CPT, entanglement and neutral kaons

Antonio Di Domenico Dipartimento di Fisica, Sapienza Università di Roma and INFN sezione di Roma, Italy

Workshop on the Standard Model and Beyond 2 – 10 September 2017, Corfu, Greece

CPT: introduction

The three discrete symmetries of QM, C (charge conjugation: $q \rightarrow -q$), P (parity: $x \rightarrow -x$), and T (time reversal: $t \rightarrow -t$) are known to be violated in nature both singly and in pairs. Only CPT appears to be an exact symmetry of nature.

Exact CPT invariance holds for any quantum field theory (like the Standard Model) formulated on flat space-time which assumes:

(1) Lorentz invariance (2) Locality (3) Unitarity (i.e. conservation of probability).

Testing the validity of the CPT symmetry probes the most fundamental assumptions of our present understanding of particles and their interactions.

CPT: introduction

Extension of CPT theorem to a theory of quantum gravity far from obvious. (e.g. CPT violation appears in several QG models)

No predictive theory incorporating CPT violation => only phenomenological models to be constrained by experiments.

Consequences of CPT symmetry: equality of masses, lifetimes, |q| and $|\mu|$ of a particle and its anti-particle.

Neutral meson systems offer unique possibilities to test CPT invariance;

e.g. taking as figure of merit the fractional difference between the masses of a particle and its anti-particle:

neutral K system
$$\left| m_{K^0} - m_{\overline{K}^0} \right| / m_K < 10^{-18}$$

neutral B system $\left| m_{B^0} - m_{\overline{B}^0} \right| / m_{\overline{B}^0}$

 $\left| m_{B^0} - m_{\overline{B}^0} \right| / m_B < 10^{-14}$

proton- anti-proton

$$\left|m_p - m_{\overline{p}}\right| / m_p < 10^{-8}$$

Other interesting CPT tests: e.g. the study of anti-hydrogen atoms, etc..

CPT: introduction

Extension of CPT theorem to a theory of quantum gravity far from obvious.

(e.g. CPT violation appears in several QG models)

No predictive theory incorporating CPT violation => only phenomenological models to be constrained by experiments.

Consequences of CPT symmetry: equality of masses, lifetimes, |q| and $|\mu|$ of a particle and its anti-particle.

Neutral meson systems offer unique possibilities to test CPT invariance;

e.g. taking as figure of merit the fractional difference between the masses of a particle and its anti-particle:

neutral K system
$$|m_{K^0} - m_{\overline{K}^0}|/m_K < 10^{-18}$$
neutral B system $|m_{B^0} - m_{\overline{B}^0}|/m_B < 10^{-14}$ proton- anti-proton $|m_p - m_{\overline{p}}|/m_p < 10^{-8}$

Other interesting CPT tests: e.g. the study of anti-hydrogen atoms, etc..

Neutral kaons

$$\left|K_{S,L}\right\rangle = N_{S,L}\left[\left(1 + \varepsilon_{S,L}\right) \middle| K^{0}\right\rangle \pm \left(1 - \varepsilon_{S,L}\right) \middle| \overline{K}^{0}\right\rangle\right] \qquad \qquad \overline{i\frac{\partial}{\partial t}\Psi(t)} = \mathbf{H}\Psi(t) \qquad \mathbf{H} = \mathbf{M} - \frac{i}{2}\Gamma$$

CP violation:

T violation:

$$\varepsilon_{S,L} = \varepsilon \pm \delta$$

$$\varepsilon = \frac{H_{12} - H_{21}}{-i\Im M_1} = \frac{-i\Im M_1}{-i\Im M_1}$$

$$=\frac{\Pi_{12}-\Pi_{21}}{2(\lambda_S-\lambda_L)}=\frac{-i\Im M_{12}-\Im \Gamma_{12}/2}{\Delta m+i\Delta\Gamma/2}$$

CPT violation:

$$\delta = \frac{H_{11} - H_{22}}{2(\lambda_S - \lambda_L)} = \frac{1}{2} \frac{\left(m_{\overline{K}^0} - m_{K^0}\right) - (i/2)\left(\Gamma_{\overline{K}^0} - \Gamma_{K^0}\right)}{\Delta m + i\Delta\Gamma/2}$$

СГ

- $\delta \neq 0$ implies CPT violation
- $\epsilon \neq 0$ implies T violation
- $\epsilon \neq 0$ or $\delta \neq 0$ implies CP violation

(with a phase convention $\Im\Gamma_{12} = 0$)

$$\Delta m = m_L - m_S$$
, $\Delta \Gamma = \Gamma_S - \Gamma_L$
 $\Delta m = 3.5 \times 10^{-15} \text{ GeV}$

 $\Delta \Gamma \approx \Gamma_{\rm S} \approx 2\Delta m = 7 \times 10^{-15} \text{ GeV}$

Neutral kaons

$$\left|K_{S,L}\right\rangle = N_{S,L}\left[\left(1 + \varepsilon_{S,L}\right) \middle| K^{0}\right\rangle \pm \left(1 - \varepsilon_{S,L}\right) \middle| \overline{K}^{0}\right\rangle\right] \qquad \qquad \overline{i\frac{\partial}{\partial t}\Psi(t)} = \mathbf{H}\Psi(t) \qquad \mathbf{H} = \mathbf{M} - \frac{i}{2}\Gamma$$

CP violation:

T violation:

$$\varepsilon_{S,L} = \varepsilon \pm \delta$$

$$\varepsilon = \frac{H_{12} - H_{21}}{2(\lambda_s - \lambda_L)} = \frac{-i\Im M_{12} - \Im \Gamma_{12}/2}{\Delta m + i\Delta \Gamma/2}$$

CPT violation:

$$\delta = \frac{H_{11} - H_{22}}{2(\lambda_S - \lambda_L)} = \frac{1}{2} \frac{\left(m_{\overline{K}^0} - m_{\overline{K}^0}\right) - (i/2)\left(\Gamma_{\overline{K}^0} - \Gamma_{\overline{K}^0}\right)}{\Delta m + i\Delta\Gamma/2}$$

huge amplification factor!!

- $\delta \neq 0$ implies CPT violation $\Delta m = m$
- $\epsilon \neq 0$ implies T violation
- $\epsilon \neq 0$ or $\delta \neq 0$ implies CP violation

(with a phase convention $\Im\Gamma_{12} = 0$)

$$\Delta m = m_L - m_S \quad , \quad \Delta \Gamma = \Gamma_S - \Gamma_L$$

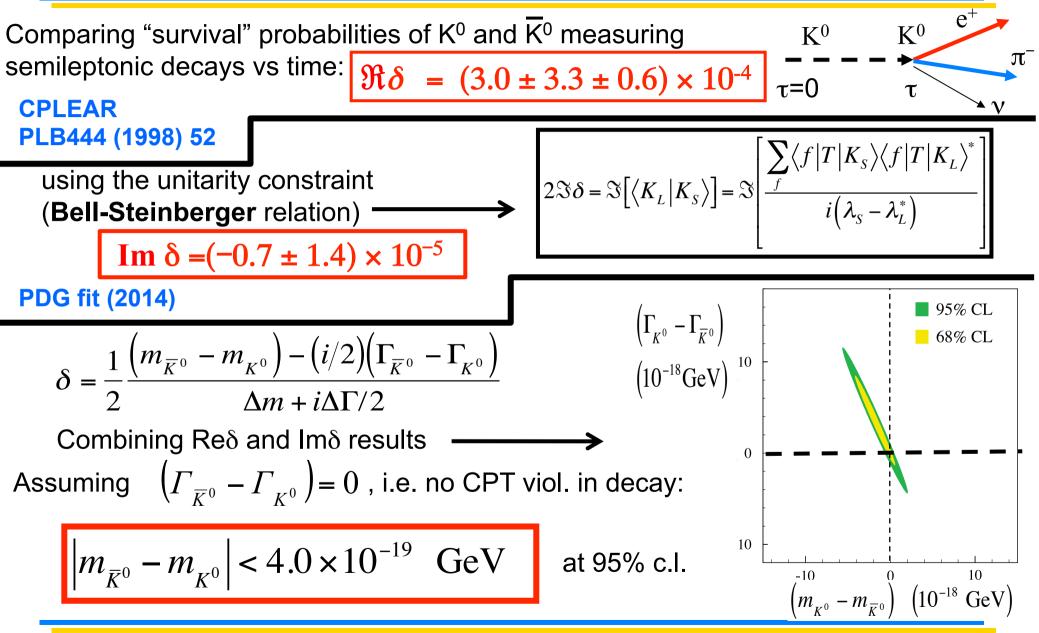
$$\Delta m = 3.5 \times 10^{-15} \text{ GeV}$$

 $\Delta \Gamma \approx \Gamma_{\rm s} \approx 2\Delta m = 7 \times 10^{-15} {\rm GeV}$

neutral kaons vs other oscillating meson systems

	<m></m> (GeV)	Δm (GeV)	<Γ> (GeV)	ΔΓ/2 (GeV)
K ⁰	0.5	3x10 ⁻¹⁵	3x10 ⁻¹⁵	3x10 ⁻¹⁵
D^0	1.9	6x10 ⁻¹⁵	2x10 ⁻¹²	1x10 ⁻¹⁴
B ⁰ _d	5.3	3x10 ⁻¹³	4x10 ⁻¹³	O(10 ⁻¹⁵) (SM prediction)
B ⁰ _s	5.4	1x10 ⁻¹¹	4x10 ⁻¹³	3x10 ⁻¹⁴

"Standard" CPT test



- Is it possible to test the CPT symmetry directly in transition processes between kaon states, rather than comparing masses, lifetimes, or other intrinsic properties of particle and anti-particle states?
- CPT violating effects may not appear at first order in diagonal mass terms (survival probabilities) while they can manifest at first order in transitions (nondiagonal terms).
- In standard WWA the test is related to Re δ , a genuine CPT violating effect independent of $\Delta\Gamma$, i.e. not requiring the decay as an essential ingredient.
- Clean formulation required. Possible spurious effects induced by CP violation in the decay and/or a violation of the $\Delta S = \Delta Q$ rule have to be well under control.

Probing CPT: J. Bernabeu, A.D.D., P. Villanueva, JHEP 10 (2015) 139 Time-reversal violation: J. Bernabeu, A.D.D., P. Villanueva, NPB 868 (2013) 102

Definition of states

Let us also consider the states $|K_+\rangle$, $|K_-\rangle$ defined as follows: $|K_+\rangle$ is the state filtered by the decay into $\pi\pi$ ($\pi^+\pi^+$ or $\pi^0\pi^0$), a pure CP = +1 state; analogously $|K_-\rangle$ is the state filtered by the decay into $3\pi^0$, a pure CP = -1 state. Their orthogonal states correspond to the states which cannot decay into $\pi\pi$ or $3\pi^0$, defined, respectively, as

$$\begin{split} |\widetilde{K}_{-}\rangle &\equiv \widetilde{N}_{-} \left[|K_{L}\rangle - \eta_{\pi\pi}|K_{S}\rangle\right] \\ |\widetilde{K}_{+}\rangle &\equiv \widetilde{N}_{+} \left[|K_{S}\rangle - \eta_{3\pi^{0}}|K_{L}\rangle\right] \end{split} \qquad \eta_{\pi\pi} &= \frac{\langle \pi\pi|T|K_{L}\rangle}{\langle \pi\pi|T|K_{S}\rangle} \\ \eta_{3\pi^{0}} &= \frac{\langle 3\pi^{0}|T|K_{S}\rangle}{\langle 3\pi^{0}|T|K_{L}\rangle} \end{split}$$
Orthogonal bases:
$$\{K_{+}, \widetilde{K}_{-}\} \qquad \{\widetilde{K}_{+}, K_{-}\}$$

Even though the decay products are orthogonal, the filtered $|K+\rangle$ and $|K-\rangle$ states can still be non-orthoghonal. Condition of orthoghonality:

$$\eta_{\pi\pi} + \eta_{3\pi^0}^{\star} = \epsilon_L + \epsilon_S^{\star} \qquad \longrightarrow \qquad \begin{array}{c} |\mathbf{K}_+\rangle \equiv |\mathbf{K}_+\rangle \\ |\mathbf{K}_-\rangle \equiv |\widetilde{\mathbf{K}}_-\rangle \end{array}$$

Neglect direct CP violation. Similarly any $\Delta S = \Delta Q$ rule violation for $|K^0\rangle$ and $|\bar{K}^0\rangle$

Direct test of CPT symmetry in neutral kaon transitions

CPT symmetry test

Reference		$\mathcal{CPT} ext{-} ext{conjuga}$	te
Transition	Decay products	Transition	Decay products
$\overline{\mathrm{K}^{0} ightarrow \mathrm{K}_{+}}$	$(\ell^-, \pi\pi)$	$K_+ \to \bar{K}^0$	$(3\pi^0,\ell^-)$
$K^0 \rightarrow K$	$(\ell^{-}, 3\pi^{0})$	$K \to \bar{K}^0$	$(\pi\pi,\ell^-)$
$\bar{\rm K}^0 ightarrow {\rm K}_+$	$(\ell^+, \pi\pi)$	${\rm K}_+ ightarrow {\rm K}^0$	$(3\pi^0, \ell^+)$
$\bar{K}^0 \to K$	$(\ell^+, 3\pi^0)$	${\rm K_{-}} ightarrow {\rm K^{0}}$	$(\pi\pi,\ell^+)$

One can define the following ratios of probabilities:

$$\begin{aligned} R_{1,\mathcal{CPT}}(\Delta t) &= P\left[\mathrm{K}_{+}(0) \to \bar{\mathrm{K}}^{0}(\Delta t)\right] / P\left[\mathrm{K}^{0}(0) \to \mathrm{K}_{+}(\Delta t)\right] \\ R_{2,\mathcal{CPT}}(\Delta t) &= P\left[\mathrm{K}^{0}(0) \to \mathrm{K}_{-}(\Delta t)\right] / P\left[\mathrm{K}_{-}(0) \to \bar{\mathrm{K}}^{0}(\Delta t)\right] \\ R_{3,\mathcal{CPT}}(\Delta t) &= P\left[\mathrm{K}_{+}(0) \to \mathrm{K}^{0}(\Delta t)\right] / P\left[\bar{\mathrm{K}}^{0}(0) \to \mathrm{K}_{+}(\Delta t)\right] \\ R_{4,\mathcal{CPT}}(\Delta t) &= P\left[\bar{\mathrm{K}}^{0}(0) \to \mathrm{K}_{-}(\Delta t)\right] / P\left[\mathrm{K}_{-}(0) \to \mathrm{K}^{0}(\Delta t)\right] \end{aligned}$$

Any deviation from $R_{i,CPT}$ =1 constitutes a violation of CPT-symmetry

J. Bernabeu, A.D.D., P. Villanueva, JHEP 10 (2015) 139

Reference	T-conjugate	CP-conjugate	CPT-conjugate
$K^0 \to K^0$	$K^0 \to K^0$	$\bar{K}^0 \to \bar{K}^0$	$\bar{K}^0 \to \bar{K}^0$
$K^0 \to \bar{K}^0$	$\bar{K}^0 \to K^0$	$\bar{K}^0 \to K^0$	$K^0 \to \bar{K}^0$
$\mathrm{K}^{0} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_+ \to \mathrm{K}^0$	$\bar{\mathrm{K}}^{0} \rightarrow \mathrm{K}_{+}$	$K_+ \to \bar{K}^0$
$\mathrm{K}^{0} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \to \mathrm{K}^{0}$	$\bar{K}^0 \to K$	$K \to \bar{K}^0$
$\bar{K}^0 \to K^0$	$K^0 \to \bar{K}^0$	$K^0 \to \bar{K}^0$	$\bar{K}^0 \to K^0$
$\bar{K}^0 \to \bar{K}^0$	$\bar{K}^0 \to \bar{K}^0$	$\mathrm{K}^{0} \rightarrow \mathrm{K}^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{K}^{0}$
$\bar{K}^0 \to K_+$	$K_+ \to \bar{K}^0$	$\mathrm{K}^{0} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_+ \to \mathrm{K}^0$
$\bar{K}^0 \to K$	$K \to \bar{K}^0$	$\mathrm{K}^{0} \rightarrow \mathrm{K}_{-}$	$K_{-} \rightarrow K^{0}$
$\mathrm{K}_+ \to \mathrm{K}^0$	$\mathrm{K}^{0} \rightarrow \mathrm{K}_{+}$	$K_+ \to \bar{K}^0$	$\bar{K}^0 \to K_+$
$K_+ \to \bar{K}^0$	$\bar{\mathrm{K}}^{0} \to \mathrm{K}_{+}$	$K_+ \rightarrow K^0$	$\mathrm{K}^{0} \rightarrow \mathrm{K}_{+}$
$\mathrm{K}_+ \to \mathrm{K}_+$	$K_+ \rightarrow K_+$	$K_+ \rightarrow K_+$	$\mathrm{K}_+ \to \mathrm{K}_+$
$\mathrm{K}_+ \to \mathrm{K}$	$K_{-} \rightarrow K_{+}$	$K_+ \rightarrow K$	$K \rightarrow K_+$
$\mathrm{K}_{-} \to \mathrm{K}^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{K}_{-}$	$K \to \bar{K}^0$	$\bar{K}^0 \to K$
$K \to \bar{K}^0$	$\bar{\mathrm{K}}^{0} \rightarrow \mathrm{K}_{-}$	$K_{-} \rightarrow K^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{K}_{-}$
$\mathrm{K}_{-} \to \mathrm{K}_{+}$	$K_+ \rightarrow K$	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_+ \to \mathrm{K}$
$\mathrm{K}_{-} \to \mathrm{K}_{-}$	$K_{-} \rightarrow K_{-}$	$K_{-} \rightarrow K_{-}$	$K \rightarrow K$

Conjugate= reference

Reference	T-conjugate	CP-conjugate	CPT-conjugate
$\mathrm{K}^{0} \to \mathrm{K}^{0}$		$\bar{K}^0 \to \bar{K}^0$	$\bar{K}^0 \to \bar{K}^0$
$K^0 \to \bar{K}^0$	$\bar{K}^0 \to K^0$	$\bar{K}^0 \to K^0$	$\mathbf{K}^{0} \rightarrow \mathbf{K}^{0}$
$\mathrm{K}^{0} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_+ \to \mathrm{K}^0$	$\bar{K}^0 \to K_+$	$K_+ \to \bar{K}^0$
$\mathrm{K}^{0} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\bar{K}^0 \to K$	$K \to \bar{K}^0$
$\bar{K}^0 \to K^0$	${\rm K}^0 \to \bar{\rm K}^0$	$K^0 \to \bar{K}^0$	$\bar{\mathbf{K}}^0$ \mathbf{K}^0
$\bar{K}^0 \to \bar{K}^0$	$\overline{\mathbf{K}}^0 \rightarrow \overline{\mathbf{K}}^0$	$\mathrm{K}^{0} \rightarrow \mathrm{K}^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{K}^{0}$
$\bar{K}^0 \to K_+$	$K_+ \to \bar{K}^0$	$\mathrm{K}^{0} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_+ \to \mathrm{K}^0$
$\bar{K}^0 \to K$	$K\to \bar{K}^0$	$\mathrm{K}^{0} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$
$\mathrm{K}_+ \to \mathrm{K}^0$	$\mathrm{K}^{0} \rightarrow \mathrm{K}_{+}$	$K_+ \to \bar{K}^0$	$\bar{\mathrm{K}}^0 \to \mathrm{K}_+$
$K_+ \to \bar{K}^0$	$\bar{\rm K}^0 \to {\rm K}_+$	$\mathrm{K}_+ \to \mathrm{K}^0$	$\mathrm{K}^{0} \rightarrow \mathrm{K}_{+}$
$\mathrm{K}_+ \to \mathrm{K}_+$	$K \rightarrow K$	\mathbf{K}_{+} \mathbf{K}_{+}	$K_{+} \rightarrow K_{+}$
$\mathrm{K}_+ \to \mathrm{K}$	$K_{-} \rightarrow K_{+}$	\mathbf{V}_{+} \mathbf{V}_{-}	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$
$\mathrm{K}_{-} \to \mathrm{K}^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{K}_{-}$	$K \to \bar{K}^0$	$\bar{K}^0 \to K$
$K \to \bar{K}^0$	$\bar{K}^0 \to K$	$\mathrm{K}_{-} \to \mathrm{K}^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{K}_{-}$
$\mathrm{K}_{-} \to \mathrm{K}_{+}$	$\mathrm{K}_+ \rightarrow \mathrm{K}$	$\mathbf{V} \rightarrow \mathbf{V}_+$	$\mathrm{K}_+ \to \mathrm{K}$
$K_{-} \rightarrow K_{-}$			K K

Conjugate= reference

already in the table with conjugate as reference

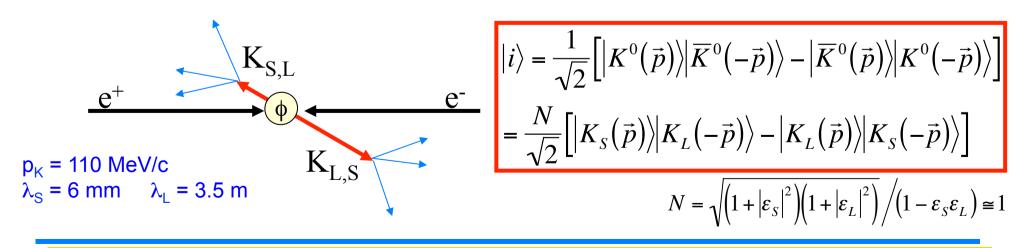
	1		· · · · · · · · · · · · · · · · · · ·
Reference	T-conjugate	CP-conjugate	CPT-conjugate
$\mathrm{K}^{0} \rightarrow \mathrm{K}^{0}$		$\bar{K}^0 \to \bar{K}^0$	$\bar{K}^0 \to \bar{K}^0$
$K^0 \to \bar{K}^0$	$\bar{\mathrm{K}}^{0} \to \mathrm{K}^{0}$	$\bar{K}^0 \to K^0$	$\mathbf{X}^{0} \rightarrow \mathbf{X}^{0}$
$\mathrm{K}^{0} \to \mathrm{K}_{+}$	$K_+ \rightarrow K^0$	$\bar{\rm K}^0 \to {\rm K}_+$	$K_+ \to \bar{K}^0$
$\mathrm{K}^{0} \rightarrow \mathrm{K}_{-}$	$K_{-} \rightarrow K^{0}$	$\bar{K}^0 \to K$	$K \to \bar{K}^0$
$\bar{K}^0 \to K^0$	$K^0 \setminus \overline{K}^0$	\mathbf{K}^0 $\mathbf{\bar{K}}^0$	$\bar{\mathbf{k}}^0$, \mathbf{k}^0
$\bar{K}^0 \to \bar{K}^0$	$\overline{\mathbf{X}}^0 \rightarrow \overline{\mathbf{X}}^0$	$\frac{1}{10} \rightarrow \frac{1}{10}$	$\overline{\mathbf{K}^{0} \rightarrow \mathbf{K}^{0}}$
$\bar{K}^0 \to K_+$	$K_+ \to \bar{K}^0$	\mathbf{K}^{0} \mathbf{K}_{+}	$\mathrm{K}_+ \to \mathrm{K}^0$
$\bar{K}^0 \to K$	$K_{-} \rightarrow \bar{K}^{0}$		$\mathrm{K}_{-} \to \mathrm{K}^{0}$
$K_+ \to K^0$	$K^0 \rightarrow K$	$K_+ \to \bar{K}^0$	<u>ko</u> k
$K_+ \to \bar{K}^0$	$\overline{\mathbf{K}^0 - \mathbf{K}_+}$	\mathbf{H}_{+} \mathbf{H}_{0}	\mathbf{K}^{0} \mathbf{K}_{+}
$\mathrm{K}_+ \to \mathrm{K}_+$	$K \rightarrow K$	$\mathbf{K} \to \mathbf{K}_+$	$K_{+} \rightarrow K_{+}$
$\mathrm{K}_+ \to \mathrm{K}$	$K_{-} \rightarrow K_{+}$		$K \rightarrow K_+$
$\mathrm{K}_{-} \to \mathrm{K}^{0}$		$K \to \bar{K}^0$	K ⁰ K
$K \to \bar{K}^0$	$\overline{\mathbf{K}}^{0}$ $\overline{\mathbf{K}}$	$\mathbf{H} = \mathbf{H}^0$	
$\mathrm{K}_{-} \to \mathrm{K}_{+}$			
$K_{-} \rightarrow K_{-}$			K K

Conjugate=	Reference	T-conjugate	CP-conjugate	CPT-conjugate
reference	$K^0 \rightarrow K^0$		$\bar{K}^0 \rightarrow \bar{K}^0$	$\bar{K}^0 \rightarrow \bar{K}^0$
	$K^0 \to \bar{K}^0$	$\bar{\mathrm{K}}^{0} \rightarrow \mathrm{K}^{0}$	$\bar{\mathrm{K}}^{0} \rightarrow \mathrm{K}^{0}$	$\mathbf{X}^{0} \rightarrow \mathbf{\overline{X}}^{0}$
	$\mathrm{K}^{0} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_+ \to \mathrm{K}^0$	$\bar{K}^0 \to K_+$	$K_+ \to \bar{K}^0$
already in the	$\mathrm{K}^{0} \to \mathrm{K}_{-}$	$K_{-} \rightarrow K^{0}$	$\bar{K}^0 \to K$	$K \to \bar{K}^0$
already in the table with	$\bar{K}^0 \to K^0$	\mathbf{K}^0 $\mathbf{\bar{K}}^0$	$K^0 \setminus \overline{K}^0$	$ar{k}^0$ \mathbf{k}^0
conjugate as	$\bar{K}^0 \to \bar{K}^0$	$\overline{\overline{\mathbf{X}}}^0 \rightarrow \overline{\overline{\mathbf{X}}}^0$	$\mathbf{K}^0 \rightarrow \mathbf{K}^0$	$\mathbf{K}^{0} \rightarrow \mathbf{K}^{0}$
reference	$\bar{K}^0 \to K_+$	$K_+ \to \bar{K}^0$	$\mathbf{K}^{0} \rightarrow \mathbf{K}_{+}$	$\mathrm{K}_+ \to \mathrm{K}^0$
	$\bar{K}^0 \to K$	$K \to \bar{K}^0$	$\mathbf{K}^{0} \rightarrow \mathbf{K}^{-}$	$\mathrm{K}_{-} \to \mathrm{K}^{0}$
	$\mathrm{K}_+ \to \mathrm{K}^0$	$K^0 \rightarrow K$	$K_+ \to \bar{K}^0$	<u>ko</u> k
	$K_+ \to \bar{K}^0$	\mathbf{K}^0 \mathbf{K}_+	\mathbf{H}_{+} \mathbf{H}_{0}	\mathbf{K}^{0} \mathbf{K}_{+}
	$\mathrm{K}_+ \to \mathrm{K}_+$	$K \longrightarrow K$	\mathbf{K}_{+} , \mathbf{K}_{+}	$K_{+} \rightarrow K_{+}$
Two identical	$\mathrm{K}_+ \to \mathrm{K}$	$K_{-} \rightarrow K_{+}$		$K_{-} \rightarrow K_{+}$
conjugates	$\mathrm{K}_{-} \to \mathrm{K}^{0}$		$K \to \bar{K}^0$	
for one reference	$K \to \bar{K}^0$	$\overline{\mathbf{K}}^{0}$ $\overline{\mathbf{K}}$	$\mathbf{H} \rightarrow \mathbf{H}^0$	\mathbf{K}^{0} \mathbf{K}
	$\mathrm{K}_{-} \to \mathrm{K}_{+}$		$\mathbf{V} \rightarrow \mathbf{V}_+$	
	$K_{-} \rightarrow K_{-}$		$V \rightarrow V_{-}$	

Conjugate=	Reference	T-conjugate	CP-conjugate	CPT-conjugate	
reference	$K^0 \rightarrow K^0$	$\mathbf{K}_0 \rightarrow \mathbf{K}_0$	$\bar{K}^0 \to \bar{K}^0$	$\bar{K}^0 \to \bar{K}^0$	
	${\rm K}^0 \to \bar{\rm K}^0$	$\bar{K}^0 \to K^0$	$\bar{K}^0 \to K^0$	$\mathbf{K}^{0} \rightarrow \mathbf{K}^{0}$	
	$K^0 \rightarrow K_+$	$\mathrm{K}_+ \to \mathrm{K}^0$	$\bar{K}^0 \to K_+$	$K_+ \to \bar{K}^0$	4 distinct tests
	$\mathrm{K}^{0} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \to \mathrm{K}^{0}$	$\bar{K}^0 \to K$	$K \to \bar{K}^0$	of T symmetry
already in the table with	$\bar{K}^0 \to K^0$	$K^0 \setminus \overline{K}^0$	$K^0 \setminus \overline{K}^0$	$\bar{\mathbf{K}}^0$ \mathbf{K}^0	of i Symmotry
conjugate as	$\bar{K}^0 \to \bar{K}^0$	$\overline{\mathbf{K}}^{0} \rightarrow \overline{\mathbf{K}}^{0}$	$\overline{\mathbf{K}}^0 \longrightarrow \overline{\mathbf{K}}^0$	$\mathbf{K}^{0} \rightarrow \mathbf{K}^{0}$	1 distinct to sta
reference	$\bar{K}^0 \rightarrow K_+$	${\rm K}_+ \to \bar{\rm K}^0$	$\mathbf{K}^{0} \rightarrow \mathbf{K}_{+}$	$\mathrm{K}_+ \to \mathrm{K}^0$	4 distinct tests
	$\bar{K}^0 \to K$	$K \to \bar{K}^0$		$\mathrm{K}_{-} \to \mathrm{K}^{0}$	of CP symmetry
	$\mathrm{K}_+ \to \mathrm{K}^0$	\mathbb{K}_0 \mathbb{K}_1	$K_+ \to \bar{K}^0$	K⁰ K	1 distinct tooto
	$K_+ \rightarrow \bar{K}^0$	$\bar{\mathbf{K}}^0$ $\bar{\mathbf{K}}_{\mp}$	\mathbf{H}_{+} \mathbf{H}_{0}	\mathbf{K}^{0} \mathbf{K}_{+}	4 distinct tests
	$K_+ \rightarrow K_+$	$K \rightarrow K$	\mathbf{K}_{+} , \mathbf{K}_{+}	K, K,	of CPT symmetry
Two identical	$\mathrm{K}_+ \to \mathrm{K}$	$K_{-} \rightarrow K_{+}$	\mathbf{V}_{+} , \mathbf{V}_{-}	$K_{-} \rightarrow K_{+}$	
conjugates	$K_{-} \rightarrow K^{0}$		$K \to \bar{K}^0$	K ⁰ K	
for one reference	$K \to \bar{K}^0$	K ⁰ K	$\mathbf{K} = \mathbf{H}^0$		
	$K_{-} \rightarrow K_{+}$		$\mathbf{V} \rightarrow \mathbf{V}_+$		
	$K_{-} \rightarrow K_{-}$			K K	

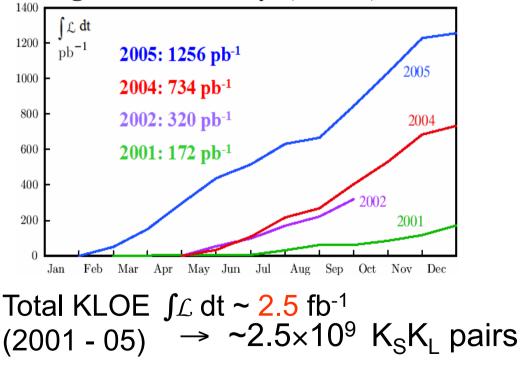
Quantum entanglement as a tool

- The in<->out states inversion required in a DIRECT test of CPT (or T) can be performed exploiting the properties of the quantum entanglement.
- In maximally entangled systems the complete knowledge of the system as a whole is encoded in the state, no information on single subsystems is available.
- Once a measurement is performed on one subsystem, then the information is immediately transferred to its partner, which is prepared in the orthogonal state
- $\sigma(e^+e^- \rightarrow \phi) \sim 3 \text{ mb};$ W = m_{ϕ} = 1019.4 MeV BR($\phi \rightarrow K^0 \underline{K}^0$) ~ 34% ~10⁶/pb⁻¹ KK pairs produced in an antisymmetric quantum state with J^{PC} = 1⁻⁻ :

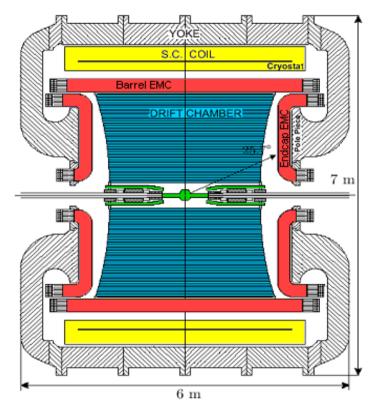


The KLOE detector at the Frascati ϕ -factory DA ΦNE

Integrated luminosity (KLOE)



KLOE detector

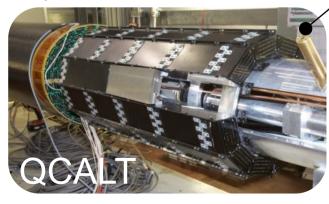


Lead/scintillating fiber calorimeter drift chamber 4 m diameter × 3.3 m length helium based gas mixture

KLOE-2 at **DAΦNE**

LYSO Crystal w SiPM Low polar angle

Tungsten / Scintillating Tiles w SiPM Quadrupole Instrumentation



A. Di Domenico

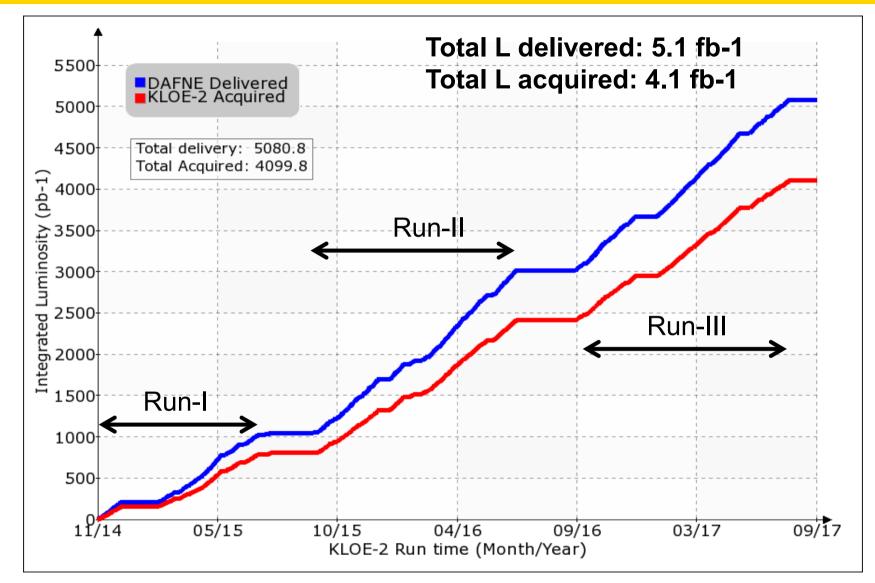
Workshop on the Standard Model and Beyond, 2 -10 September 2017, Corfu, Greece

Inner Tracker – 4 layers of Cylindrical GEM detectors Improve track and vtx reconstr. First CGEM in HEP expt.

Scintillator hodoscope +PMTs

calorimeters LYSO+SiPMs at ~ 1 m from IP

KLOE-2 Data Taking



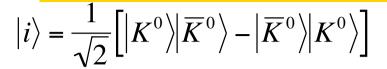
KLOE-2 goal: L acquired > 5 fb⁻¹ => L delivered > \sim 6.2 fb-1 by 31 March 2018

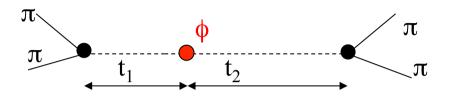
List of KLOE CP/CPT/QM tests with neutral kaons

Mode	Test	Param.	KLOE measurement
$K_L \rightarrow \pi^+ \pi^-$	СР	BR	$(1.963 \pm 0.012 \pm 0.017) \times 10^{-3}$
K _s →3π ⁰	СР	BR	< 2.6 × 10 ⁻⁸
K _s →πev	СР	A _S	$(1.5 \pm 10) \times 10^{-3}$
K _s →πev	СРТ	Re(x_)	$(-0.8 \pm 2.5) \times 10^{-3}$
K _S →πev	СРТ	Re(y)	$(0.4 \pm 2.5) \times 10^{-3}$
All K _{S,L} BRs, η's etc (unitarity)	CP CPT	Re(ε) Im(δ)	$(159.6 \pm 1.3) \times 10^{-5}$ $(0.4 \pm 2.1) \times 10^{-5}$
$K_{S}K_{L} \rightarrow \pi^{+}\pi^{-}, \pi^{+}\pi^{-}$	QM	ζ ₀₀	$(0.1 \pm 1.0) \times 10^{-6}$
$K_S K_L \rightarrow \pi^+\pi^-, \pi^+\pi^-$	QM	ζ _{SL}	$(0.3 \pm 1.9) \times 10^{-2}$
$K_S K_L \rightarrow \pi^+\pi^-, \pi^+\pi^-$	CPT & QM	α	$(-10 \pm 37) \times 10^{-17} \text{ GeV}$
$K_S K_L \rightarrow \pi^+\pi^-, \pi^+\pi^-$	CPT & QM	β	$(1.8 \pm 3.6) \times 10^{-19} \text{ GeV}$
K _S K _L →π⁺π⁻ ,π⁺π⁻	CPT & QM	γ	(0.4 ± 4.6) × 10 ⁻²¹ GeV compl. pos. hyp. (0.7 ± 1.2) × 10 ⁻²¹ GeV
$K_S K_L \rightarrow \pi^+\pi^-, \pi^+\pi^-$	CPT & QM	Re(w)	$(-1.6 \pm 2.6) \times 10^{-4}$
$K_S K_L \rightarrow \pi^+\pi^-, \pi^+\pi^-$	CPT & QM	Im(ω)	$(-1.7 \pm 3.4) \times 10^{-4}$
$K_S K_L \rightarrow \pi^+ \pi^-, \pi^+ \pi^-$	CPT & Lorentz	Δa_0	$(-6.2 \pm 8.8) \times 10^{-18} \text{ GeV}$
$K_S K_L \rightarrow \pi^+\pi^-, \pi^+\pi^-$	CPT & Lorentz	Δa _Z	$(-0.7 \pm 1.0) \times 10^{-18} \text{ GeV}$
$K_S K_L \rightarrow \pi^+ \pi^-, \pi^+ \pi^-$	CPT & Lorentz	Δa _X	$(3.3 \pm 2.2) \times 10^{-18} \text{ GeV}$
$K_S K_L \rightarrow \pi^+\pi^-, \pi^+\pi^-$	CPT & Lorentz	Δa _Y	$(-0.7 \pm 2.0) \times 10^{-18} \text{ GeV}$

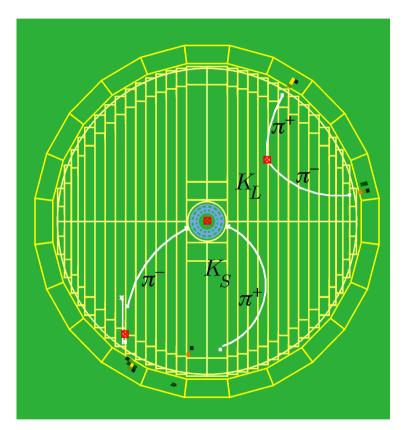
Workshop on the Standard Model and Beyond, 2 -10 September 2017, Corfu, Greece

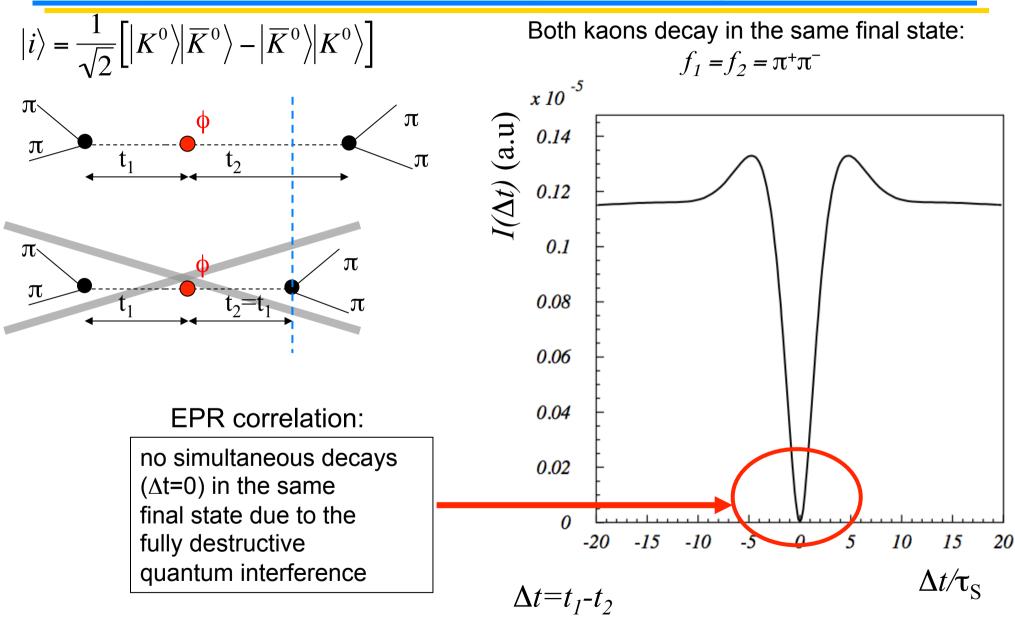
Entanglement in neutral kaon pairs from \$\phi\$





Both kaons decay in the same final state: $f_1 = f_2 = \pi^+\pi^-$





 $\phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$: test of quantum coherence

$$\left|i\right\rangle = \frac{1}{\sqrt{2}} \left[\left|K^{0}\right\rangle\right| \overline{K}^{0} \left\rangle - \left|\overline{K}^{0}\right\rangle\right| K^{0} \right\rangle\right]$$

$$I(\pi^{+}\pi^{-},\pi^{+}\pi^{-};\Delta t) = \frac{N}{2} \left[\left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| K^{0}\overline{K}^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} - \left(1 - \zeta_{0\overline{0}}\right) \cdot 2\Re \left(\left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| K^{0}\overline{K}^{0}(\Delta t) \right\rangle \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \left| \overline{K}^{0}K^{0}(\Delta t) \right\rangle^{*} \right) \right]$$

 $\phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$: test of quantum coherence

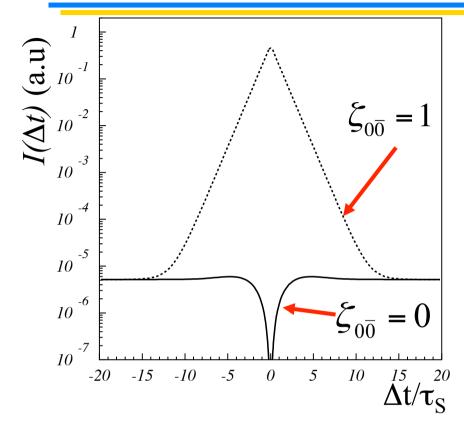
$$\left|i\right\rangle = \frac{1}{\sqrt{2}} \left[\left|K^{0}\right\rangle\right| \overline{K}^{0} \left\rangle - \left|\overline{K}^{0}\right\rangle\right| K^{0} \right\rangle\right]$$

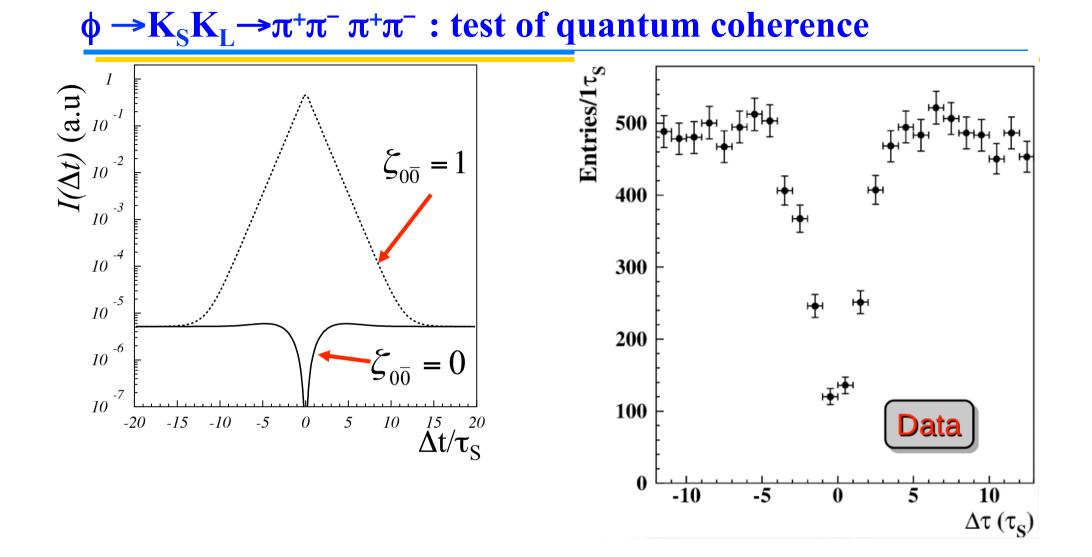
$$I(\pi^{+}\pi^{-},\pi^{+}\pi^{-};\Delta t) = \frac{N}{2} \left[\left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \middle| K^{0}\overline{K}^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \middle| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} - \left(1 - \zeta_{0\overline{0}}\right)^{2} 2\Re \left(\left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \middle| K^{0}\overline{K}^{0}(\Delta t) \right\rangle \right\rangle \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \middle| \overline{K}^{0}K^{0}(\Delta t) \right\rangle^{*} \right) \right]$$

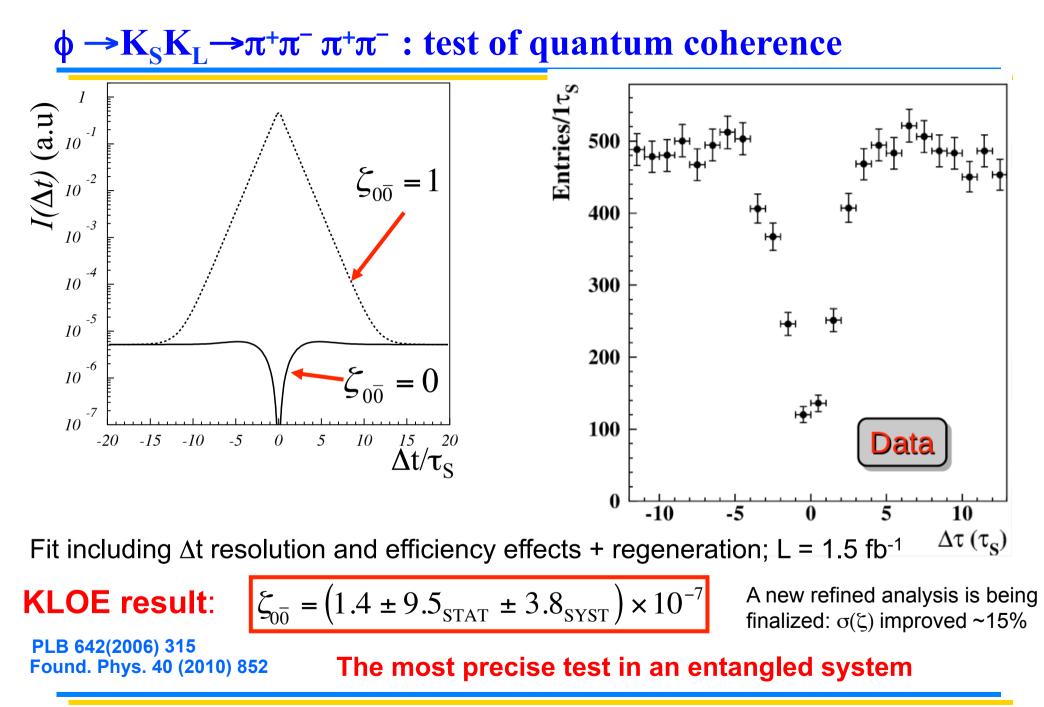
Decoherence parameter:
$$\xi_{0\overline{0}} = 0 \quad \Rightarrow \quad QM$$
$$\xi_{0\overline{0}} = 1 \quad \Rightarrow \quad \text{total decoherence}$$

Bertlmann, Grimus, Hiesmayr PR D60 (1999) 114032 Bertlmann, Durstberger, Hiesmayr PRA 68 012111 (2003)

$\phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$: test of quantum coherence







$$|i\rangle = \frac{1}{\sqrt{2}} \left[|K^{0}(\vec{p})\rangle | \bar{K}^{0}(-\vec{p})\rangle - |\bar{K}^{0}(\vec{p})\rangle | K^{0}(-\vec{p})\rangle \right]$$
-decay as filtering measurement

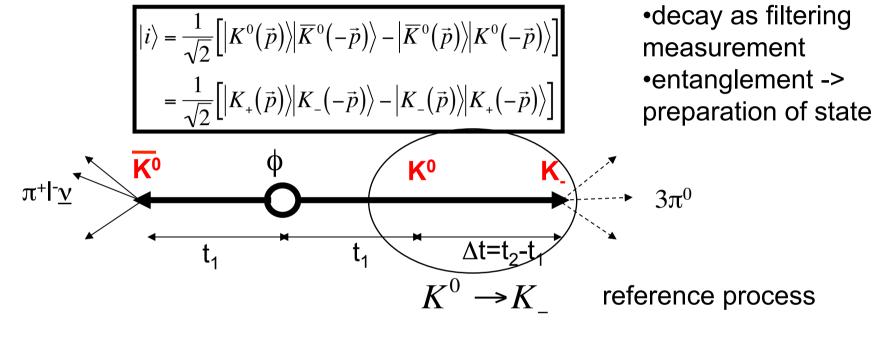
$$= \frac{1}{\sqrt{2}} \left[|K_{+}(\vec{p})\rangle | K_{-}(-\vec{p})\rangle - |K_{-}(\vec{p})\rangle | K_{+}(-\vec{p})\rangle \right]$$
-decay as filtering measurement
-entanglement -> preparation of state

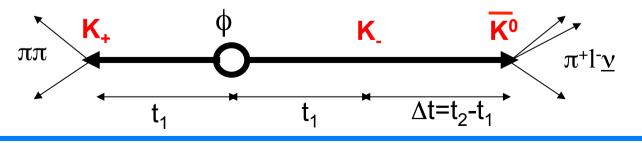
$$\pi^{+} | \underline{v} \xrightarrow{\mathbf{K}^{0}} \underbrace{\Phi}_{t_{1}} \underbrace{\mathbf{K}^{0}}_{t_{1}} \underbrace{\Phi}_{t_{1}} \underbrace{\Delta t = t_{2} - t_{1}}_{t_{1}} \underbrace{\Delta t = t_{2} - t_{1}}_{t_{1}}$$

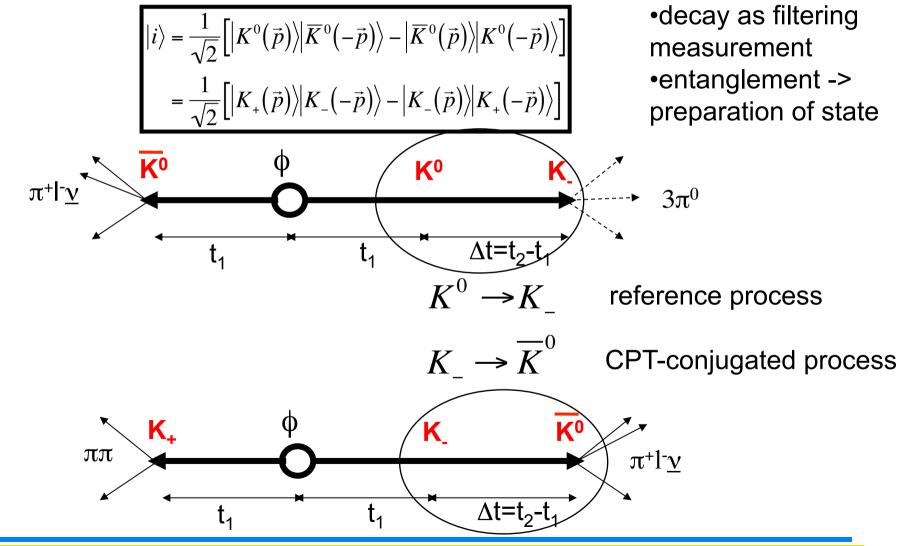
$$|i\rangle = \frac{1}{\sqrt{2}} [|K^{0}(\vec{p})\rangle| \overline{K}^{0}(-\vec{p})\rangle - |\overline{K}^{0}(\vec{p})\rangle| K^{0}(-\vec{p})\rangle]$$
• decay as filtering
measurement
• entanglement ->
preparation of state

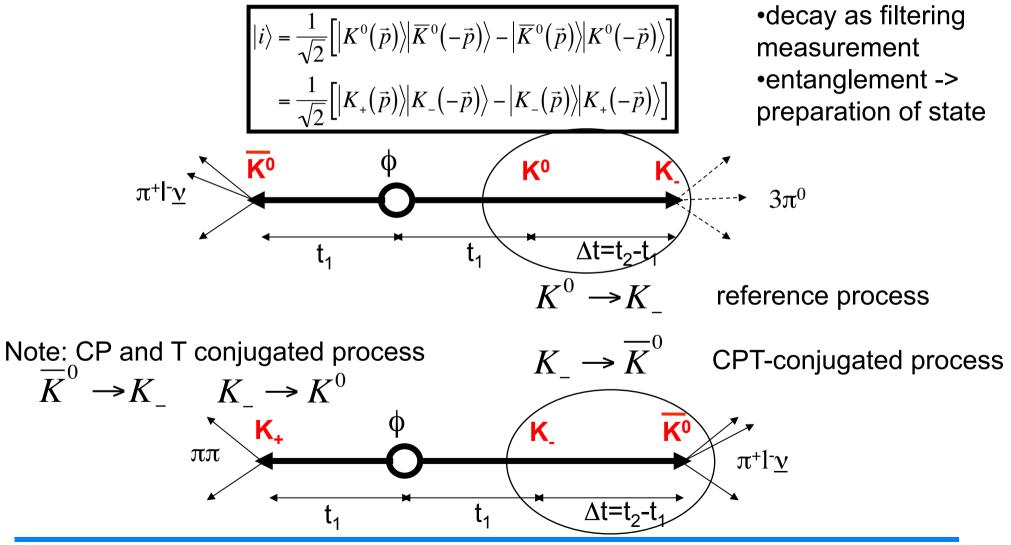
$$\pi^{+}|^{-}\underline{v}$$

$$K^{0}$$









Direct test of CPT symmetry in neutral kaon transitions

Two observable ratios of double decay intensities

$$R_{2,\text{CPT}}^{\text{exp}}(\Delta t) \equiv \frac{I(\ell^{-}, 3\pi^{0}; \Delta t)}{I(\pi\pi, \ell^{-}; \Delta t)}$$
$$R_{4,\text{CPT}}^{\text{exp}}(\Delta t) \equiv \frac{I(\ell^{+}, 3\pi^{0}; \Delta t)}{I(\pi\pi, \ell^{+}; \Delta t)}$$

for *L*

for
$$\Delta t > 0$$

 $R_{2,CPT}^{exp}(\Delta t) = R_{2,CPT}(\Delta t) \times D_{CPT}$
 $R_{4,CPT}^{exp}(\Delta t) = R_{4,CPT}(\Delta t) \times D_{CPT}$
for $\Delta t < 0$
 $R_{2,CPT}^{exp}(\Delta t) = R_{1,CPT}(|\Delta t|) \times D_{CPT}$
 $R_{4,CPT}^{exp}(\Delta t) = R_{3,CPT}(|\Delta t|) \times D_{CPT}$
with D_{CPT} constant
 $D_{CPT} = \frac{BR(K_L \rightarrow 3\pi^0)}{BR(K_S \rightarrow \pi\pi)} \frac{\Gamma_L}{\Gamma_S}$

Direct test of CPT symmetry in neutral kaon transitions

Explicitly in standard Wigner Weisskopf approach for $\Delta t > 0$:

$$R_{2,\text{CPT}}^{\text{exp}}(\Delta t) = \frac{P[\text{K}^{0}(0) \to \text{K}_{-}(\Delta t)]}{P[\text{K}_{-}(0) \to \bar{\text{K}}^{0}(\Delta t)]} \times D_{\text{CPT}}$$
$$\simeq |1 - 2\delta|^{2} \left| 1 + 2\delta e^{-i(\lambda_{S} - \lambda_{L})\Delta t} \right|^{2} \times D_{\text{CPT}}$$
$$R_{4,\text{CPT}}^{\text{exp}}(\Delta t) = \frac{P[\bar{\text{K}}^{0}(0) \to \text{K}_{-}(\Delta t)]}{P[\text{K}_{-}(0) \to \text{K}^{0}(\Delta t)]} \times D_{\text{CPT}}$$
$$\simeq |1 + 2\delta|^{2} \left| 1 - 2\delta e^{-i(\lambda_{S} - \lambda_{L})\Delta t} \right|^{2} \times D_{\text{CPT}}$$

For comparison the ratio of survival probabilities: Vanishes for $\Delta\Gamma$ ->0

$$\frac{I(\ell^-, \ell^+; \Delta t)}{I(\ell^+, \ell^-; \Delta t)} = \frac{P[\mathbf{K}^0(0) \to \mathbf{K}^0(\Delta t)]}{P[\bar{\mathbf{K}}^0(0) \to \bar{\mathbf{K}}^0(\Delta t)]}$$
$$\simeq |1 - 4\delta|^2 \left| 1 + \frac{8\delta}{1 + e^{+i(\lambda_S - \lambda_L)\Delta t}} \right|$$

As an illustration of the different sensitivity: it vanishes up to second order in CPTV and decoherence parameters α,β,γ (Ellis, Mavromatos et al. PRD1996)

Impact of the approximations

In general K₊ and K₋ (and K0 and <u>K0</u>) can be non-orthogonal Orthoghonal $\{K, K\} \in \widetilde{K} \in \widetilde{K} \in K\}$ Direct CP (CPT) violation $\eta_{\pi\pi} = \epsilon_L + \epsilon'_{\pi\pi}$ $\Delta S = \Delta$ $\eta_{3\pi^0} = \epsilon_S + \epsilon'_{3\pi^0}$

CPT cons. and CPT viol.
$$\Delta S = \Delta Q$$
 violation

$$x_{+}, x_{-}$$

Orthoghonal $\{K_+, \widetilde{K}_-\} \quad \{\widetilde{K}_+, K_-\} \quad \{\widetilde{K}_0, K_{\bar{0}}\} \text{ and } \{\widetilde{K}_{\bar{0}}, K_0\}$

Explicitly for
$$\Delta t > 0$$
:

$$R_{2,CPT}^{exp}(\Delta t) = \frac{P[\widetilde{K}_0(0) \to K_-(\Delta t)]}{P[\widetilde{K}_-(0) \to K_{\overline{0}}(\Delta t)]} \times D_{CPT}$$

$$= |1 - 2\delta + 2x_+^{\star} - 2x_-^{\star}|^2 \left| 1 + \left(2\delta + \hat{\epsilon'_{3\pi^0}} - \epsilon'_{\pi\pi}\right) e^{-i(\lambda_S - \lambda_L)\Delta t} \right|^2 \times D_{CPT}$$

$$R_{4,\text{CPT}}^{\text{exp}}(\Delta t) = \frac{P[\widetilde{K}_{\bar{0}}(0) \to K_{-}(\Delta t)]}{P[\widetilde{K}_{-}(0) \to K_{0}(\Delta t)]} \times D_{\text{CPT}}$$
$$= |1 + 2\delta + 2x_{+} + 2x_{-}|^{2} \left| 1 - \left(2\delta + \epsilon'_{3\pi^{0}} - \epsilon'_{\pi\pi} \right) e^{-i(\lambda_{S} - \lambda_{L})\Delta t} \right|^{2} \times D_{\text{CPT}}$$

Impact of the approximations

$$\frac{R_{2,\text{CPT}}^{\text{exp}}(\Delta t)}{R_{4,\text{CPT}}^{\text{exp}}(\Delta t)} \simeq \left(1 - 8\Re\delta - 8\Re x_{-}\right) \left|1 + 2\left(\eta_{3\pi^{0}} - \eta_{\pi\pi}\right)e^{-i(\lambda_{S} - \lambda_{L})\Delta t}\right|^{2}$$
$$= \left(1 - 8\Re\delta - 8\Re x_{-}\right) \left|1 + 2\left(2\delta + \epsilon_{3\pi^{0}}' - \epsilon_{\pi\pi}'\right)e^{-i(\lambda_{S} - \lambda_{L})\Delta t}\right|^{2}$$

The double ratio constitutes one of the most robust observables for the proposed CPT test. In the limit $\Delta t \gg \tau_S$ it exhibits a pure and genuine CPT violating effect, even without assuming negligible contaminations from direct CP violation and/or $\Delta S = \Delta Q$ rule violation.

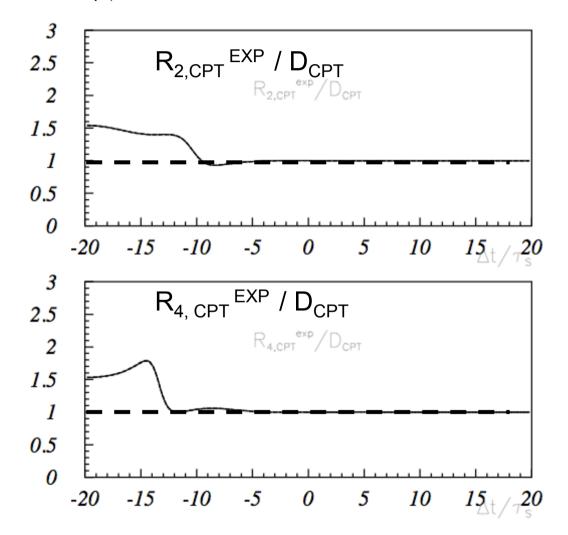
$$\mathsf{DR}_{\mathsf{CPT}} = \frac{R_{2,\mathrm{CPT}}^{\mathrm{exp}}(\Delta t \gg \tau_S)}{R_{4,\mathrm{CPT}}^{\mathrm{exp}}(\Delta t \gg \tau_S)} = 1 - 8\Re\delta - 8\Re x_-$$

There exists a connection with charge semileptonic asymmetries of K_S and K_L

$$\mathsf{DR}_{\mathsf{CPT}} = \frac{R_{2,\mathrm{CPT}}^{\mathrm{exp}}(\Delta t \gg \tau_S)}{R_{4,\mathrm{CPT}}^{\mathrm{exp}}(\Delta t \gg \tau_S)} = \frac{1+A_L}{1-A_L} \times \frac{1-A_S}{1+A_S} \simeq 1+2(A_L-A_S)$$

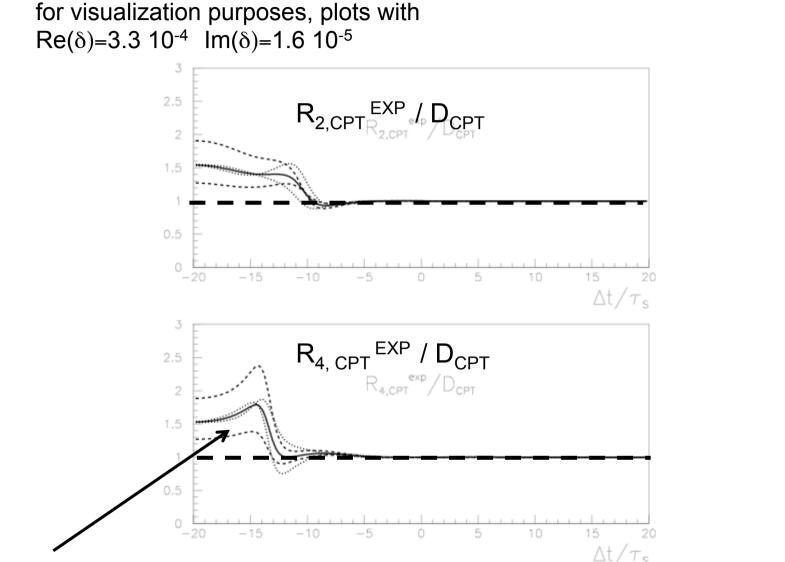
Direct test of CPT in transitions with neutral kaons

for visualization purposes, plots with Re(δ)=3.3 10⁻⁴ Im(δ)=1.6 10⁻⁵



Workshop on the Standard Model and Beyond, 2 -10 September 2017, Corfu, Greece

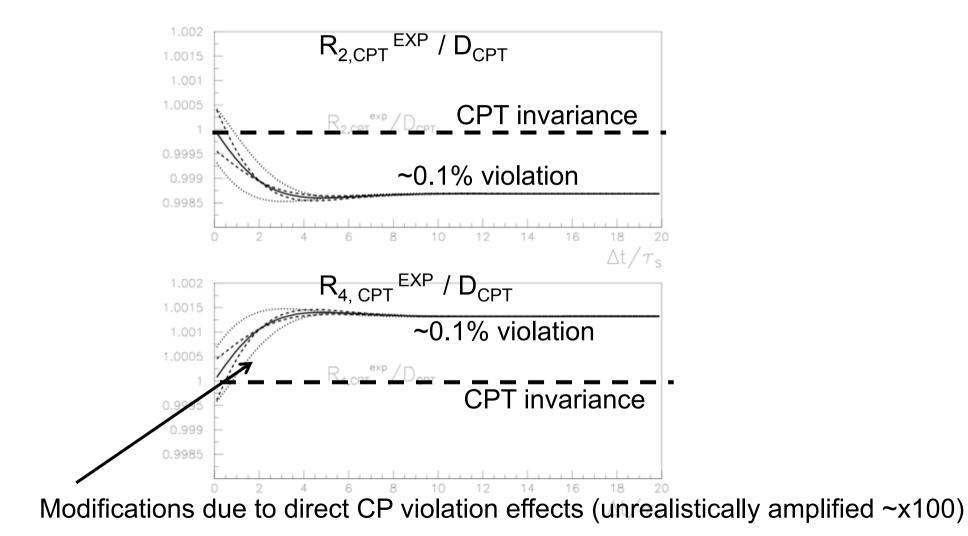
Direct test of CPT in transitions with neutral kaons



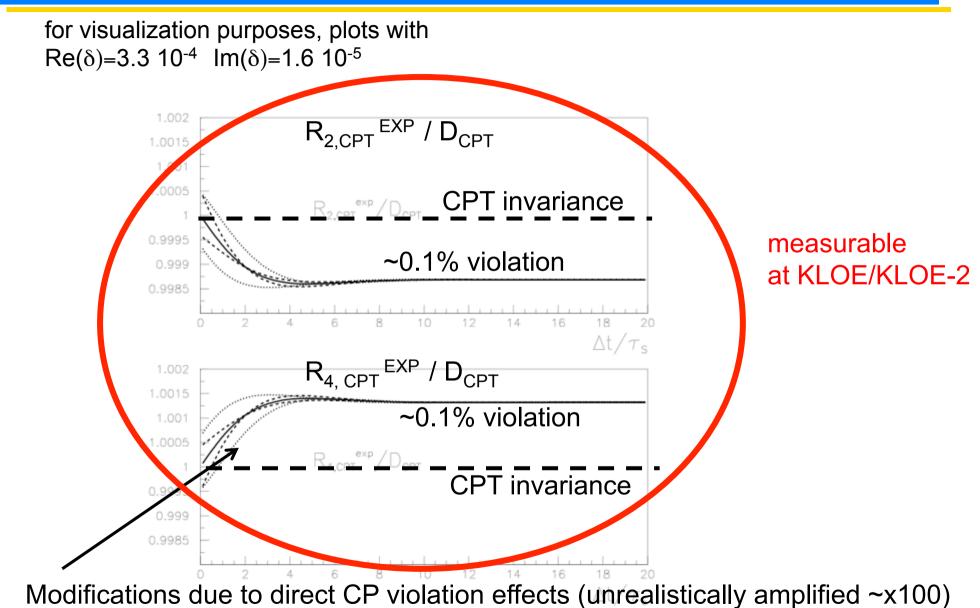
Modifications due to direct CP violation effects (unrealistically amplified ~x100)

Direct test of CPT in transitions with neutral kaons

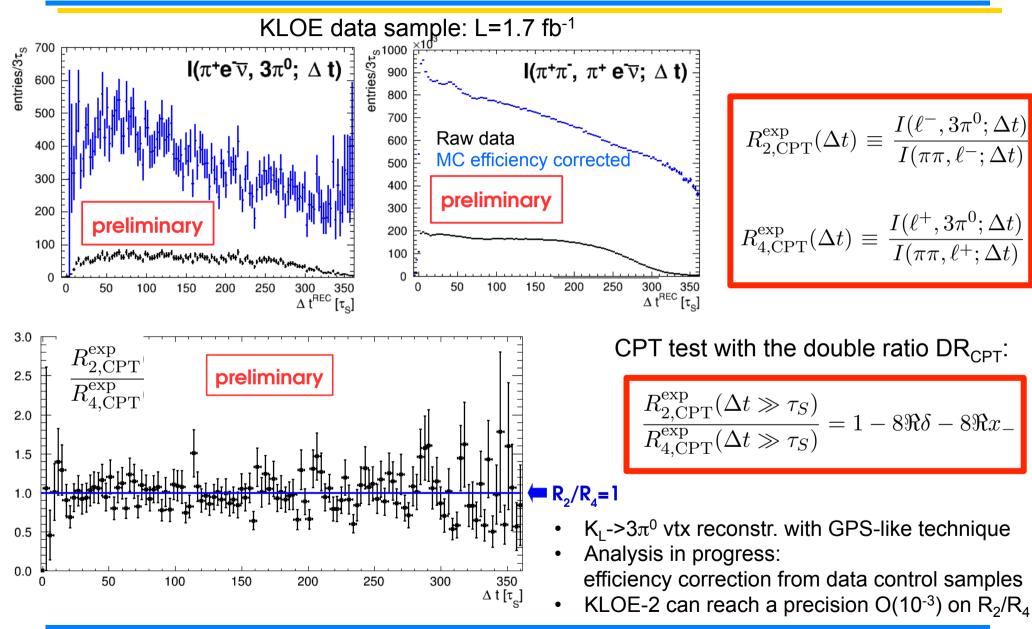
for visualization purposes, plots with Re(δ)=3.3 10⁻⁴ Im(δ)=1.6 10⁻⁵



Direct test of CPT symmetry with neutral kaons



Direct test of CPT in neutral kaon transitions

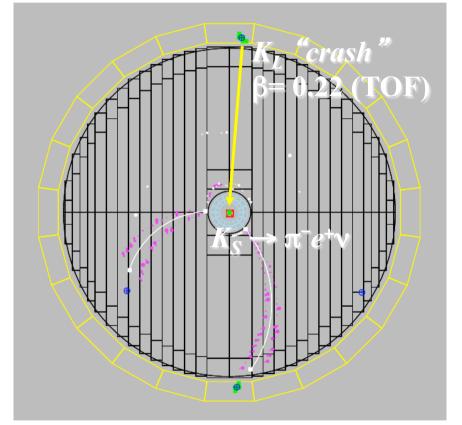


K_S semileptonic charge asymmetry

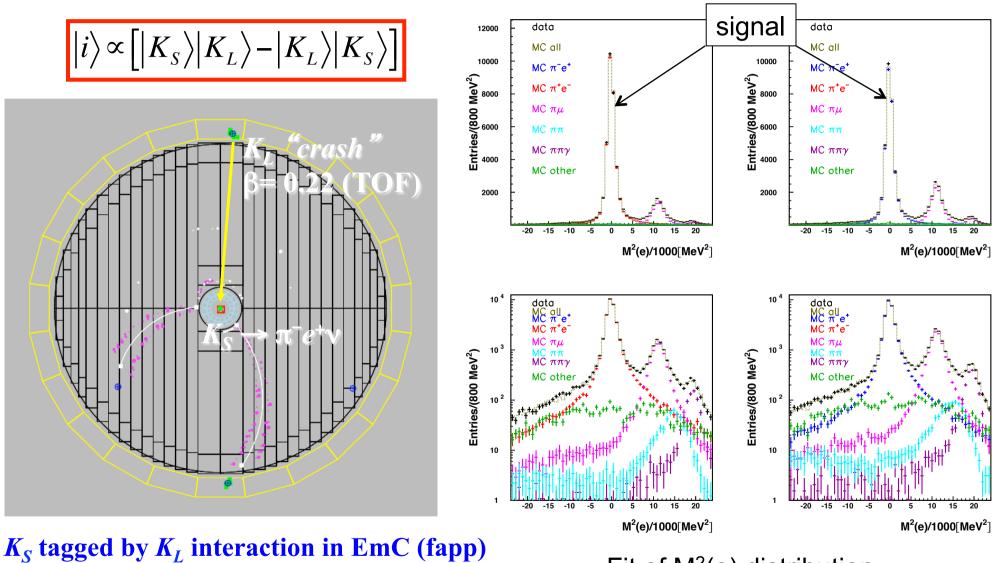
$$K_{s} \text{ and } K_{L} \text{ semileptonic charge asymmetry} \qquad T CPT \text{ viol. in mixing} \\ A_{S,L} = \frac{\Gamma(K_{S,L} \to \pi^{-}e^{+}v) - \Gamma(K_{S,L} \to \pi^{+}e^{-}\overline{v})}{\Gamma(K_{S,L} \to \pi^{-}e^{+}v) + \Gamma(K_{S,L} \to \pi^{+}e^{-}\overline{v})} = 2\Re\varepsilon \pm 2\Re\delta - 2\Re y \pm 2\Re x_{-} \\ CPTV \text{ in } \Delta S = \Delta Q \quad \Delta S \neq \Delta Q \text{ decays} \\ A_{S,L} \neq 0 \text{ signals } CP \text{ violation} \\ A_{S} \neq A_{L} \text{ signals } CPT \text{ violation} \\ A_{S} \neq A_{L} \text{ signals } CPT \text{ violation} \\ A_{L} = (3.322 \pm 0.058 \pm 0.047) \times 10^{-3} \\ KTEV \text{ PRL88,181601(2002)} \\ A_{S} = (1.5 \pm 9.6 \pm 2.9) \times 10^{-3} \\ CPT \forall \text{ in } \Delta S = \Delta Q \text{ viol}. \\ A_{S} = A_{L} = 4\Re\delta + \Re x_{-} \\ A_{S} - A_{L} = 4\Re\delta + \Re x_{-} \\ A_{S} + A_{L} = 4\Re\varepsilon - \Re y \\ A_{S} = (0.4 \pm 2.5) \times 10^{-3} \\ CPT \text{ viol.} \\ KLOE \text{ PLB } 636(2006) 173 \\ CPT \text{ viol.} \\ CPT$$

K_s semileptonic charge asymmetry at KLOE

$$|i\rangle \propto [|K_{S}\rangle|K_{L}\rangle - |K_{L}\rangle|K_{S}\rangle]$$

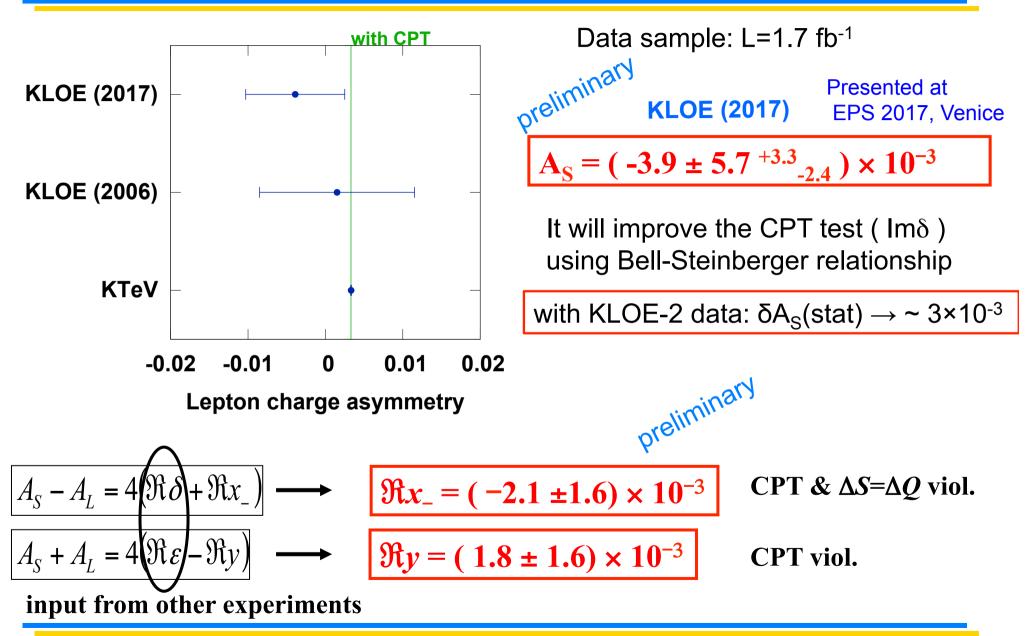


Efficiency $\sim 30\%$ (largely geometrical)



Fit of M²(e) distribution

K_S semileptonic charge asymmetry at KLOE



Conclusions

- The entangled neutral kaon system at a ϕ -factory is an excellent laboratory for the study of discrete symmetries and fundamental principles of QM.
- It is possible to directly test CPT in transition processes for the first time between neutral kaon states. The proposed CPT test is model independent and fully robust.
- VERY CLEAN TEST. Possible spurious effects are well under control.
- Genuine test not depends on $\Delta\Gamma$ (the decay is not as an essential ingredient).
- Maximal entanglement of the initial state is assumed (impact of possible loss of coherence under evaluation; however marginal for precision of DR_{CPT} of O(10⁻³)).
- KLOE data analysis ongoing; KLOE-2 could reach a statistical sensitivity of O(10⁻³) on these new observables.
- New preliminary measurement of the KS semileptonic charge asymmetry
- The KLOE-2 experiment at the upgraded DAFNE is currently taking data with the plan to collect L>5 fb⁻¹ by end of March 2018.
 All tests of discrete expectation and OM are expected to be improved at KLOE 2.

All tests of discrete symmetries and QM are expected to be improved at KLOE-2.

Spare slides

KLOE-2 Physics

KAON Physics:

- CPT and QM tests with kaon interferometry
- Direct T and CPT tests using entanglement
- CP violation and CPT test:

 $K_{S} -> 3\pi^{0}$

direct measurement of Im(ϵ'/ϵ) (lattice calc. improved) .

• CKM Vus:

 K_S semileptonic decays and A_S (also CP and CPT test) $K\mu 3$ form factors, Kl3 radiative corrections

- χpT : K_S->γγ
- Search for rare K_S decays

Hadronic cross section

- Measurement of $a_{\mu}^{\ \mbox{HLO}}$ in the space-like region using Bhabha process
- ISR studies with 3π , 4π final states
- F_{π} with increased statistics

EPJC (2010) 68, 619 + procs LNF WS 2016 (in publication)

Dark forces:

- Improve limits on: Uγ associate production e+e- → Uγ → ππγ, μμγ
- Higgstrahlung e+e- \rightarrow Uh' \rightarrow µ+µ- + miss. energy
- Leptophobic B boson search $\phi \rightarrow \eta B, B \rightarrow \pi^0 \gamma, \eta \rightarrow \gamma \gamma$ $\eta \rightarrow B\gamma, B \rightarrow \pi^0 \gamma, \eta \rightarrow \pi^0 \gamma \gamma$
- Search for U invisible decays

Light meson Physics:

- η decays, ω decays, TFF $\phi \rightarrow \eta e^+e^-$
- C,P,CP violation: improve limits on $\eta \rightarrow \gamma \gamma \gamma$, $\pi^+\pi^-$, $\pi^0\pi^0$, $\pi^0\pi^0\gamma$
- improve $\eta \to \pi^+\pi^-e^+e^-$
- χpT : $\eta \rightarrow \pi^0 \gamma \gamma$
- Light scalar mesons: $\phi \to K_S K_S \gamma$
- $\gamma\gamma$ Physics: $\gamma\gamma \rightarrow \pi^0$ and π^0 TFF
- light-by-light scattering
- axion-like particles

T symmetry test

Reference		T-conjugate	
Transition	Final state	Transition	Final state
$\bar{K}^0 \to K$	$(\ell^+,\pi^0\pi^0\pi^0)$	$K \to \bar{K}^0$	$(\pi^0\pi^0\pi^0,\ell^-)$
$\mathrm{K}_+ \to \mathrm{K}^0$	$(\pi^0\pi^0\pi^0,\ell^+)$	${\rm K}^0 ightarrow {\rm K}_+$	$(\ell^-,\pi\pi)$
$\bar{K}^0 \to K_+$	$(\ell^+, \pi\pi)$	$K_+ \to \bar{K}^0$	$(\pi^0\pi^0\pi^0,\ell^-)$
$\mathrm{K}_{-} \to \mathrm{K}^{0}$	$(\pi\pi,\ell^+)$	$\mathrm{K}^{0} \rightarrow \mathrm{K}_{-}$	$(\ell^-,\pi\pi)$

One can define the following ratios of probabilities:

$$\begin{aligned} R_1(\Delta t) &= P\left[\mathrm{K}^0(0) \to \mathrm{K}_+(\Delta t)\right] / P\left[\mathrm{K}_+(0) \to \mathrm{K}^0(\Delta t)\right] \\ R_2(\Delta t) &= P\left[\mathrm{K}^0(0) \to \mathrm{K}_-(\Delta t)\right] / P\left[\mathrm{K}_-(0) \to \mathrm{K}^0(\Delta t)\right] \\ R_3(\Delta t) &= P\left[\bar{\mathrm{K}}^0(0) \to \mathrm{K}_+(\Delta t)\right] / P\left[\mathrm{K}_+(0) \to \bar{\mathrm{K}}^0(\Delta t)\right] \\ R_4(\Delta t) &= P\left[\bar{\mathrm{K}}^0(0) \to \mathrm{K}_-(\Delta t)\right] / P\left[\mathrm{K}_-(0) \to \bar{\mathrm{K}}^0(\Delta t)\right] \end{aligned}$$

Any deviation from R_i=1 constitutes a violation of T-symmetry

J. Bernabeu, A.D.D., P. Villanueva: NPB 868 (2013) 102

Two observable ratios of double decay intensities

$$R_{2,\mathcal{T}}^{\exp}(\Delta t) \equiv \frac{I(\ell^{-}, 3\pi^{0}; \Delta t)}{I(\pi\pi, \ell^{+}; \Delta t)}$$
$$R_{4,\mathcal{T}}^{\exp}(\Delta t) \equiv \frac{I(\ell^{+}, 3\pi^{0}; \Delta t)}{I(\pi\pi, \ell^{-}; \Delta t)}$$

Explicitly in standard Wigner Weisskopf approach for $\Delta t > 0$:

$$\begin{split} R_{2,\mathcal{T}}^{\exp}(\Delta t) &= \frac{P[\mathbf{K}^{0}(0) \to \mathbf{K}_{-}(\Delta t)]}{P[\mathbf{K}_{-}(0) \to \mathbf{K}^{0}(\Delta t)]} \times D_{\mathcal{T},2} \\ &= (1 - 4\Re\epsilon) \left| 1 + 2\epsilon e^{-i(\lambda_{S} - \lambda_{L})\Delta t} \right|^{2} \times D_{\mathcal{CPT}} \\ R_{4,\mathcal{T}}^{\exp}(\Delta t) &= \frac{P[\bar{\mathbf{K}}^{0}(0) \to \mathbf{K}_{-}(\Delta t)]}{P[\mathbf{K}_{-}(0) \to \bar{\mathbf{K}}^{0}(\Delta t)]} \times D_{\mathcal{T},4} \\ &= (1 + 4\Re\epsilon) \left| 1 - 2\epsilon e^{-i(\lambda_{S} - \lambda_{L})\Delta t} \right|^{2} \times D_{\mathcal{CPT}} \end{split}$$

A. Di Domenico

Impact of the approximations

In general K_{+} and K_{-} (and K0 and <u>K0</u>) can be non-orthogonal

$$\eta_{\pi\pi} = \epsilon_L + \epsilon'_{\pi\pi}$$
$$\eta_{3\pi^0} = \epsilon_S + \epsilon'_{3\pi^0}$$

CPT cons. and CPT viol. $\Delta S = \Delta Q$ violation

 x_{+}, x_{-}

Orthoghonal
$$\{K_+, \widetilde{K}_-\} = \{\widetilde{K}_+, K_-\} = \{\widetilde{K}_0, K_{\overline{0}}\} \text{ and } \{\widetilde{K}_{\overline{0}}, K_0\}$$

Direct CP (CPT) violation

Explicitly for $\Delta t > 0$:

$$\begin{split} R_{2,\mathcal{T}}^{\exp}(\Delta t) &= \frac{P[\widetilde{K}_{0}(0) \to K_{-}(\Delta t)]}{P[\widetilde{K}_{-}(0) \to K_{0}(\Delta t)]} \times D_{\mathcal{T},2} \\ &= (1 - 4\Re\epsilon + 4\Re x_{+} + 4\Re y) \left| 1 + \left(2\epsilon + \epsilon'_{3\pi^{0}} + \epsilon'_{\pi\pi} \right) e^{-i(\lambda_{S} - \lambda_{L})\Delta t} \right|^{2} \times D_{\mathcal{CPT}} \\ R_{4,\mathcal{T}}^{\exp}(\Delta t) &= \frac{P[\widetilde{K}_{\bar{0}}(0) \to K_{-}(\Delta t)]}{P[\widetilde{K}_{-}(0) \to K_{\bar{0}}(\Delta t)]} \times D_{\mathcal{T},4} \\ &= (1 + 4\Re\epsilon + 4\Re x_{+} - 4\Re y) \left| 1 - \left(2\epsilon + \epsilon'_{3\pi^{0}} + \epsilon'_{\pi\pi} \right) e^{-i(\lambda_{S} - \lambda_{L})\Delta t} \right|^{2} \times D_{\mathcal{CPT}} \end{split}$$

