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Motivations

e CKM quark mixing, meson mixing, massive neutrino mixing (and

oscillations) play a crucial role in phenomenology;
e Theoretical interest: origin of mixing in the Standard Model,

e Bargmann superselection rule*: coherent superposition of states
with different masses is not allowed in non-relativistic QM,;

e Necessity of a QFT treatment: problems in defining Hilbert space
for mixed particles’; oscillation formulas®;

*V.Bargmann, Ann. Math. (1954); D.M.Greenberger, Phys. Rev. Lett. (2001).
TC.W.Kim and A.Pevsner, Neutrinos in Physics and Astrophysics, (Harwood,
1993). C.Giunti, J. Phys. G (2007).

¥M.Beuthe, Phys. Rep. (2003).



Prelude



Neutrino oscillations in QM *

Pontecorvo mixing relations
|ve) = cosOlvq) + sinf |vo)
|v,) = —siné |v1) + cosf |vo)
— Time evolution:
Ve (t)) = cos @ e 1t 1) + sin @ e~ 2 1)
— Flavor oscillations:

. AE
P, .. () = |<Ve|ue(t)>|2 = 1 —sin®20 sin® (2t> =1-P, ., (t)

— Flavor conservation:

[(Velve()* + [pulve(®)® = 1

*S.M.Bilenky and B.Pontecorvo, Phys. Rep. (1978)



Mixing of neutrino fields

— Mixing relations for two Dirac fields
ve(z) = cosfuv(z) + sinf va(x)
v (x) = —sinfwvi(z) + cosb va(x)

V1, vy are fields with definite masses.

— Mixing transformations connect the two quadratic forms:

L = 1 (7 @—Tﬂ,l)Vl—FI;Q(?: ﬁ—m/g)llg
and
L = 0t @—me)ve+0, (0 D—mu)vy — Mep (DeVy + Duve)
with

2 .2 .2 2 . )
me = mq cos” 0 +masin® 6, m, = masin” 6 + ma cos” 0, me, = (M2 —ma) sin cos 6.



— v; are free Dirac field operators:
@ =3 T [kt ok + aea(0 87
vi(z) = — {uk’i U)oy ; + vy (1 B*kﬂl , =12
k,r \/V

— Anticommutation relations:

(v (@), () bz = 6% (x = ¥)0apdis; Aok, afl;} = {8l By} = 6° (k — @)6,:0

— Orthonormality and completeness relations:

—iwpat, T L 7 _ gt T _ [ 2
> U, Viei(t) = e o, s wr =/ k2 4+ m]

Srt s vt s ort s _ o rakx rTf rax rf _ <
Uy Ulei = Vy Vi = Ors 5 Uy Vg =0, E (uis wy; + 590" ) = dagp -
T

— Fock space for vy, vs:

H={al,. B, 0.}

— Vacuum state [0),, =[0); @ |0)s.



Rotation

— Pontecorvo mixing can be seen as arising by the application to the
vacuum state |0)q 2 of the rotated operators:

R(9)™* aglR(H) = cosf agl + sind QEQ,
R(0)71a£T2R(9) = COSHQ{L - sine(xgl,
and similar ones for ﬂ{jz

— The generator R(0) is:

RO) = exp {03 [(ofhoka + B B2 ) — (aifa0ka + ALk )|}

k,r

The above unitary operator leaves the vacuum invariant:
R(0)[0)1,2 = |0)1,2



Consider the action of the rotation on the field vy for example:

R (0)v1(2)R(A) = cos O vy (x)

D> / 7 ok a0+ s 0)

e Problem in the last term in the r.h.s. which appears as the
expansion of the field in the “wrong” basis.



Bogoliubov transformation

— We can recover the wanted expression by means of a Bogoliubov

transformation:

@LTZ = cos O al,jz — € sinOy; By ;,

311,72 = cos Oy ; 5Tk,i +e sin O g, 1=12
with a1l = B7H(61) of; Bi(©0), ete.,
— Generator

Bi(©; {Z/ @k @kl [aklﬁ’,kl—ﬂ kzafz}}.



Let us see this for the field v;.

By '(©2) R™1(0) v1(x) R(0) B2(02) =

= cosOuvi(z) +sinf Z / /'k * 541;72 upe 1 (8) + By vV (t))

= cosOvi(x) + sinf Z / ,’k x 01;72 Uy 1 (1) + ﬂl'(TZ Y (t)) ,
where

ﬂ{;?l(t) = 08 O 2 uj 1 (1) + € sin O 2 vy 4 (1),

~r

0y 1(t) = cos Ok 0"y 1 (t) — € sin Oy uy 1 (2) -



For
Ok =cos ! (ugz(t)uﬁl(t))
the above Bogoliubov transformation implements the mass shift
Am = mqg — my

such that @y | () = uy »(t) and 07y ;(t) = v7y 5(1).

e The action of By *(03) R~*(#) produces the desired transformation
(rotation) of the field vy.

— Similar reasoning for v5, using Bfl((:)l) R™Y(0).



Mixing generator



Neutrino mixing in QFT

e Mixing relations for two Dirac fields

cosf vy(x) 4 sinf vo(x)

X
4]
—~

=
~—

I

v, (x) = —sinfwvi(z) + cosb v(z)

vi(z) = Gy'(t) vi(z) Go(t)
vi(a) = Gy'(t) v(x) Golt)
— Mixing generator:

Gatt) =exp [0 [ x ((apato) - vi(oin ()

d2 a o . . « L« v o
For ve, we get Jo5 ve = —vg with ic. vg lg—o = V1, dgve {9:0 = 5.

TM.B. and G.Vitiello, Annals Phys. (1995)




e The vacuum |0), , is not invariant under the action of Gg(?):

2

10(8)) e, = G (2) 0),,

e Relation between |0), , and [0(t)).,,: orthogonality! (for V — o0)

- d3k ) 212
lim ,,(0[0(t))e,, = lim &I ey o (1-sin® 0 [Vi?)
V—oo V=00

=0

with

Vil = Z | 0 Uk o 240 for my #my
T8




Quantum Field Theory vs. Quantum Mechanics

e Quantum Mechanics:
- finite f of degrees of freedom.

- unitary equivalence of the representations of the canonical

commutation relations (von Neumann theorem).

e Quantum Field Theory:
- infinite f of degrees of freedom.

- 0o many unitarily inequivalent representations of the field algebra <
many vacua .
- The mapping between interacting and free fields is “weak”, i.e.

representation dependent (LSZ formalism)*. Example: theories with

spontaneous symmetry breaking.

*F.Strocchi, Elements of Quantum Mechanics of Infinite Systems (W. Sc., 1985).

Mi nerator




e The “flavor vacuum” |0(¢)),, is a SU(2) generalized coherent state!:

0)e, = H {(1 —sin? 0 |Vi|?) — €"sin @ cos 6 |Vi| (afjl Do Ty frkfl)
k,r

+ €" sin? 0 | Vic| | U | (a:fl Tk,l — alrjg iTk_Q) + sin? 0 | Vg |? a6 T IT{TQ 110),,
e Condensation density:
en (Ol s0kal0t)ese = e {0) Bl BA0®) e = sin® 0 VA
vanishing for m; = mz and/or = 0 (in both cases no mixing).
— Condensate structure as in systems with SSB (e.g. superconductors)

— Exotic condensates: mixed pairs

— Note that [0)c, # |a)1 ® |b)2 = entanglement.

TA. Perelomov, Generalized Coherent States, (Springer V., 1986)




Condensation density for mixed fermions

10 100 1000

Loglk|
Solid line: mj = 1, mo = 100; Dashed line: mq = 10, mg = 100.
- Vk = 0 when m; = ms and/or 6 = 0.
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e Structure of the annihilation operators for [0(%))e,,:

O (1) = cos O, +sind (U () o p+e Vic(t) A )
g (1) = cosf oy 5 — sind (Uk(t) o 1 —€ Vic(t) BiTkJ)
By e(t) =cost By | +sinb (Uk( ) Bl =€ Vac(t) oy 2)

B (£) = 080 71— sin® (Vi) B+ Viclt) o)

e Mixing transformation = Rotation + Bogoliubov transformation .

— Bogoliubov coeflicients:

Uk(t) = “1?2“{(1 ellwr 2wt W (t) = €" u{:lvik,Q eilwh k)t

Ul® + Vil =




Decomposition of mixing generator *

Mixing generator function of my, mo, and 6. Try to disentangle the
mass dependence from the one by the mixing angle.

Let us define:

R(0) = exp {9 Z [(aijl Qo + 517:[1/317;,2)62'% - <Q£T2Q£71 + ﬂg?ﬂlil)eiiw} }7
k,r

B;i(©;) = exp { Z Oy, € [a’l’;iﬁik,ief’:(ﬁ’“" — ﬂfklagzew’”} }, i=1,2
k,r

Since [By, Bo] = 0 we put

B(01,02) = B1(01) B2(02)

*M.B., M.V.Gargiulo and G.Vitiello, Phys. Lett. B (2017)
N



e We find:
Gy = B(01,05) R() B7'(01,0,)

which is realized when the ©y ; are chosen as:

. (Pp,1+9PK,2) .
Uk = e ¥ COS(@k_l — (‘)kyg) ; Ve =¢ 2 SlIl((‘)k,l — @kﬂg)

The B;(Ox;), i = 1,2 are Bogoliubov transformations implementing a
mass shift, and R(#) is a rotation.

— Their action on the vacuum is given by:

|6>1,2 =B (01,02)[0)12

H {COS Ok, + € sin Gk’iagiﬂﬁk,i} [0)1 2
k,r,

R7Y0)|0)12 = [0)12.




Bogoliubov vs Pontecorvo

Bogoliubov and Pontecorvo do not commute!

2|20

As a result, flavor vacuum gets a non-trivial term:

0)e,n = Gy 0012 = [0)12 + [B(mi,ma), R7H0)] [0)1,2

e Non-diagonal Bogoliubov transformation

T+ 9(1/(;1:){% sz (aklﬂ k2+a )]|0>12,

T

(ma—my)?
mimeo

with a =




Currents & Charges



Currents and charges for mixed fermions *

— Lagrangian in the mass basis:
L = Upm, (7 a - AJ{]) VUm

where v = (v1,15) and My = my 0
0 mo

e [ invariant under global U(1) with conserved charge Q= total charge.

— Consider now the SU(2) transformation:

/ 1T . P —
v, = ey, ; 7 =1,2,3.

with 7; = 0;/2 and o; being the Pauli matrices.

*M. B., P. Jizba and G. Vitiello, Phys. Lett. B (2001)




The associated currents are:

0L = Qo Uy 1), Mgl vy = —a; 0,8 j
J;L:L J = Un ’Yu Tj Vm
— The charges Q,, ;(t) = [ d*xJ), ;(x), satisfy the su(2) algebra:

[Qm J( ) ka( )} = Z.€j/fl Qm,l(t) .

— Casimir operator proportional to the total charge: C,, = %Q

e (.3 is conserved = charge conserved separately for v; and vs:

Ql = %Q + Qm,B = /djxyir( )Vl( )

Qy = %Q — Qms = /d3x yg(x) vo(x).

These are the flavor charges in the absence of mixing.




The currents in the flavor basis

— Lagrangian in the flavor basis:

L= Df(i@—]w)l/f

where v{ = (v, v,) and M = ( Me  Mep )

Mey My
— Consider the SU(2) transformation:

/

vy = i vy ; j=123.

with 7; = 0;/2 and o; being the Pauli matrices.

— The charges Qf; = [ d*x J})v,j satisfy the su(2) algebra:

Qri (1), Qru(®)] = i€ Qra(l).

— Casimir operator proportional to the total charge Cy = C,, = %Q




e ()3 is not conserved = exchange of charge between v, and v,,.

Define the flavor charges as:

Q) = 30+ Qualt) = [ dxvl@)nla)

Q) = 5Q - Qualt) = [ Exrj@)

where Qe(t) + Qu(t) = Q.
— We have:

Qc(t) = cos’0Qq +sin®0 Qs +sinbcosd / d*x [1/11/2 + V2TV1}

Qut) = sin® 0 Q1 + cos? 6 Qo — sin@cos@/d3x |:I/IV2 + ng]}




In conclusion:

— In presence of mixing, neutrino flavor charges are defined as

Q.(t) = /d3x vi(z)ve(z) Qu(t) E/d3X Z/;E(?;‘) vu(x)

They are not conserved charges = flavor oscillations.

— They are still (approximately) conserved in the vertex = define
flavor neutrinos as their eigenstates

e Problem: find the eigenstates of the above charges.




e Flavor charge operators are diagonal in the flavor ladder operators:

1Qu(t): = /d3X s vi(2) v () =

2 [ (a3l (ako6) = 57,05, 0) o= e
Here : ... = denotes normal ordering w.r.t. flavor vacuum:
“ A=A — 6;#<O|A|O>elu

e Define flavor neutrino states with definite momentum and helicity:
o) = i, (0)[0)c,u

— Such states are eigenstates of the flavor charges (at t=0):

“ QO' = "/17;,0'> = |Vl:o'>




Neutrino oscillation formula (QFT)

— We have, for an electron neutrino state:

Qolt) = Wiel = Qo(t) = 1)

= Hopom.of @} + {57, 0.0.)

e Neutrino oscillation formula (exact result)*:

Que(t) = 1 — |Uif? sin®(20) sin® (“E2 L ) 142 sin? (20) sin? (227251 )

O, (t) = |Uk|? sin?(26) sin <w t) + |Vi|? sin®(20) sin <M t)

2

- For k> /mimsz, |[Ui|? = 1 and |Vi|? — 0.

*M.B., P.Henning and G. Vltlello Phys. Lett. B (1999).




Lepton charge violation for Pontecorvo states’

— Pontecorvo states:
Vie)p = cosO |V ) + sind [ ,)

Vi e = —sinf |y ,) + cosd Vi) ,

are not eigenstates of the flavor charges.

= wiolation of lepton charge conservation in the production/detection

vertices, at tree level:
P{Vikel 1 Qe(0) : Vi )P = cos® @ + sin* 6 + 2|Uy| sin® @ cos?h < 1,

for any 6 # 0, k # 0 and for my # ma.

M. B., A. Capolupo, F. Terranova and G. Vitiello, Phys. Rev. D (2005)
C. C. Nishi, Phys. Rev. D (2008).

& Crk




Other results

Rigorous mathematical treatment for any number of flavors *

Three flavor fermion mixing: CP violation';

QFT spacetime dependent neutrino oscillation formulat;
e Boson mixing?;

e Majorana neutrinos¥;

*K. C. Hannabuss and D. C. Latimer, J. Phys. A (2000); J. Phys. A (2003);
fM.B., A.Capolupo and G.Vitiello, Phys. Rev. D (2002)

¥M.B., P. Pires Pachéco and H. Wan Chan Tseung, Phys. Rev. D, (2003).
§M.B., A.Capolupo, O.Romei and G.Vitiello, Phys. Rev. D(2001); M.Binger and
C.R.Ji. Phys. Rev. D(1999); C.R.Ji and Y.Mishchenko, Phys. Rev. D(2001);
Phys. Rev. D(2002).

IM.B. and J.Palmer, Phys. Rev. D (2004)
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e Flavor vacuum and cosmological constant*
e Flavor vacuum induced by condensation of D-particles.f

e Geometric phase for mixed particlest.

*M.B., A.Capolupo, S.Capozziello, S.Carloni and G.Vitiello Phys. Lett. A (2004);
TN.E.Mavromatos and S.Sarkar, New J. Phys. (2008); N.E.Mavromatos, S.Sarkar
and W.Tarantino, Phys. Rev. D (2008); Phys. Rev. D (2011).

¥M.B., P.Henning and G.Vitiello, Phys. Lett. B (1999)
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Dynamical generation



Dynamical generation of flavor mixing*

e The non trivial nature of flavor vacuum should result from the SSB
process and the Higgs mechanism in the Standard Model;

e We consider dynamical symmetry breaking in a toy model with two
flavors and quartic interaction term, as a generalization of Nambu and
Jona-Lasinio model';

e The approach of Umezawa, Takahashi and Kamefuchi for describing
mass generation using inequivalent representations® is suitable for our
purposes.

*M.B., P.Jizba, G.Lambiase and N.Mavromatos, J. Phys. Conf. Ser. (2014);
M.B., P.Jizba and L. Smaldone, work in progress;

Y. Nambu and G. Jona-Lasinio, Phys. Rev. (1961);

TH. Umezawa, Y. Takahashi and S. Kamefuchi, Ann. Phys. (1964)

Dynamical generation




Dynamical mass generation and inequivalent reps.
Consider a free Dirac field (at finite volume V):

/ 1 r —ik-x T _ik-x T T
U_W%;{“k“ke 4 o blett } o ag]0) = by |0) =0

The same field operator can be expanded as

1 s r ik-x r Ty —ikx
Y = Ni% Z {“k(ﬁ-, p)og, e +up (9, 0) By e
k,r

with

of = cosV} al + sindj ' b"jk

B = costp by — sindy ek all
and

ub(9,¢) = uf cosVy + vy e ¥rsindy,,

v(9,0) = v cosV — u’ ek gin dy, .

Dynamica eration




The above is a Bogoliubov transformation, inducing inequivalent
representations for different values of the parameters (9, ):

|09, @) = H [cos Oy, — ek sindy, all b7 |]0)
k,r

with of [0(0,0)) = B¢ ]0(9,¢)) = 0.

Dynamical generation




V-limit for operator products

In the infinite volume limit, one has the following relations:
V-lim [ / i mmwﬁ(m)} = / @@ : pal@)a(a) : + / 2 iS55(0,¢),
Vet | [ @ o a)u e) i (2)is(0)| =
= iS,5(Y, ) / d’x : oy (x)hs(z) : + iSﬂﬁ;(ﬁ,w)/dSm o (x)hs ()
b iSu(0.0) [ d'e by @s(a)  + i850.0) [ d'e s dolaiao):
+/d3w > STW9)ST W, ).

contractions

S;‘Lﬁ (0, ) are free two-point Wightman functions evaluated in |0(0, ¢)):
73:3 (19, 99) = <0(197 @)'1/;0 (T)Q/)B (/I:)|0(197 (ID)>7

iSap(,0) = (000, )|y (@)¢s(2) |03, 0))

Dynamical generation




We consider the following hamiltonian:

H = Hy+ Hiy

Hy = /d3xz/?(—i'7-V + m)y,

Hus = X [ [(00)° = (5°0)°]

In the lowest order in the Yang-Feldman eq. the V-limit of H gives:
V-lim [H] = Hy + ¢ — number.
with

Hy = Hy + 6Hy

SHo = [ & (100 + igiso)
where f, g depend on the set of parameters (9, ):

F=AC, g=AC,.

Dynamica




Cp = Lvlgléc <0(’l9799)|’l;(w)’y5'g/;(x)‘0(19’SO)>

2 ,
- (2m)3 /ddk sin 20y sin g

Cy = lim (009, 0)|(x)y(z)]0(D, )

V—oo

=2 [ cos20, — B
= 2n)? /d k L’k cos 2y, — w—ksmgﬁk cos | .

Dynamica




We then require that H, has the form of a free Hamiltonian:
Hy = Z/ d®k Ex (aﬂ o + Byt ﬁﬁ) + Wo.
with
Be = VK2 + M2 ; W, = 72/d3k Bl
by fixing the Bogoliubov transformation parameters. One obtains:

1 m
0820, = — , —
cos 20 E, {wk + fwk]

k 1
cospk,r) = —f—

Tk g+ PR )

= (m+f) + ¢

M?




Two possibilities:

2\
C,=0, M=m — ——
P T )y
2\ " d3k
=0 14+ —— [ —

m , + 2r)? ,

The second case is only allowed for A < 0.

’ d:’»k

y Ek’

= 0.




Dynamical generation of flavor mixing

— We consider the following hamiltonian:

o = HO + H’i’n,t

H() = /dgl\If (7L"}/zal + A’f()) v

with U7 = (¢, 1,,) and My = diag(m,,m,,).

— The interaction Hamiltonian Hi,; can be assumed in the generic

form
111t - (¢F¢> (’J; F/ 1//’) ’
where I and I are some doublet spinor matrices.
— The V-limit renormalization term dHg has the following structure

(SHO = 5%6 + 6%8 + (SHmix

-fI /&le + f‘H IKZJIILZ]II + h/ (/&lel + QLIIII;/}I) ‘

Dynamical generation




Generalized Bogoliubov transformation

— We consider the 4 x 4 canonical transformation

QA €O Par 50 Pan Co Ay S0 Aanr a;
O/B _ —S0Pp1  C0Ppu 50 >‘BI Co /\BH Ay
611 Co )\AI S0 /\Au Co P 4q 560 Pan bj
ﬂTB —S0 )\BI Co )\BII —S0Ps1  C0Pp1 b}

11

where ¢y = cosf, sy =sinf and

Pab = COS % Aap = sin % . Xa=cot ! {

K ] a,b=1,1I, A, B.

Ma

Thus we have three parameters (6, m4, mp) to fix in terms of
(f,» fuu,h) in order to diagonalize the Hamiltonian.

Dynamical generation




Partial diagonalization

A possible representation is obtained by a partial diagonalization of
Hy, leaving untouched §H iz

Ho = > Wo(—i7 'V + me) Vo + h(Wethy + Dutbe).

o=e,

Such a representation is obtained by setting
0 — 0,
ma — me = my+ f;,
mp — m, = my+ f.
The vacuum is denoted as

10(0 = 0,me,mp)) = [0)ep,

In this representation we have

o (O Ho|0)e, = —2 / Pl (VR T mE [kt m2).,

since 67M<0\57{mix|0>e# = 0.

Dynamical generation




Complete diagonalization

Another possibility is to require that H, becomes fully diagonal in
two fermion fields, ¥ and 5, with masses m; and ms:
Ho = Z Vi (—ivy -V 4+ my) ;.
j=1,2
The condition for the complete diagonalization is found to be:
- 1 2h
0 — 0 = taun_l[}7
my

2 — M

m

1
bay > M1 = 3 <me +m, F \/(mu —me)? + 4h2) 7

where we introduced the notation m. = m; + f,, m, = m, + f,.

We set
|0(8,m1,m2)) = [0)1,2,

The vev of the Hamiltonian in this representation has the form:

1_2<0|H()‘0>1_]2 = 72/d3k (\/kZ -+ ’m% + \/kz -+ mﬁ) .

Dynamical generation




Patterns of Dynamical Symmetry Breaking

Consider the Lagrangian

L = iy dp + U(th, )

o[
Yu

U(w),)) is assumed to be invariant under chiral transformations

U©2)y x U(2)a:

where

g5 = e T a=0,1,2,3

so the entire Lagrangian is invariant as well.

Dynamica eration




Chiral Symmetry Breaking

The vector and axial Noether charges are:

&3

J;: = E'Yu P,
J— Ja
Jsy = Y.
2
If we add a diagonal mass term
Ly = —mapip

the conservation law of axial currents is explicitly broken:

o"Js = 0,
ML, = iymp,

Dynamical generation




Isospin Symmetry Breaking

Adding a mass-shift term

—Am 0

0 Am ¥

L:Am = —U’[

the isospin symmetry is broken to U(1){, x U(1)}, (the subscript
index indicates the generator)

oy = oI =0,
Am —

oM, = T¢021/’=
Am —

a‘LJi = 771#0’1’1#

Dynamical generation




Family lepton number nonconservation

Finally we add to the Lagrangian, an off-diagonal term

— 10 h
Ly, = — )
/ v [h, 0] ¥

The current evolution are now

M =0,

Am —

(%J}L = - D oa

A 72 1—

oI, = *i’lﬁ [hos + Amoy]

orJd = h%

po T 5 d) 02 17[} )

Conservation of the total flavor charge Q.

Dynamical generation




Order parameters

Dynamical generation of mixing occurs if*
U@2)y xU(2)a — U1)Y,,

at the ground state level. SSB is characterized by the existence of
some (quasi)-local operators ®; so that

(Q[[Q(0), 2:(0)] ) = (Ql|) # 0,

on some dressed vacuum. ¢§ are called order parameters. We look at

order parameters of the form t;1; + ¢ with i, j, k,1 = L IL

*M. Blasone, P. Jizba, L. S., in preparation (2017).
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Patterns of SSB

Symmetry Group

Mass Term

Order Parameter

Broken Charges

U2y xU(2)a m=20
U@y mAG Am=0 | (B, + ) £ 0 Qs
UL <UL | m#0;, Am#0 | (@), £0,1,) #0 g Qh @
m#£0; Am#0 (U, b ah) #0 o
ULy ) Q5 Q% Q% Q°
h#0 (b Wy + 0 0y # 0




Rindler



Boson mixing in QFT (Minkowski spacetime)
Boson mixing transformations:’
pa(x) = ¢1(x) cos+ a(x) sind = Gy (t) ¢1(x) Go(t)
dp(x) = —¢i(x)sinf + go(x) cost = Gy (t) da(x) Go(t)
where

Go(t) = exp [—z‘e / d*x (mqﬁz—ﬂﬂ;—ﬂzaﬁﬁd);ﬂﬂ :

Mapping between the Fock spaces Hi 2 and Ha g (at volume V)
10(0,)) a5 = Gy ' (1) 10)1.2 -

Unitary inequivalence

lim 2(0[0(0,t))a,p =0, Vi

V—=o0

TM.B., A.Capolupo, O.Romei and G.Vitiello, Phys. Rev. D (2001)



Field expansions in plane-wave basis (i = 1,2)

e TFields with definite mass

d‘Sk /ik-x . )
s ki

with
ak,i|0)1,2 = 0, [ak,i7 Gll,j] =6 (k — k"6

e Fields with definite flavor ((x,j)=(A,1),(B,2))

g dSk eik-x ) )

2m)*/% \/2wi;

with

a0 a2 =0, [awn(®) aly ,(6)]=6" (k= K)dyo Wt



e Annihilator for the flavor vacuum |0(6,1¢)) 4.5
a A(t) = cos@ax, + sind (p]fz* () ax,2 + /\lfQ(t) aim)

e mixing Bogoliubov coefficients:

i(wh,2—wp, l)t7 )\11(2( ) _ ‘)\1;2‘ ei(wk-,,2+wk,1)t
kl( We1 wk,Q)
121 —

2 Wk,2 Wk,1

e Condensation density for mixed bosons

Plfz( )= |P12| €

with [pl[* — Al |? =

4,8(0(t )|ak1akz‘0( ))A.B = sin 20 \)\

Rindler




ISl

Log|k

Condensation density as a function of Log|k| for sample values of m; and
ma. Solid line: my = 10, m2 = 100. Dashed line: m; = 1, m2 = 100.



Uniformly accelerated observer: Rindler metric

e Rindler coordinates

2" = ¢ sinhny, ' = Ecoshn

e Rindler (%) vs Minkowski (.Z)
ds? = (da®)? = (dz")? — (d7)* —
— ds® = £2dn? — de? — (dT)?

e Worldline of a Rindler observer

n=ar, &{=const = ail, T =const

with proper acceleration a.

Rindler




Free boson field in hyperbolic basis

e Free field quantization in .# in hyperbolic basis

-

6= / &Pr Y {dﬁﬁfﬂ U + g7 (7&<“>*}, K= (Q,F)

where

21/2 GUTrSZ/Q

(2m)"/?

U,C(”) Kivo(jix€) ez‘(ﬁ-;f—nszyl)

and

+o00 io§2/2 ,
déo) _ / dkn (wk +k’1> Ay, [dﬁ,") 7 drgf )T] — 53 (K—/@’).

J - (27To.)k)1/2 Wr — kl SR

o 47 and ay annihilate the same Minkowski vacuum [0;)

d£0)|01\4> - ak|0]\,[> =0.



Free field quantization in Rindler spacetime

—Free field quantization in & in Rindler modes™
. / d%z {b,@ w(® 45T u&a)*}

where 6(0¢)
u@) — 98)_ pl@) i(E-&—oQn)
Uy Wk e

and

07 05 = 6,00 6%k — k), b|0R) =0,

|0g) is the Rindler vacuum.

*S. Takagi, Prog. Theor. Phys. Suppl.(1986)



Minkowski quantization: Rindler quantization:
b= En T, {47 DD DT T} b=, (5w £ W)

p Ve

Thermal Bogoliubov transformation

b7 = /T+ N(Q)d? + /N(Q)dl 1

where N(Q) = (e*™? — 1)71 and &= (Q,—k).

e Rindler vacuum |0g) differs from Minkowski vacuum |057)
O[T 5T100s) = N(Q) 8,00 6% (5 — 1) .

e For a Rindler observer, |05/) is seen to be equivalent to a thermal
bath with temperature 7' = - T.

TW. G. Unruh, Phys. Rev. D (1976)



Mixing and thermal Bogoliubov transformations

Two Bogoliubov transformations

mixing Bogol. (0) .
— ¢a,¢p = condensate in |04 p),

¢17¢2

thermal Bogol. (a)
—

o

.« = condensate in|0ps).

e How do these two transformations combine when field mixing in

accelerated frames is studied?*

*M. Blasone, G. Lambiase and G. Luciano, Phys. Rev D (2017).



Field mixing in Minkowski spacetime: hyperbolic basis

da(x) = ¢1(x) cosh + ¢o(x) siné,

op(x) = —¢1(x) sinb + ¢o(x) cosb

e Hyperbolic expansions of definite mass fields
¢ = / @n Yy {000+ dTT 0 =)
e Hyperbolic expansions of definite flavor fields

by = / @n 3 {aQ05 + a0} (wi)=(41),(8.2).



Flavor annihilator in hyperbolic basis

+oo
(o) _ (o) / (o) (o,0")" 7(a")t (0,0")
d, A= cosfd, +s1119A dQ) Z (d(Q,_ﬂ) A(Q .k + d(Q, 5, 25(52_52/)115),

where

a’sz’

(o‘,o'/)* _ /+OO % < 1 + 1 ) (Wk,l + kl)i/rrT <Wk 2+ k1> cz’(wk_lfwk_z)t
wk,2 — k1

(@,9), k 4m wk,1  Wk2/ \wk,1 — k1

—0o0

29 —ieg
) 2 (wk,2+kl) 2 6i(wk,1+wk‘2)t

B(mn’) _ /-+oo & ( 11 ><wk,1 + k1
@)k [ Arm Wk,2 W1/ \Wk1 — k1 wk,2 — k1

Non-trivial resolution of these integrals...



Field mixing in Rindler spacetime

e Rindler expansions of definite flavor fields in %

o= [ S {pu bR ] e = (4. 82

e Mixing + thermal Bogoliubov transformation

bl = /(L + N(Q))d\) + VN©@) a0



Condensation density of Rindler mixed particles in [0as)

Nr(®)| = Ne(@) 8 (x =) + sm?e[F(sz,Q’) Ngss + G(Q, Q) NAB} 32k — B,

with
FQ.Q) = /Na(@) Na() + /(1 + Na(@) (1 + Na(@)).
GQ) = T+ Na(@) VNa@) + /Na(@) v/T+ Na(@),

— Combination of the Unruh condensation density N(€2) and mixing
condensate Ny(2) = Geometry of spacetime as possible source of
field mixing?

e Modification of the Bose-Einstein distribution.



Physical picture of the modification

No mixing: |0ys) is populated by
Rindler particle/antiparticle pairs of the
same type = Particle radiation is
generated by the corresponding
one-type antiparticles falling into the
event horizon = Thermal distribution.

Mixing: Vacuum is a condensate of
particle/antiparticle pairs of different
types. = Particle radiation is generated
by both types of antiparticles falling

into the event horizon = Increase of the

Modification of the B-E distribution

entropy and modification of the B-E

distribution. due to the mixing. Different colours

correspond to different types of particle.



Conclusions



Conclusions and Perspectives

e Mixing transformations are not trivial in Q.F.T. (not just a
rotation!) = inequivalent representations.

e The vacuum for mixed fields has the structure of a SU(N)
generalized coherent state (condensate of particle-antiparticle pairs).

e Condensate structure of the flavor vacuum =- dynamical origin of

mixing.

e Lorentz invariance violation (?)




Conclusions and Perspectives

Application of functional methods has suggested the study of

appearance of inequivalent representations in path integralsT.
Neutrino oscillations in curved backgrounds;

Entanglement in neutrino states: neutrino oscillations as a resource

for quantum information;

Geometric phases;

M. B., P. Jizba, L. Smaldone, Ann. Phys. (2017).







Other stuff

Other stuff




Three-flavor fermion mixing*
Mixing relations:
Uy(2) = MU, ()

where \I/T = Ve, Vpyv7) , UL = (11,12,1,) and

—10
C12€13 812C13 S13€
_ ., N 0 0
M = | —si12c23 — c12523513€ C12C23 — 512523513€ 523€13
6 0
§12823 — C12€23S513€ —C12523 — S12€23513€ C23C13

with Cij = COS 91‘]’7 Sij = sin HU

M.B., A.Capolupo and G.Vitiello, Phys. Rev. D (2002)




We have:

where (a,4) = (¢, 1), (11,2), (7, 3), and
Go(t) = Goy(t)G1,(t)G12(t)

Gua(t) = exp |ou [ @xl@pat) - v (z))} ,
Gi3(t) = exp >913'/d3X(l/I($)V3(33)67M - Vg(:c)ul(w)ew)} ,
Gaa(t) = eop [0 [ @x(l(eala) v} <x>u2<m>>} |

Flavor vacuum:




Flavor annihilation operators:

s r kx 7 ry;k arf —1i6 kx r ry/k ort
Qe = C12C13 Q1 T S12C13 <U12 ax ote Vip B k,2> +e 513 (Ulg axzte Visg B k~3> )

r 6 r 5 k r ry,k ort
Otk_# = ((512(123 — e 5‘12823813) ak,2 — <812(123 +e (312823813> <U12 ()zk,1*C Vl‘z [371(?1)

k* e e k T
+ s23ci13 (Uza g 3te Vog 5,‘1(‘3) ,

r T 6 k r ry/;k a7t
Qg r = C23C13 Qg 3 — (612523 +e 812623813> (Uzg Qi 2—€ Vas e{j,kQ)

i k r ry/k or
+ <312323 —€ 012023813> (Ulg Qg 1—€ Vi ﬁ—TkJ)

and similar ones for antiparticles (6 — —0).




Condensation densities

= 16=0

Condensation densities N¥ for sample values of masses and mixings

Other stuff



Parameterizations of mixing matrix

vg(r) = Gy () v (w) Go(t),

K2

Define the more general generators:

Gz = exp 912/d* (1/ vpe 02 V§V16i62)

G1, = exp |61, /d3 (Vllj e~ s 71/.11/1@1'55>

Go, = exp |0s, /d‘ (I/QV e~ _ VTZ/Q(’“$7>

There are six different matrices obtained by permutations of the
above generators.

We can obtain all possible parameterizations of the matrix by setting
to zero two of the phases and permuting rows/columuns.

Other stuff




Currents and charges for 3-flavor fermion mixing

Lagrangian for three free Dirac fields with different masses

L(x) = V() (i @ — Mg) VU, (2)

where U1 = (v1,v9,v,) and M, = diag(my, ma, m,).

m

The SU(3) transformations:
W (2) = NP () o =18

with a; real constants, and A; the Gell-Mann matrices, give the
currents:

L 1 L
T (@) = ST (@)Y X U ()

Other stuff




The combinations:

Ql = %Cg + Qm.S + %an,&
1 1

QQ = §Q - Qm,S + ﬁQm,S
1 2

Qs = 3@~ 5Qns

Ql Z/d k O{k loékz - iTk_’i/Bik,i>7 1= 17273'

are the Noether charges for the fields v; with ). Q; = Q.

Flavor charges:

Qult) = G5 (1) : © - [ 5 (a3l (0ak o (6 - B, (057, 0))

Other stuff



CP violation and SU(3)
Modified Gell-Mann matrices:

0 €92 0 0 —ie2 0 0 e
= e 0 0 |, X=]| e 0 0 |, = 0 0 0
0 0 0 0 0 0 e’ 0 0
0 0 —ie s 0 0 0 0 0 0 )
= 0 0 0 De=10 0 €7 | XM= 0 0 —ieto7
e’ 0 0 0 e ™ 0 0 ie %7 0
1 0 0 . 1 0 0
=] 0 -1 0 Xs=-—1] 0 1 0
0 0 0 V3 00 -2




The issue of Lorentz invariance

— Canonical energy-momentum tensor for flavor fields:

Tho = VelYpOole — 'r)p,,ﬂe(i"/’\a,\ — Me)Ve
+ 017,01y — 'r}p(,ﬂu(i'y)‘a)\ —my)v,

+  NpoeMep(Tely + Uple)
— Define momentum and Hamiltonian operators:
P = /(l3x T%: H = /d3x 7%,
One finds:
Plliq) = k'|vio),
but
Hlvk o) # Qe olVi,o)-

e This happens because: [H,Q,] # 0.

Other stuff




Possible scenarios

e v, and v, are not fundamental; the fundamental objects are v, and

*,
Vo]

e v, and v, are fundamental but Poincaré invariance is broken
(es.nonlinearly realized! as in DSR¥) = modified dispersion relations;

e v, and v, are fundamental and Poincaré invariance is recovered in

the vertices.

*C. Giunti and C. W. Kim, “Fundamentals of Neutrino Physics and
Astrophysics,” (2007)

M. B., J. Magueijo, P. Pires-Pacheco, EPL (2005) ;

£J. Magueijo, L. Smolin, Phys. Rev. D (2003);




Flavor mixing as a non-abelian gauge theory*

Let us return to the Lagrangian:
L = 0(0P—me)ve+0, G P—mu)vy — mey (Devy + Dpve ).
The field equations:
i0ve = (—io-V + fme)ve + Bmeuv,
i0ov, = (—ia-V + pmy)v, + fmeyve.
can be written compactly:
tDovy = (—iae - V + S Mg)vy,

with vy = (ve,v,)T , My = diag(me, my,).

*M. B., M. Di Mauro, G. Vitiello, Phys. Lett. B (2011)

Other stuff




e Non-abelian covariant derivative:
Dqg := 0y +ime, S0,
with me, = % tan 20 ém and ém = m, — Mme.
e Gauge connection:
A, = %AZU“ = nM(Sm% € su(2),
with n# := (1,0,0,0)7, so that:
D,=0,+igBA,.

We define g = tan 20 as the coupling constant for the mixing
interaction.

e The equations of motion and the Lagrangian read:

(i’)/MDI,, — ]\/[d)uf = 0,

L=vs(in"D,, — Mg)vy.




e Define a new energy-momentum tensor:
fpg =vsiy,Dovy — 7]pUDf(i7’\D,\ — Mg)vy.
e Momentum and Hamiltonian operators:
Po= / Px T

= i/dgxulail/g+7Z/d3xz/28"yu

Pi(t)+ Pi(t), i=1,23;

) = [exTe

= /d3x vl (—ic- V + Bm.) ve + /d3X VL (—iae- V + pmy,) v,

This Hamiltonian does not generate time evolution.

Ho(t)+ H,(t).




Flavor fields in a different mass basis

— Flavor fields can be expanded also as*
d%k r ~r r art ik-x
@) = | G > [tk (Do (8) + 07 o (DB, (O] €™, 0 =€t

. r T — Wk, ot r T Wk ot
with u ,(t) = uy e and v"y (t) =07, ek

The spinor basis is defined by:
(—a-k+ mgﬁ)uﬁﬂ = Wkolj,

(—a-k+msB)v y , = —WkoV gy

where wi , = \/k? +m2.

*K. Fujii, C. Habe, T. Yabuki Phys. Rev. D (1999);




— Operators in different bases are connected by a Bogoliubov
transformation:

Gt ) _ (1)
( lea(t) ) =J (f) < BZTk,g(t) )Ju(t)a

with generator:

)= [Texp Qi 2 €5 aid, (087h o () + BT o (Do (1)

CH))
where (0,7) = (e, 1), (1, 2), gj = (Xo — X;j)/2 and
Xo = arctan(uq/|k|), x; = arctan(m;/|k|).

— New flavor vacuum:

Other stuff




— Momentum and Hamiltonian operators are both diagonalized:

Pa) = 30 [ e (W, 08, 0+ Bl 05 0)

q

—
~

N2

/dgkwkg(akt,u) o) = B (0 B, )

— Flavor charges remain diagonal ([Q,(t), J(t)] = 0):
=3 [ K (EL 0 0 - Pl 070 0).

e The new flavor states

90 (1)) = G4 (B)[0(t)) e

are locally eigenstates of a four momentum operator:

H,(t) Wko \ |~r
(Pg(t))w ) = ( . ) P (1),

Other stuff




Poincaré structure

Define the Lorentz generators:
N - - 1 ) — —
MA() = / dx (T2 = T%a0) + 5 / Pxvio vy = MM (1) + M(8),

where oH” = —%[ylb,'y”].

Algebra of equal-time commutators of the generators (0,0’ = e, u).

Py Pyl =0 5 (MR, PY) = b (0*PY = 0" P ) s

(3189, 5] = i (5T — ST — r ST 4 03T

e The Poincaré structure is preserved in the interaction vertices.




Physical picture (optical analogy)

e Flavor neutrinos are (locally) on-shell particles, with masses:

Me = My cos> 0 + may sin? 0, my, = My cos? 0 + my sin? 6.

e Oscillations arise because of interaction with the external gauge
field.

e Lorentz symmetry breaking is due to the external field.

e The vacuum acts as a sort of refractive medium (“neutrino aether”)

with respect to neutrinos.

e Optical analogy: flavor neutrinos as polarizations of the light,
oscillations induced by birefringence*.

*C. Weinheimer, Prog. Part. Nucl. Phys., 64 (2010) 205.

Other stuff




Phenomenological consequences

: ’ }i’[[&'!") ’ :
The tail of the tritium [ spectrum for:
- a massless neutrino (dotted line);
- fundamental flavor states (continuous line);
- superimposed prediction for 2 mass states (short-dashed line):
We used me = 1.75 KeV, m1 = 1 KeV, ma =4 KeV, 0 = /6.




Thermodynamic analogy

Identify
Fzﬁ, T =g =tan20
and write

H—-F=TS,

1
S = /dSXf/onyf = §6m/d3x(z78uu+ﬂﬂye).

e F' is the energy that can be extracted from neutrinos through
scattering experiments.

e Each of the two neutrinos can be considered as an open (dissipative)

system.

Other stuff




Plot of expectation values on |ve(0)) of Fe(t), Fu.(t) and 2T S.(t), as
functions of dimensionless time 7' = (w2 — w1 )t and 6 = w/6. Scale on
vertical axis is normalized to w,,.

Other stuff




Entanglement in neutrino oscillations.

e Flavor mixing and entanglement;

e Entanglement in neutrino oscillations:

— Flavor entanglement;

— Decoherence;

e Neutrino oscillations as a resource for quantum information.

e Flavor entanglement in Quantum Field Theory.




Entanglement in particle mixing

— Flavor mixing (neutrinos)

|ve) = cosOlvq) + sinf |ve)

|V/t> = *Sin9|1/1> + cos6 |V2>

e Correspondence with two-qubit states:
1) = [11]0)2 = [10),  |v2) = [0)1]1)2 = [01),

where |); denotes states in the Hilbert space for neutrinos with mass

my;.

= flavor states are entangled superpositions of the mass eigenstates:

|ve) = cos@|10) + sinf|01).




Single-particle entanglement?
— A state like [¢) 4.5 = |0)a|1) 5 +|1) 4]|0) 5 is entangled;
— entanglement among field modes, rather than particles;

— entanglement is a property of composite systems, rather than of
many-particle systems;

— entanglement and non-locality are not synonyms;

— single-particle entanglement is as good as two-particle entanglement
for applications (quantum cryptography, teleportation, violation of
Bell inequalities, etc..).

tJ.van Enk, Phys. Rev. A (2005), (2006);

M.O.Terra Cunha, J.A.Dunningham and V.Vedral, Proc. Royal Soc. A (2007);
J.A.Dunningham and V.Vedral, Phys. Rev. Lett. (2007).

S.B.Papp et al. Science (2009)

D.Salart et al. Phys. Rev. Lett (2010)

G.Bjork, A.Laghaout, U.L.Andersen Phys. Rev. A (2012)




Protocols for extraction of single-particle entanglement (from M.O.Terra
Cunha, J.A.Dunningham and V.Vedral, Proc. Royal Soc. A (2007)

Q
>

One photon is split, creating an
entangled one-photon state.

Q —
¥ —

Each photon mode interacts with a
two-level atom. Resonance is
tuned to give a 7 pulse, if a photon
is present. The excitation is
transferred to the atomic pair.

AN AN
N N + N
— —
— — — /
One excitation is distributed
between two atoms. A Bell state of

excited-ground states is created.

one-particle
entanglement

state transfer

two-particle
entanglement

w) )
One atom is split between two
traps, creating an entangled one-
atom state.

Each atomic trap interacts with an
attenuated atomic beam.
Resonance is tuned to create a
molecule if one atom is found in
the trap. The traps are left empty,
and the atom is transferred to the
beams.

AN AN
° >+ o
/ /
The (dark grey) trapped atom is

distributed between two (light grey)
atomic beams. A Bell state of

molecule—atom states is created.




Multipartite entanglement in neutrino mixing?

— Neutrino mixing (three flavors):

|Zf> = U(év (S) |ym>

with |zg) = (|ve), ), [v-)" and |v,,) = (1), |v2), [vs) "

— Mixing matrix (MNSP)

)
c12C13 S812€13 S13€
N 0 0
ue,o) = —S12C23 — C12523513€ C12C23 — S12523513€ S23€13 ,
0 0
512823 — C12€23S513€ —C12823 — S12C€23513€ C23C13

Where (é. (S) = (912,9137923;5)7 Cij = COS 97] and Sij = sin@z-j.
e Correspondence with three-qubit states:

[v1) = [1)1]0)2]0)3 = [100),  [v2) = [0)1]1)2]0)s = |010),

lvs) =10)1]0)2(1)s = [001)

M.B., F.Dell’Anno, S.De Siena, M.Di Mauro and F.Illuminati, Phys. Rev. D
(2008).

Other stuff




Multipartite entanglement

— Characterization of entanglement for multipartite systems is a
non-trivial task. Several approaches have been developed: global
entanglement, tangle, geometric measures$, etc...

In the 3-qubit case, the two fundamental classesY of states are those
of the GH Z state and of the W state:

1
IGHZ) = ﬁ(|ooo> +[111)),
W) = 7(|100> +1010) + [001)).

$T.C.Wei and P.M.Goldbart Phys. Rev. A (2003);
M.B., F.Dell’Anno, S.De Siena and F.Illuminati, Phys. Rev. A (2008).
IW.Diir, G.Vidal, and J.I.Cirac, Phys. Rev. A (2000)




(Flavor) Entanglement in neutrino oscillations!

— Two-flavor neutrino states

) = U(6,6) [v™)

where [V\7) = (lve),[v,))" and [1™)) = (1), |v2))" and

Uo) = cosf  sinf
o —sinf cosf ’

— Flavor states at time t:

D) = V(0,0 Uo(t) UG, 8)~" [1) = TE)),

_iBqt 0
with Ug(t) = ( ‘ 0 o—iBat )

IM.B., F.Dell’Anno, S.De Siena and F.Illuminati, EPL (2009).

Other stuff




— Transition probability for v, — v

Py () = [Wslva(®)® = [Tap(t)]*.

e We now take the flavor states at initial time as our qubits:

ve) = [Del0)u = [10)5,  [vu) = [0)e[1) = 101)

— Starting from [10); or |01), time evolution generates the
(entangled) Bell-like states:

Va)) = Uac(®)|1)el0)y + Tap()0)e|1), o= e, .

fo

Other stuff




Entanglement measure

— Let p = |¢){(¢| be the density operator for a pure state |1))

Bipartition of the N-partite system S = {S1,S2,..., S~} in two
subsystems:

SA,,, :{S,,;I,S,;27...,S1;77,}, 1<ii<ion<...<ipn SN;(1§7L<N)
and

SBy_n = {S5158525 3 Sin_n} 1< g1 <J2<... <jn-n < Niig # jp
Reduced density matrix of Sy, after tracing over Sp, _,:

PA, = Piyjiz,...in = TTBN—n [P] - T7'j1-,j2,~--,jN—n [/0}

Other stuff




e Linear entropy associated to such a bipartition:

AniBN_n d
SEP ) = S5 (0= Tralih,)),

d is the Hilbert-space dimension:
d = min{dim S4, ,dim Sg,_, } = min{2", 2V}

e Average linear entropy (global entanglement):

Sy o)) = ( N) >SN p),

n
An

sum over all the possible bi-partitions of the system in two

subsystems, respectively with n and N — n elements (1 <n < N).




Entanglement in neutrino oscillations: two-flavors

Consider the density matrix for the electron neutrino state

' = |ve(t))(ve(t)|, and trace over mode u = Pt

— The associated linear entropy is :

wa)(p(e)) =4 |I~Jeu(t)|2 |ﬁ€e(t)|2 = 4PV5%1/6 (t) PVQHV# (t)

— The linear entropy for the state p(®) is:

i = 59 = (SED) = 4[Uau () [Uae(d)?
= 4‘6ue(t)‘2 (1 - |ﬁae(t)|2)
= 4‘6uu(t)|2 (1 - ‘ﬁuu(t”z) :

e Linear entropy given by product of transition probabilities !

Other stuff




0.75

S](f;'u ) os

T

Linear entropy Séif“) (full) as a function of the scaled time T" = ijﬁ , with
12

sin® @ = 0.314. Transition probabilities P, _,,, (dashed) and P, .,

(dot-dashed) are reported for comparison.




Neutrino oscillations as a resource for quantum information

e Single-particle entanglement encoded in flavor states |v(/)(t)) is a
real physical resource that can be used, at least in principle, for

protocols of quantum information.

— Experimental scheme for the transfer of the flavor entanglement of a
neutrino beam into a single-particle system with spatially separated
modes.

Charged-current interaction between a neutrino v, with flavor a and
a nucleon N gives a lepton o~ and a baryon X:

Vo + N —a + X.

Other stuff




Generation of a single-particle entangled lepton state (two flavors):

In the target the charged-current interaction occurs: vo +n — a~ +p

with a = e, p.

A spatially nonuniform magnetic field B(r) constraints the momentum of
the outgoing lepton within a solid angle €2;, and ensures spatial separation

between lepton paths.

The reaction produces a superposition of electronic and muonic spatially



e Given the initial Bell-like superposition |v,(t)) the unitary process
associated with the weak interaction leads to the superposition

a(®)) = Ael1)e|0)y + Apul0)el 1)y

where [Ac|? + [A,]? = 1, and |k),, with k = 0,1, represents the lepton
qubit.

The coefficients A, are proportional to ﬁaﬂ(t) and to the cross
sections associated with the creation of an electron or a muon.

e Analogy with single-photon system: quantum uncertainty on the
so-called “which path” of the photon at the output of an unbalanced
beam splitter < uncertainty on the “which flavor” of the produced
lepton.

The coefficients A, plays the role of the transmissivity and of the
reflectivity of the beam splitter.

Other ¢
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