left[\Sigma_{1}, \Sigma_{2}\right]_{C} \equiv\left[\Sigma_{1}, \Sigma_{2}\right]-\frac{1}{2} \eta^{M N} \eta_{P Q} \Sigma_{[1}^{P} \partial_{N} \Sigma_{2]}^{Q}$
Lie bracket + metric term
Parameters $\Sigma^{M}(X)$ restricted to N
Decompose into vector + I-form on N C-bracket reduces to Courant bracket on N

Same covariant form of gauge algebra found in similar context by Siegel

Jacobi Identities not satisfied!

$J\left(\Sigma_{1}, \Sigma_{2}, \Sigma_{3}\right) \equiv\left[\left[\Sigma_{1}, \Sigma_{2}\right], \Sigma_{3}\right]+$ cyclic $\neq 0$
for both C-bracket and Courant-bracket
How can bracket be realised as a symmetry algebra?

$$
\left[\left[\delta_{\Sigma_{1}}, \delta_{\Sigma_{2}}\right], \delta_{\Sigma_{3}}\right]+\text { cyclic }=\delta_{J\left(\Sigma_{1}, \Sigma_{2}, \Sigma_{3}\right)}
$$

Symmetry is Reducible

Parameters of the form $\Sigma^{M}=\eta^{M N} \partial_{N} \chi$ do not act

Gauge algebra determined up to such transformations
cf 2-form gauge field $\delta B=d \alpha$
Parameters of the form $\alpha=d \beta$
do not act

Symmetry is Reducible

Parameters of the form $\Sigma^{M}=\eta^{M N} \partial_{N} \chi$ do not act

Gauge algebra determined up to such transformations
cf 2-form gauge field $\delta B=d \alpha$
Parameters of the form $\alpha=d \beta$
do not act
Resolution:

$$
J\left(\Sigma_{1}, \Sigma_{2}, \Sigma_{3}\right)^{M}=\eta^{M N} \partial_{N} \chi
$$

$\delta_{J\left(\Sigma_{1}, \Sigma_{2}, \Sigma_{3}\right)}$ does not act on fields

D-Bracket

$$
[A, B]_{\mathrm{D}} \equiv \widehat{\mathcal{L}}_{A} B
$$

$$
[A, B]_{\mathrm{D}}^{M}=[A, B]_{\mathrm{C}}^{M}+\frac{1}{2} \partial^{M}\left(B^{N} A_{N}\right)
$$

Not skew, but satisfies Jacobi-like identity

$$
\left.\left[A,[B, C]_{\mathrm{D}}\right]_{\mathrm{D}}=\left[[A, B]_{\mathrm{D}}\right], C\right]_{\mathrm{D}}+\left[B,[A, C]_{\mathrm{D}}\right]_{\mathrm{D}}
$$

On restricting to null subspace N
C-bracket \rightarrow Courant bracket
D-bracket \rightarrow Dorfman bracket
Gen Lie Derivative \rightarrow GLD of Grana, Minasian, Petrini and Waldram

DFT
 geometry

arXiv:1406.7794

- Simple explicit form of finite gauge transformations. Associative and commutative.
- Doubled space is a manifold, not flat, despite constant 'metric' η in DFT.
- Gives geometric understanding of 'generalised tensors' \& relation to generalised geometry
- Transition functions give global picture
- T-folds: non-geometric backgrounds included

Further Developments

- Action for F-theory Berman, Blair, Malek, Rudolph Theory in 12 dimensions with SL(2) symmetry; section condition gives I2-D theory
- Superstring Hohm \& Zwiebach,...
- DFT (super)geometry, curved metric η Cederwall
- Generalised paralellalizability, susy flux backgrounds, exceptional CY,... Waldram et al
- Susy AdS, exceptional Sasaki-Einstein,...

- Extension to WZW models Blumenhagen, Hassler \& Lust Scherk-Schwarz,...

Grana et al

Conclusions

- Duality symmetries lead to extension of geometry to allow "non-geometric" solutions
- String theory on torus:T-duality symmetry. Winding modes: doubled geometry, infinite number of doubled fields
- DFT: with strong constraint, get conventional sugra in duality symmetric formulation
- More generally, this applies locally in patches. Use DFT gauge and O(D,D) symmetries in transition functions. Get T-folds etc.
- Full theory with weak constraint: non-local, stringy
- How much of this is special to tori?
- Other topologies may not have windings, or have different numbers of momenta and windings. No T-duality? No doubling?
- Duality symmetry gives deep insight into stringy geometry. But seems to be very different on different backgrounds, e.g. T^{4}, K3
- Much remains to be understood about string/ M theory

Type IIA Supergravity Compactified on T^{4}
Duality symmetry $\mathrm{SO}(5,5)$
BPS charges in 16 -dim rep
Type IIA Supergravity on M4xM6
Can be written as "Extended Field Theory"
in space with $6+16$ coordinates
with $\mathrm{SO}(5,5)$ Symmetry

Berman, Godzagar, Perry; Hohm, Sambtleben

Is $\mathrm{SO}(5,5)$ a "real" symmetry for generic solutions $M_{4 \times M} M_{6}$?

Similar story for $M_{d x} \times M_{10-d} ; M_{d} X M_{\text {II-d }}$

Extension to String Theory?

Type IIA Superstring Compactified on T^{4}

U-Duality symmetry SO(5,5;Z)
 6+16 dims?

But for other backgrounds, symmetry different
Type IIA Superstring Compactified on K3
U-Duality symmetry SO(4,20;Z)
6+24 dims?

Duality symmetry seems to be background dependent; makes background independent formulation problematic

