CPT, entanglement and neutral kaons

Antonio Di Domenico
Dipartimento di Fisica, Sapienza Università di Roma and INFN sezione di Roma, Italy and

Workshop on the Standard Model and Beyond
2 - 10 September 2017, Corfu, Greece

CPT: introduction

The three discrete symmetries of QM, C (charge conjugation: $q \rightarrow-q$), P (parity: $x \rightarrow-x$), and T (time reversal: $t \rightarrow-t$) are known to be violated in nature both singly and in pairs. Only CPT appears to be an exact symmetry of nature.

Exact CPT invariance holds for any quantum field theory (like the Standard Model) formulated on flat space-time which assumes:
(1) Lorentz invariance (2) Locality (3) Unitarity (i.e. conservation of probability).

Testing the validity of the CPT symmetry probes the most fundamental assumptions of our present understanding of particles and their interactions.

CPT: introduction

Extension of CPT theorem to a theory of quantum gravity far from obvious.
(e.g. CPT violation appears in several QG models)

No predictive theory incorporating CPT violation => only phenomenological models to be constrained by experiments.

Consequences of CPT symmetry: equality of masses, lifetimes, $|q|$ and $|\mu|$ of a particle and its anti-particle.

Neutral meson systems offer unique possibilities to test CPT invariance;
e.g. taking as figure of merit the fractional difference between the masses of a particle and its anti-particle:

$$
\begin{array}{ll}
\text { neutral } \mathrm{K} \text { system } & \left|m_{K^{0}}-m_{\bar{K}^{0}}\right| / m_{K}<10^{-18} \\
\text { neutral B system } & \left|m_{B^{0}}-m_{\bar{B}^{0}}\right| / m_{B}<10^{-14} \\
\text { proton- anti-proton } & \left|m_{p}-m_{\bar{p}}\right| / m_{p}<10^{-8}
\end{array}
$$

Other interesting CPT tests: e.g. the study of anti-hydrogen atoms, etc..

CPT: introduction

Extension of CPT theorem to a theory of quantum gravity far from obvious.
(e.g. CPT violation appears in several QG models)

No predictive theory incorporating CPT violation => only phenomenological models to be constrained by experiments.

Consequences of CPT symmetry: equality of masses, lifetimes, $|q|$ and $|\mu|$ of a particle and its anti-particle.

Neutral meson systems offer unique possibilities to test CPT invariance;
e.g. taking as figure of merit the fractional difference between the masses of a particle and its anti-particle:

$$
\begin{array}{ll}
\text { neutral K system } & \left|m_{K^{0}}-m_{\bar{K}^{0}}\right| / m_{K}<10^{-18} \\
\text { neutral B system } & \left|m_{B^{0}}-m_{\bar{B}^{0}}\right| / m_{B}<10^{-14} \\
\text { proton- anti-proton } & \left|m_{p}-m_{\bar{p}}\right| / m_{p}<10^{-8}
\end{array}
$$

Other interesting CPT tests: e.g. the study of anti-hydrogen atoms, etc..

Neutral kaons

$\left|K_{S, L}\right\rangle=N_{S, L}\left[\left(1+\varepsilon_{S, L}\right)\left|K^{0}\right\rangle \pm\left(1-\varepsilon_{S, L}\right)\left|\bar{K}^{0}\right\rangle\right]$

$$
i \frac{\partial}{\partial t} \Psi(t)=\mathbf{H} \Psi(t) \quad \mathbf{H}=\mathbf{M}-\frac{i}{2} \Gamma
$$

CP violation:

$$
\varepsilon_{S, L}=\varepsilon \pm \delta
$$

T violation:

$$
\varepsilon=\frac{H_{12}-H_{21}}{2\left(\lambda_{s}-\lambda_{L}\right)}=\frac{-i \Im M_{12}-\Im \Gamma_{12} / 2}{\Delta m+i \Delta \Gamma / 2}
$$

CPT violation:

$$
\delta=\frac{H_{11}-H_{22}}{2\left(\lambda_{S}-\lambda_{L}\right)}=\frac{1}{2} \frac{\left(m_{\bar{K}^{0}}-m_{K^{0}}\right)-(i / 2)\left(\Gamma_{\bar{K}^{0}}-\Gamma_{K^{0}}\right)}{\Delta m+i \Delta \Gamma / 2}
$$

- $\delta \neq 0$ implies CPT violation
- $\varepsilon \neq 0$ implies T violation
- $\varepsilon \neq 0$ or $\delta \neq 0$ implies CP violation
(with a phase convention $\mathfrak{J} \Gamma_{12}=0$)
$\Delta m=m_{L}-m_{S} \quad, \quad \Delta \Gamma=\Gamma_{S}-\Gamma_{L}$
$\Delta m=3.5 \times 10^{-15} \mathrm{GeV}$

$$
\Delta \Gamma \approx \Gamma_{\mathrm{S}} \approx 2 \Delta m=7 \times 10^{-15} \mathrm{GeV}
$$

Neutral kaons

$$
\left|K_{S, L}\right\rangle=N_{S, L}\left[\left(1+\varepsilon_{S, L}\right)\left|K^{0}\right\rangle \pm\left(1-\varepsilon_{S, L}\right)\left|\bar{K}^{0}\right\rangle\right]
$$

$$
i \frac{\partial}{\partial t} \Psi(t)=\mathbf{H} \Psi(t) \quad \mathbf{H}=\mathbf{M}-\frac{i}{2} \Gamma
$$

CP violation:

$$
\varepsilon_{S, L}=\varepsilon \pm \delta
$$

T violation:

$$
\varepsilon=\frac{H_{12}-H_{21}}{2\left(\lambda_{S}-\lambda_{L}\right)}=\frac{-i \Im M_{12}-\Im \Gamma_{12} / 2}{\Delta m+i \Delta \Gamma / 2}
$$

CPT violation:

$$
\delta=\frac{H_{11}-H_{22}}{2\left(\lambda_{S}-\lambda_{L}\right)}=\frac{1}{2} \frac{\left(m_{\bar{K}^{0}}-m_{K^{0}}\right)-(i / 2)\left(\Gamma_{\bar{K}^{0}}-\Gamma_{K^{0}}\right)}{\Delta m+i \Delta \Gamma / 2}
$$

- $\delta \neq 0$ implies CPT violation
- $\varepsilon \neq 0$ implies T violation
- $\varepsilon \neq 0$ or $\delta \neq 0$ implies CP violation (with a phase convention $\mathfrak{J} \Gamma_{12}=0$)
$\Delta m=m_{L}-m_{S} \quad, \quad \Delta \Gamma=\Gamma_{S}-\Gamma_{L}$
$\Delta m=3.5 \times 10^{-15} \mathrm{GeV}$

$$
\Delta \Gamma \approx \Gamma_{\mathrm{S}} \approx 2 \Delta m=7 \times 10^{-15} \mathrm{GeV}
$$

neutral kaons vs other oscillating meson systems

	$<\mathbf{m}>$ $(\mathbf{G e V})$	$\Delta \mathbf{m}$ $(\mathbf{G e V})$	$<\Gamma>$ $(\mathbf{G e V})$	$\Delta \Gamma / 2$ $(\mathbf{G e V})$
K^{0}	0.5	3×10^{-15}	3×10^{-15}	3×10^{-15}
D^{0}	1.9	6×10^{-15}	2×10^{-12}	1×10^{-14}
$\mathrm{~B}^{0}{ }_{\mathrm{d}}$	5.3	3×10^{-13}	4×10^{-13}	$\mathrm{O}\left(10^{-15}\right)$ $(\mathrm{SM}$ prediction)
$\mathrm{B}_{\mathrm{s}}^{0}$	5.4	1×10^{-11}	4×10^{-13}	3×10^{-14}

"Standard" CPT test

Comparing "survival" probabilities of K^{0} and $\overline{\mathrm{K}}^{0}$ measuring semileptonic decays vs time:

$$
\Re \delta=(3.0 \pm 3.3 \pm 0.6) \times 10^{-4}
$$

CPLEAR

PLB444 (1998) 52
using the unitarity constraint (Bell-Steinberger relation)

$$
\operatorname{Im} \delta=(-0.7 \pm 1.4) \times 10^{-5}
$$

$$
2 \Im \delta=\Im\left[\left\langle K_{L} \mid K_{S}\right\rangle\right]=\Im\left[\frac{\sum_{f}\langle f| T\left|K_{S}\right\rangle\langle f| T\left|K_{L}\right\rangle^{*}}{i\left(\lambda_{S}-\lambda_{L}^{*}\right)}\right]
$$

PDG fit (2014)

$$
\delta=\frac{1}{2} \frac{\left(m_{\bar{K}^{0}}-m_{K^{0}}\right)-(i / 2)\left(\Gamma_{\bar{K}^{0}}-\Gamma_{K^{0}}\right)}{\Delta m+i \Delta \Gamma / 2}
$$

$$
\left(\begin{array}{l:l}
\\
\Gamma_{K^{0}} & \left.\Gamma_{\bar{K}^{0}}\right) \\
& \square 95 \% \mathrm{CL} \\
& \square 68 \% \mathrm{CL}
\end{array}\right.
$$

Combining Re R and $\mathrm{Im} \delta$ results

Assuming $\quad\left(\Gamma_{\bar{K}^{0}}-\Gamma_{K^{0}}\right)=0$, i.e. no CPT viol. in decay:

$$
\left|m_{\bar{K}^{0}}-m_{K^{0}}\right|<4.0 \times 10^{-19} \mathrm{GeV} \quad \text { at } 95 \% \text { c.l. }
$$

10

Direct CPT test in transitions

- Is it possible to test the CPT symmetry directly in transition processes between kaon states, rather than comparing masses, lifetimes, or other intrinsic properties of particle and anti-particle states?
- CPT violating effects may not appear at first order in diagonal mass terms (survival probabilities) while they can manifest at first order in transitions (nondiagonal terms).
- In standard WWA the test is related to Red, a genuine CPT violating effect independent of $\Delta \Gamma$, i.e. not requiring the decay as an essential ingredient.
- Clean formulation required. Possible spurious effects induced by CP violation in the decay and/or a violation of the $\Delta S=\Delta Q$ rule have to be well under control.

```
Probing CPT: J. Bernabeu, A.D.D., P. Villanueva, JHEP 10 (2015) }13
Time-reversal violation: J. Bernabeu, A.D.D., P. Villanueva, NPB 868(2013)}10
```


Definition of states

Let us also consider the states $\left|\mathrm{K}_{+}\right\rangle,\left|\mathrm{K}_{-}\right\rangle$defined as follows: $\left|\mathrm{K}_{+}\right\rangle$is the state filtered by the decay into $\pi \pi\left(\pi^{+} \pi^{+}\right.$or $\left.\pi^{0} \pi^{0}\right)$, a pure $\mathrm{CP}=+1$ state; analogously $\left|\mathrm{K}_{-}\right\rangle$is the state filtered by the decay into $3 \pi^{0}$, a pure $\mathrm{CP}=-1$ state. Their orthogonal states correspond to the states which cannot decay into $\pi \pi$ or $3 \pi^{0}$, defined, respectively, as

$$
\begin{array}{rlrl}
\left|\widetilde{\mathrm{K}}_{-}\right\rangle & \equiv \widetilde{\mathrm{N}}_{-}\left[\left|\mathrm{K}_{\mathrm{L}}\right\rangle-\eta_{\pi \pi}\left|\mathrm{K}_{\mathrm{S}}\right\rangle\right] \\
\left|\widetilde{\mathrm{K}}_{+}\right\rangle & \equiv \widetilde{\mathrm{N}}_{+}\left[\left|\mathrm{K}_{\mathrm{S}}\right\rangle-\eta_{3 \pi^{0}}\left|\mathrm{~K}_{\mathrm{L}}\right\rangle\right] & \eta_{\pi \pi} & =\frac{\langle\pi \pi| T\left|\mathrm{~K}_{\mathrm{L}}\right\rangle}{\langle\pi \pi| T\left|\mathrm{~K}_{\mathrm{S}}\right\rangle} \\
\left\{\begin{aligned}
& \left.\widetilde{\mathrm{K}}_{+}\right\} \\
& \left\{\widetilde{\mathrm{K}}_{+}, \mathrm{K}_{-}\right\}
\end{aligned}\right. & \eta_{3 \pi^{0}} & =\frac{\left\langle 3 \pi^{0}\right| T\left|\mathrm{~K}_{\mathrm{S}}\right\rangle}{\left\langle 3 \pi^{0}\right| T\left|\mathrm{~K}_{\mathrm{L}}\right\rangle}
\end{array}
$$

Orthogonal bases: $\left\{\mathrm{K}_{+}, \widetilde{\mathrm{K}}_{-}\right\} \quad\left\{\widetilde{\mathrm{K}}_{+}, \mathrm{K}_{-}\right\}$
Even though the decay products are orthogonal, the filtered $|\mathrm{K}+\rangle$ and $|\mathrm{K}-\rangle$ states can still be non-orthoghonal.
Condition of orthoghonality:

$$
\begin{aligned}
\left|\mathrm{K}_{+}\right\rangle & \equiv\left|\widetilde{\mathrm{K}}_{+}\right\rangle \\
\left|\mathrm{K}_{-}\right\rangle & \equiv\left|\widetilde{\mathrm{K}}_{-}\right\rangle
\end{aligned}
$$

Neglect direct CP violation. Similarly any $\Delta S=\Delta Q$ rule violation for $\left|K^{0}\right\rangle$ and $\left|\bar{K}^{0}\right\rangle$

Direct test of CPT symmetry in neutral kaon transitions

CPT symmetry test

Reference		$\mathcal{C P} \mathcal{T}$-conjugate	
Transition	Decay products	Transition	Decay products
$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{+}$	($\ell^{-}, \pi \pi$)	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\left(3 \pi^{0}, \ell^{-}\right)$
$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{-}$	$\left(\ell^{-}, 3 \pi^{0}\right)$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\left(\pi \pi, \ell^{-}\right)$
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	($\left.\ell^{+}, \pi \pi\right)$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\left(3 \pi^{0}, \ell^{+}\right)$
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\left(\ell^{+}, 3 \pi^{0}\right)$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\left(\pi \pi, \ell^{+}\right)$

One can define the following ratios of probabilities:

$$
\begin{aligned}
& R_{1, \mathcal{C P} \mathcal{T}}(\Delta t)=P\left[\mathrm{~K}_{+}(0) \rightarrow \overline{\mathrm{K}}^{0}(\Delta t)\right] / P\left[\mathrm{~K}^{0}(0) \rightarrow \mathrm{K}_{+}(\Delta t)\right] \\
& R_{2, \mathcal{C P} \mathcal{T}}(\Delta t)=P\left[\mathrm{~K}^{0}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right] / P\left[\mathrm{~K}_{-}(0) \rightarrow \overline{\mathrm{K}}^{0}(\Delta t)\right] \\
& R_{3, \mathcal{C P} \mathcal{T}}(\Delta t)=P\left[\mathrm{~K}_{+}(0) \rightarrow \mathrm{K}^{0}(\Delta t)\right] / P\left[\overline{\mathrm{~K}}^{0}(0) \rightarrow \mathrm{K}_{+}(\Delta t)\right] \\
& R_{4, \mathcal{C P} \mathcal{T}}(\Delta t)=P\left[\overline{\mathrm{~K}}^{0}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right] / P\left[\mathrm{~K}_{-}(0) \rightarrow \mathrm{K}^{0}(\Delta t)\right]
\end{aligned}
$$

Any deviation from $\mathrm{R}_{\mathrm{i}, \mathrm{CPT}}=1$ constitutes a violation of CPT-symmetry

[^0]
Direct test of symmetries with neutral kaons

Reference	T-conjugate	$C P$-conjugate	$C P T$-conjugate
$\mathrm{K}^{0} \rightarrow \mathrm{~K}^{0}$	$\mathrm{~K}^{0} \rightarrow \mathrm{~K}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$
$\mathrm{~K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\mathrm{~K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$
$\mathrm{~K}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$
$\mathrm{~K}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$
$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\mathrm{~K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\mathrm{~K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}^{0}$
$\overline{\mathrm{~K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\mathrm{~K}^{0} \rightarrow \mathrm{~K}^{0}$	$\mathrm{~K}^{0} \rightarrow \mathrm{~K}^{0}$
$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\mathrm{~K}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$
$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\mathrm{~K}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$
$\mathrm{~K}_{+} \rightarrow \mathrm{K}^{0}$	$\mathrm{~K}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}_{+}$
$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\mathrm{~K}^{0} \rightarrow \mathrm{~K}_{+}$
$\mathrm{K}_{+} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{+}$
$\mathrm{K}_{+} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$
$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\mathrm{~K}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}_{-}$
$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{~K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\mathrm{~K}^{0} \rightarrow \mathrm{~K}_{-}$
$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{-}$
$\mathrm{K}_{-} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{-}$

Direct test of symmetries with neutral kaons

Conjugate= reference

Reference	T-conjugate	$C P$-conjugate	CPT-conjugate
$\mathrm{K}^{0} \rightarrow \mathrm{~K}^{0}$		$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$
$\mathrm{K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$	\sim_{n}^{0}
$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$
$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\mathrm{K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\mathrm{K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\underline{V}}^{0}$, K
$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\sim \sim$	$\mathrm{K}^{0} \rightarrow \mathrm{~K}^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{~K}^{0}$
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$
$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}$
$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{~K}$
$\mathrm{K}_{+} \rightarrow \mathrm{K}_{+}$	$K_{i} \quad \mathrm{~V}$, K	
$\mathrm{K}_{+} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$	\underline{K}	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$
$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$
$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{-}$
$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{-}$	\boldsymbol{V}	$\mathrm{K}_{+} \rightarrow \mathrm{K}$
$\mathrm{K}_{-} \rightarrow \mathrm{K}_{-}$	$\underline{\mathrm{K}}$	\underline{V}	$\mathrm{K} \xrightarrow{\text { r }}$

Direct test of symmetries with neutral kaons

Conjugate= reference

Reference	T-conjugate	$C P$-conjugate	CPT-conjugate
$\mathrm{K}^{0} \rightarrow \mathrm{~K}^{0}$		$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$
$\mathrm{K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\xrightarrow{-1}$
$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$
$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\underline{K}^{0} \quad \overline{\bar{K}}^{0}$	$\overline{\mathrm{K}}^{0} \overline{\mathrm{~K}}^{0}$	$\overline{\underline{V}}^{0} \quad \mathrm{~K}^{0}$
$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	\underline{n}	$\mathrm{H}^{0} \mathrm{~N}^{0}$	$n-m$
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	${ }^{-1}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\underline{\mathrm{H}}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$
$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	K^{0}	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathbf{V}}^{0}$ 上
$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{F}} \overline{\mathrm{T}}^{0}$	-	I
$\mathrm{K}_{+} \rightarrow \mathrm{K}_{+}$	K, K	$K \quad$ K	K, I
$\mathrm{K}_{+} \rightarrow \mathrm{K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$	V_{i}	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$
$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	V^{0} -	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{H}}{ }^{-1}$
$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	-	\boldsymbol{T}^{0}	H
$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$	$\underline{\square}$	\underline{K}	$\underline{\square}$
$\mathrm{K}_{-} \rightarrow \mathrm{K}_{-}$	V U	\underline{V}	K I

Direct test of symmetries with neutral kaons

Conjugate=	Reference	T-conjugate	$C P$-conjugate	CPT-conjugate
already in the table with conjugate as reference	$\mathrm{K}^{0} \rightarrow \mathrm{~K}^{0}$		$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$
	$\mathrm{K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\overline{\mathrm{K}}^{0} \longrightarrow \mathrm{~K}^{0}$	H^{-0}
	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$
	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$
	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\bar{K}^{0} \quad \overline{\underline{K}}^{0}$	$\bar{L}^{0} \quad \overline{\underline{K}}^{0}$	$\overline{\underline{V}}^{0}, \mathrm{~K}^{0}$
	$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\xrightarrow[n]{n}$	$\mathrm{n}^{0} \mathrm{~m}^{0}$	$\mathrm{n} \rightarrow \mathrm{m}^{\text {n }}$
	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	H0 T	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$
	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	${ }^{\sim}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$
Two identical conjugates for one reference	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	K^{0}	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\underline{V}}^{0}$
	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\underline{\square}$		
	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{+}$	K	\underline{V} K	I
	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{-}$	$\mathrm{K} \rightarrow \mathrm{K}_{+}$	\underline{K}	$\mathrm{K} \longrightarrow \mathrm{K}_{+}$
	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	V0	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\overline{\mathrm{H}}^{-1}$
	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	-	$4-4{ }^{0}$	H
	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$	$\underline{1}$	\boldsymbol{V}	$\underline{\square}$
	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{-}$	K	K	K K

Direct test of symmetries with neutral kaons

Conjugate= reference	Reference	T-conjugate	$C P$-conjugate	CPT-conjugate	4 distinct tests of T symmetry
	$\mathrm{K}^{0} \rightarrow \mathrm{~K}^{0}$	$\mathrm{TH}^{\text {+ }}$	$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	
already in the table with conjugate as reference	$\mathrm{K}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$	$\bar{K}^{0} \longrightarrow \mathrm{~K}^{0}$	$\overline{\mathrm{K}}^{0} \longrightarrow \mathrm{~K}^{0}$		
	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	
	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	
	$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}^{0}$	$\underline{K}^{0} \quad \bar{K}^{0}$	$\mathrm{K}^{0} \overline{\mathrm{~K}}^{0}$	$\overline{\underline{V}}^{0} \quad \mathrm{~K}^{0}$	
	$\overline{\mathrm{K}}^{0} \rightarrow \overline{\mathrm{~K}}^{0}$		$\mathrm{m}^{0} \mathrm{TN}^{0}$	$\mathrm{H}^{0} \rightarrow \mathrm{~N}^{(1)}$	
	$\begin{aligned} & \overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+} \\ & \overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K} \end{aligned}$	$\begin{aligned} & \mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0} \\ & \mathrm{~K}_{-} \rightarrow \overline{\mathrm{K}}^{0} \end{aligned}$	+	$\begin{aligned} & \mathrm{K}_{+} \rightarrow \mathrm{K}^{0} \\ & \mathrm{~K}_{-} \rightarrow \mathrm{K}^{0} \end{aligned}$	of CP symmetry
Two identical conjugates for one reference	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	K^{0}	$\mathrm{K}_{+} \rightarrow \mathrm{K}^{\text {a }}$	$\overline{\mathrm{k}}^{0}$	4 distinct tests of CPT symmetry
	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$				
	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{+}$	K, K	K, K	K,	
	$\mathrm{K}_{+} \rightarrow \mathrm{K}_{-}$	$\mathrm{K} \rightarrow \mathrm{K}_{+}$	\underline{K}	$\mathrm{K} \rightarrow \mathrm{K}_{4}$	
	$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	-	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	F- H	
	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$		-	+0.40	
	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{+}$	\underline{K}	\underline{V}	$\underline{+}$	
	$\mathrm{K}_{-} \rightarrow \mathrm{K}_{-}$	\underline{Y}	\underline{V}	K	

Quantum entanglement as a tool

- The in<->out states inversion required in a DIRECT test of CPT (or T) can be performed exploiting the properties of the quantum entanglement.
- In maximally entangled systems the complete knowledge of the system as a whole is encoded in the state, no information on single subsystems is available.
- Once a measurement is performed on one subsystem, then the information is immediately transferred to its partner, which is prepared in the orthogonal state
- $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \phi\right) \sim 3 \mathrm{mb} ; \mathrm{W}=\mathrm{m}_{\phi}=1019.4 \mathrm{MeV} \operatorname{BR}\left(\phi \rightarrow \mathrm{K}^{0} \underline{K}^{0}\right) \sim 34 \%$ $\sim 10^{6} / \mathrm{pb}^{-1} \mathrm{KK}$ pairs produced in an antisymmetric quantum state with JPC = 1-- :

The KLOE detector at the Frascati ϕ-factory DAФNE

Integrated luminosity (KLOE)

Total KLOE $\int \mathcal{L} \mathrm{dt} \sim 2.5 \mathrm{fb}^{-1}$
(2001-05) $\rightarrow \sim 2.5 \times 10^{9} \mathrm{~K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}}$ pairs

Lead/scintillating fiber calorimeter drift chamber
4 m diameter $\times 3.3 \mathrm{~m}$ length helium based gas mixture

KLOE-2 at DAФNE

LYSO Crystal w SiPM Low polar angle

Tungsten / Scintillating Tiles w SiPM

KLOE-2 Data Taking

KLOE-2 goal: L acquired > $5 \mathrm{fb}^{-1}$ => L delivered > ~ $6.2 \mathrm{fb}-1$ by 31 March 2018

List of KLOE CP/CPT/QM tests with neutral kaons

Mode	Test	Param.	KLOE measurement
$\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}$	CP	BR	$(1.963 \pm 0.012 \pm 0.017) \times 10^{-3}$
$\mathrm{K}_{\mathrm{s}} \rightarrow 3 \pi^{0}$	CP	BR	$<2.6 \times 10^{-8}$
$\mathrm{K}_{\mathrm{s}} \rightarrow \pi \mathrm{ev}$	CP	$\mathrm{A}_{\mathbf{S}}$	$(1.5 \pm 10) \times 10^{-3}$
$\mathrm{K}_{\mathrm{s}} \rightarrow \pi \mathrm{ev}$	CPT	$\operatorname{Re}\left(\mathbf{x}_{\text {_ }}\right.$)	$(-0.8 \pm 2.5) \times 10^{-3}$
$\mathrm{K}_{\mathrm{s}} \rightarrow \pi \mathrm{ev}$	CPT	$\operatorname{Re}(\mathrm{y})$	$(0.4 \pm 2.5) \times 10^{-3}$
All $K_{\text {s,L }}$ BRs, η 's etc... (unitarity)	$\begin{gathered} \mathrm{CP} \\ \text { CPT } \end{gathered}$	$\begin{gathered} \hline \operatorname{Re}(\varepsilon) \\ \operatorname{Im}(\delta) \end{gathered}$	$\begin{gathered} (159.6 \pm 1.3) \times 10^{-5} \\ (0.4 \pm 2.1) \times 10^{-5} \end{gathered}$
$\mathbf{K}_{\mathbf{S}} \mathbf{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	QM	ζ_{00}	$(0.1 \pm 1.0) \times 10^{-6}$
$\mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	QM	$\zeta_{\text {SL }}$	$(0.3 \pm 1.9) \times 10^{-2}$
$\mathbf{K}_{\mathbf{S}} \mathbf{K}_{\mathbf{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& QM	α	$(-10 \pm 37) \times 10^{-17} \mathrm{GeV}$
$\mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& QM	β	$(1.8 \pm 3.6) \times 10^{-19} \mathrm{GeV}$
$\mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& QM	γ	$(0.4 \pm 4.6) \times 10^{-21} \mathrm{GeV}$ compl. pos. hyp. $(0.7 \pm 1.2) \times 10^{-21} \mathrm{GeV}$
$\mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& QM	$\operatorname{Re}(\omega)$	$(-1.6 \pm 2.6) \times 10^{-4}$
$\mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& QM	$\mathbf{I m}(\omega)$	$(-1.7 \pm 3.4) \times 10^{-4}$
$\mathbf{K}_{\mathbf{S}} \mathbf{K}_{\mathbf{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& Lorentz	Δa_{0}	$(-6.2 \pm 8.8) \times 10^{-18} \mathrm{GeV}$
$\mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& Lorentz	$\Delta \mathrm{a}_{\mathrm{z}}$	$(-0.7 \pm 1.0) \times 10^{-18} \mathrm{GeV}$
$\mathbf{K}_{\mathbf{S}} \mathrm{K}_{\mathbf{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& Lorentz	$\Delta \mathbf{a}_{\mathbf{x}}$	$(3.3 \pm 2.2) \times 10^{-18} \mathrm{GeV}$
$\mathbf{K}_{S} \mathbf{K}_{\mathbf{L}} \rightarrow \pi^{+} \pi^{-}, \pi^{+} \pi^{-}$	CPT \& Lorentz	$\Delta \mathrm{a}_{\mathrm{Y}}$	$(-0.7 \pm 2.0) \times 10^{-18} \mathrm{GeV}$

A. Di Domenico

Workshop on the Standard Model and Beyond, 2-10 September 2017, Corfu, Greece

Entanglement in neutral kaon pairs from ϕ

$|i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right]$

Both kaons decay in the same final state:

$$
f_{1}=f_{2}=\pi^{+} \pi^{-}
$$

Entanglement in neutral kaon pairs from ϕ

$|i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right]$

EPR correlation:
no simultaneous decays $(\Delta t=0)$ in the same final state due to the fully destructive quantum interference

Both kaons decay in the same final state:

$$
f_{1}=f_{2}=\pi^{+} \pi^{-}
$$

$\Delta t / \tau_{\mathrm{S}}$

$\phi \rightarrow K_{\mathrm{S}} \mathbf{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$: test of quantum coherence

$$
\begin{gathered}
|i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right] \\
I\left(\pi^{+} \pi^{-}, \pi^{+} \pi^{-} ; \Delta t\right)= \\
=\frac{N}{2}\left[\left|\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid K^{0} \bar{K}^{0}(\Delta t)\right\rangle\right|^{2}+\left|\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid \bar{K}^{0} K^{0}(\Delta t)\right\rangle\right|^{2}\right. \\
\\
\left.-\left(1-\zeta_{0 \overline{0}}\right) \cdot 2 \mathfrak{R}\left(\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid K^{0} \bar{K}^{0}(\Delta t)\right\rangle\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid \bar{K}^{0} K^{0}(\Delta t)\right\rangle^{*}\right)\right]
\end{gathered}
$$

$\phi \rightarrow K_{\mathrm{S}} \mathbf{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$: test of quantum coherence

$$
\begin{gathered}
|i\rangle=\frac{1}{\sqrt{2}}\left[\left|K^{0}\right\rangle\left|\bar{K}^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle\left|K^{0}\right\rangle\right] \\
I\left(\pi^{+} \pi^{-}, \pi^{+} \pi^{-} ; \Delta t\right)=\frac{N}{2}\left[\left|\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid K^{0} \bar{K}^{0}(\Delta t)\right\rangle\right|^{2}+\left|\left\langle\pi^{+} \pi^{-}, \pi^{+} \pi^{-} \mid \bar{K}^{0} K^{0}(\Delta t)\right\rangle\right|^{2}\right. \\
\text { Decoherence parameter: } \\
\zeta_{0 \overline{0}}=0 \quad \rightarrow \text { QM } \\
\zeta_{0 \overline{0}}=1 \quad \rightarrow \text { total decoherence }
\end{gathered}
$$

Bertlmann, Grimus, Hiesmayr PR D60 (1999) 114032
Bertlmann, Durstberger, Hiesmayr PRA 68012111 (2003)

$\phi \rightarrow K_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$: test of quantum coherence

$\phi \rightarrow \mathbf{K}_{\mathrm{s}} \mathbf{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$: test of quantum coherence

$\phi \rightarrow \mathrm{K}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$: test of quantum coherence

Fit including $\Delta \mathrm{t}$ resolution and efficiency effects + regeneration; $\mathrm{L}=1.5 \mathrm{fb}^{-1} \quad \Delta \tau\left(\tau_{\mathrm{s}}\right)$
KLOE result: $\quad \zeta_{\overline{0} 0}=\left(1.4 \pm 9.5_{\text {STAT }} \pm 3.8_{\text {SYST }}\right) \times 10^{-7}$
A new refined analysis is being finalized: $\sigma(\zeta)$ improved $\sim 15 \%$
PLB 642(2006) 315
Found. Phys. 40 (2010) 852
The most precise test in an entangled system

Entanglement in neutral kaon pairs

-EPR correlations at a ϕ-factory can be exploited to study transitions involving orthogonal "CP states" K_{+}and K_{-}

$$
\begin{aligned}
|i\rangle & =\frac{1}{\sqrt{2}}\left[\left|K^{0}(\vec{p})\right\rangle\left|\bar{K}^{0}(-\vec{p})\right\rangle-\left|\bar{K}^{0}(\vec{p})\right\rangle\left|K^{0}(-\vec{p})\right\rangle\right] \\
& =\frac{1}{\sqrt{2}}\left[\left|K_{+}(\vec{p})\right\rangle\left|K_{-}(-\vec{p})\right\rangle-\left|K_{-}(\vec{p})\right\rangle\left|K_{+}(-\vec{p})\right\rangle\right]
\end{aligned}
$$

-decay as filtering measurement -entanglement -> preparation of state

Entanglement in neutral kaon pairs

-EPR correlations at a ϕ-factory can be exploited to study transitions involving orthogonal "CP states" K_{+}and K_{-}

Entanglement in neutral kaon pairs

-EPR correlations at a ϕ-factory can be exploited to study transitions involving orthogonal "CP states" K_{+}and K_{-}

-decay as filtering measurement -entanglement -> preparation of state

Entanglement in neutral kaon pairs

-EPR correlations at a ϕ-factory can be exploited to study transitions involving orthogonal "CP states" K_{+}and K_{-}

$\|i\rangle$	$=\frac{1}{\sqrt{2}}\left[\left\|K^{0}(\vec{p})\right\rangle\left\|\bar{K}^{0}(-\vec{p})\right\rangle-\left\|\bar{K}^{0}(\vec{p})\right\rangle\left\|K^{0}(-\vec{p})\right\rangle\right]$
	$=\frac{1}{\sqrt{2}}\left[\left\|K_{+}(\vec{p})\right\rangle\left\|K_{-}(-\vec{p})\right\rangle-\left\|K_{-}(\vec{p})\right\rangle\left\|K_{+}(-\vec{p})\right\rangle\right]$

-decay as filtering measurement -entanglement -> preparation of state

$K_{-} \rightarrow \bar{K}^{0} \quad$ CPT-conjugated process

Entanglement in neutral kaon pairs

-EPR correlations at a ϕ-factory can be exploited to study transitions involving orthogonal "CP states" K_{+}and K_{-}

$\|i\rangle$	$=\frac{1}{\sqrt{2}}\left[\left\|K^{0}(\vec{p})\right\rangle\left\|\bar{K}^{0}(-\vec{p})\right\rangle-\left\|\bar{K}^{0}(\vec{p})\right\rangle\left\|K^{0}(-\vec{p})\right\rangle\right]$
	$=\frac{1}{\sqrt{2}}\left[\left\|K_{+}(\vec{p})\right\rangle\left\|K_{-}(-\vec{p})\right\rangle-\left\|K_{-}(\vec{p})\right\rangle\left\|K_{+}(-\vec{p})\right\rangle\right]$

-decay as filtering measurement -entanglement -> preparation of state

Note: CP and T conjugated process $K_{-} \rightarrow \bar{K}^{0} \quad$ CPT-conjugated process $\bar{K}^{0} \rightarrow K_{-} \quad K_{-} \rightarrow K^{0}$

Direct test of CPT symmetry in neutral kaon transitions

Two observable ratios of double decay intensities

$$
\begin{aligned}
& R_{2, \mathrm{CPT}}^{\exp }(\Delta t) \equiv \frac{I\left(\ell^{-}, 3 \pi^{0} ; \Delta t\right)}{I\left(\pi \pi, \ell^{-} ; \Delta t\right)} \\
& R_{4, \mathrm{CPT}}^{\exp }(\Delta t) \equiv \frac{I\left(\ell^{+}, 3 \pi^{0} ; \Delta t\right)}{I\left(\pi \pi, \ell^{+} ; \Delta t\right)}
\end{aligned}
$$

for $\Delta t>0$

$$
R_{2, \mathrm{CPT}}^{\exp }(\Delta t)=R_{2, \mathrm{CPT}}(\Delta t) \times D_{\mathrm{CPT}}
$$

$$
R_{4, \mathrm{CPT}}^{\exp }(\Delta t)=R_{4, \mathrm{CPT}}(\Delta t) \times D_{\mathrm{CPT}}
$$

for $\Delta t<0$

$$
R_{2, \mathrm{CPT}}^{\exp }(\Delta t)=R_{1, \mathrm{CPT}}(|\Delta t|) \times D_{\mathrm{CPT}}
$$

$$
R_{4, \mathrm{CPT}}^{\exp }(\Delta t)=R_{3, \mathrm{CPT}}(|\Delta t|) \times D_{\mathrm{CPT}}
$$

with $\mathrm{D}_{\mathrm{CPT}}$ constant $\quad D_{\mathrm{CPT}}=\frac{\mathrm{BR}\left(\mathrm{K}_{\mathrm{L}} \rightarrow 3 \pi^{0}\right)}{\mathrm{BR}\left(\mathrm{K}_{\mathrm{S}} \rightarrow \pi \pi\right)} \frac{\Gamma_{L}}{\Gamma_{S}}$

Direct test of CPT symmetry in neutral kaon transitions

Explicitly in standard Wigner Weisskopf approach for $\Delta t>0$:

$$
\begin{aligned}
R_{2, \mathrm{CPT}}^{\exp }(\Delta t) & =\frac{P\left[\mathrm{~K}^{0}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right]}{P\left[\mathrm{~K}_{-}(0) \rightarrow \overline{\mathrm{K}}^{0}(\Delta t)\right]} \times D_{\mathrm{CPT}} \\
& \simeq|1-2 \delta|^{2}\left|1+2 \delta e^{-i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}\right|^{2} \times D_{\mathrm{CPT}} \\
R_{4, \mathrm{CPT}}^{\exp }(\Delta t) & =\frac{P\left[\overline{\mathrm{~K}}^{0}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right]}{P\left[\mathrm{~K}_{-}(0) \rightarrow \mathrm{K}^{0}(\Delta t)\right]} \times D_{\mathrm{CPT}} \\
& \simeq|1+2 \delta|^{2}\left|1-2 \delta e^{-i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}\right|^{2} \times D_{\mathrm{CPT}}
\end{aligned}
$$

For comparison the ratio of survival probabilities: Vanishes for $\Delta \Gamma->0$

$$
\begin{aligned}
\frac{I\left(\ell^{-}, \ell^{+} ; \Delta t\right)}{I\left(\ell^{+}, \ell^{-} ; \Delta t\right)} & =\frac{P\left[\mathrm{~K}^{0}(0) \rightarrow \mathrm{K}^{0}(\Delta t)\right]}{P\left[\overline{\mathrm{~K}}^{0}(0) \rightarrow \overline{\mathrm{K}}^{0}(\Delta t)\right]} \\
& \simeq|1-4 \delta|^{2}\left|1+\frac{8 \delta}{1+e^{+i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}}\right|^{2}
\end{aligned}
$$

As an illustration of the different sensitivity: it vanishes up to second order in CPTV and decoherence parameters α, β, γ (Ellis, Mavromatos et al. PRD1996)

Impact of the approximations

In general K_{+}and K_{-} (and K0 and KO) can be non-orthogonal

Direct CP (CPT) violation

$$
\eta_{\pi \pi}=\epsilon_{L}+\epsilon_{\pi \pi}^{\prime}
$$

$$
\eta_{3 \pi^{0}}=\epsilon_{S}+\epsilon_{3 \pi^{0}}^{\prime}
$$

CPT cons. and CPT viol. $\Delta S=\Delta Q$ violation

$$
x_{+}, x_{-}
$$

Orthoghonal
bases $\quad\left\{\mathrm{K}_{+}, \widetilde{\mathrm{K}}_{-}\right\} \quad\left\{\widetilde{\mathrm{K}}_{+}, \mathrm{K}_{-}\right\} \quad\left\{\widetilde{\mathrm{K}}_{0}, \mathrm{~K}_{\overline{0}}\right\}$ and $\left\{\widetilde{\mathrm{K}}_{\overline{0}}, \mathrm{~K}_{0}\right\}$

Explicitly for $\Delta t>0$:

$$
\begin{aligned}
R_{2, \mathrm{CPT}}^{\exp }(\Delta t) & =\frac{P\left[\widetilde{\mathrm{~K}}_{0}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right]}{P\left[\widetilde{\mathrm{~K}}_{-}(0) \rightarrow \mathrm{K}_{\overline{0}}(\Delta t)\right]} \times D_{\mathrm{CPT}} \\
& =\left|1-2 \delta+2 x_{+}^{\star}-2 x_{-}^{\star}\right|^{2}\left|1+\left(2 \delta+\epsilon_{3 \pi^{0}}^{\prime}-\epsilon_{\pi \pi}^{\prime}\right) e^{-i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}\right|^{2} \times D_{\mathrm{CPT}}
\end{aligned}
$$

$$
R_{4, \mathrm{CPT}}^{\exp }(\Delta t)=\frac{P\left[\widetilde{\mathrm{~K}}_{\overline{0}}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right]}{P\left[\widetilde{\mathrm{~K}}_{-}(0) \rightarrow \mathrm{K}_{0}(\Delta t)\right]} \times D_{\mathrm{CPT}}
$$

$$
=\left|1+2 \delta+2 x_{+}+2 x_{-}\right|^{2}\left|1-\left(2 \delta+\epsilon_{3 \pi^{0}}^{\prime}-\epsilon_{\pi \pi}^{\prime}\right) e^{-i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}\right|^{2} \times D_{\mathrm{CPT}}
$$

Impact of the approximations

$$
\begin{aligned}
\frac{R_{2, \mathrm{CPT}}^{\exp }(\Delta t)}{R_{4, \mathrm{CPT}}^{\exp }(\Delta t)} & \simeq\left(1-8 \Re \delta-8 \Re x_{-}\right)\left|1+2\left(\eta_{3 \pi^{0}}-\eta_{\pi \pi}\right) e^{-i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}\right|^{2} \\
& =\left(1-8 \Re \delta-8 \Re x_{-}\right)\left|1+2\left(2 \delta+\epsilon_{3 \pi^{0}}^{\prime}-\epsilon_{\pi \pi}^{\prime}\right) e^{-i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}\right|^{2}
\end{aligned}
$$

The double ratio constitutes one of the most robust observables for the proposed CPT test. In the limit $\Delta \mathrm{t} \geqslant \mathrm{T}_{\mathrm{S}}$ it exhibits a pure and genuine CPT violating effect, even without assuming negligible contaminations from direct $C P$ violation and/or $\Delta S=\Delta Q$ rule violation.

$$
\mathrm{DR}_{\mathrm{CPT}}=\frac{R_{2, \mathrm{CPT}}^{\exp }\left(\Delta t \gg \tau_{S}\right)}{R_{4, \mathrm{CPT}}^{\exp }\left(\Delta t \gg \tau_{S}\right)}=1-8 \Re \delta-8 \Re x_{-}
$$

There exists a connection with charge semileptonic asymmetries of K_{S} and K_{L}

$$
\mathrm{DR}_{\mathrm{CPT}}=\frac{R_{2, \mathrm{CPT}}^{\exp }\left(\Delta t \gg \tau_{S}\right)}{R_{4, \mathrm{CPT}}^{\exp }\left(\Delta t \gg \tau_{S}\right)}=\frac{1+A_{L}}{1-A_{L}} \times \frac{1-A_{S}}{1+A_{S}} \simeq 1+2\left(A_{L}-A_{S}\right)
$$

Direct test of CPT in transitions with neutral kaons

for visualization purposes, plots with

$$
\operatorname{Re}(\delta)=3.3 \quad 10^{-4} \quad \operatorname{Im}(\delta)=1.6 \quad 10^{-5}
$$

Direct test of CPT in transitions with neutral kaons

for visualization purposes, plots with

$$
\operatorname{Re}(\delta)=3.3 \quad 10^{-4} \operatorname{Im}(\delta)=1.6 \quad 10^{-5}
$$

Modifications due to direct CP violation effects (unrealistically amplified ~x100)

Direct test of CPT in transitions with neutral kaons

for visualization purposes, plots with

$$
\operatorname{Re}(\delta)=3.3 \quad 10^{-4} \quad \operatorname{Im}(\delta)=1.6 \quad 10^{-5}
$$

Direct test of CPT symmetry with neutral kaons

for visualization purposes, plots with

$$
\operatorname{Re}(\delta)=3.3 \quad 10^{-4} \operatorname{Im}(\delta)=1.6 \quad 10^{-5}
$$

Modifications due to direct CP violation effects (unrealistically amplified $\sim x 100$)

Direct test of CPT in neutral kaon transitions

KLOE data sample: L=1.7 fb-1

$$
\begin{aligned}
& R_{2, \mathrm{CPT}}^{\exp }(\Delta t) \equiv \frac{I\left(\ell^{-}, 3 \pi^{0} ; \Delta t\right)}{I\left(\pi \pi, \ell^{-} ; \Delta t\right)} \\
& R_{4, \mathrm{CPT}}^{\exp }(\Delta t) \equiv \frac{I\left(\ell^{+}, 3 \pi^{0} ; \Delta t\right)}{I\left(\pi \pi, \ell^{+} ; \Delta t\right)}
\end{aligned}
$$

CPT test with the double ratio $\mathrm{DR}_{\mathrm{CPT}}$:

$$
\frac{R_{2, \mathrm{CPT}}^{\exp }\left(\Delta t \gg \tau_{S}\right)}{R_{4, \mathrm{CPT}}^{\exp }\left(\Delta t \gg \tau_{S}\right)}=1-8 \Re \delta-8 \Re x_{-}
$$

K_{S} semileptonic charge asymmetry

K_{S} and K_{L} semileptonic charge asymmetry

$$
\begin{aligned}
& K_{S} \text { and } K_{L} \text { semileptonic charge asymmetry } \\
& A_{S, L}=\frac{\Gamma\left(K_{S, L} \rightarrow \pi^{-} e^{+} v\right)-\Gamma\left(K_{S, L} \rightarrow \pi^{+} e^{-} \bar{v}\right)}{\Gamma(K)} \downarrow{ }^{\text {CPT viol. in mixing }} \downarrow \\
& \downarrow
\end{aligned}
$$

CPTV in $\Delta \mathrm{S}=\Delta \mathrm{Q} \quad \Delta \mathrm{S} \neq \Delta \mathrm{Q}$ decays
$A_{S, L} \neq 0$ signals $C P$ violation
$A_{S} \neq A_{L}$ signals CPT violation
$\mathrm{A}_{\mathrm{L}}=(\mathbf{3 . 3 2 2} \pm \mathbf{0 . 0 5 8} \pm \mathbf{0 . 0 4 7}) \times \mathbf{1 0}^{-\mathbf{3}}$
KTEV PRL88,181601(2002)

$$
A_{S}=(1.5 \pm 9.6 \pm 2.9) \times 10^{-3}
$$

KLOE PLB 636(2006) 173
Data sample: L=410 pb-1

CPT \& $\Delta S=\Delta Q$ viol.

CPT viol. KLOE PLB 636(2006) 173

K_{S} semileptonic charge asymmetry at KLOE

$$
|i\rangle \propto\left[\left|K_{S}\right\rangle\left|K_{L}\right\rangle-\left|K_{L}\right\rangle\left|K_{S}\right\rangle\right]
$$

K_{S} tagged by \boldsymbol{K}_{L} interaction in EmC (fapp) Efficiency ~ 30\% (largely geometrical)

$\mathrm{M}^{2}(\mathrm{e}) / 1000\left[\mathrm{MeV}^{2}\right]$

$\mathrm{M}^{2}(\mathrm{e}) / 1000\left[\mathrm{MeV}^{2}\right]$

$\mathrm{M}^{2}(\mathrm{e}) / 1000\left[\mathrm{MeV}^{2}\right]$

Fit of $\mathrm{M}^{2}(\mathrm{e})$ distribution

K_{S} semileptonic charge asymmetry at KLOE

Conclusions

- The entangled neutral kaon system at a ϕ-factory is an excellent laboratory for the study of discrete symmetries and fundamental principles of QM.
- It is possible to directly test CPT in transition processes for the first time between neutral kaon states. The proposed CPT test is model independent and fully robust.
- VERY CLEAN TEST. Possible spurious effects are well under control.
- Genuine test not depends on $\Delta \Gamma$ (the decay is not as an essential ingredient).
- Maximal entanglement of the initial state is assumed (impact of possible loss of coherence under evaluation; however marginal for precision of $\mathrm{DR}_{\mathrm{CPT}}$ of $\mathrm{O}\left(10^{-3}\right)$).
- KLOE data analysis ongoing; KLOE-2 could reach a statistical sensitivity of $\mathrm{O}\left(10^{-3}\right)$ on these new observables.
- New preliminary measurement of the KS semileptonic charge asymmetry
- The KLOE-2 experiment at the upgraded DAFNE is currently taking data with the plan to collect $\mathrm{L}>5 \mathrm{fb}^{-1}$ by end of March 2018.
All tests of discrete symmetries and QM are expected to be improved at KLOE-2.

Spare slides

KLOE-2 Physics

KAON Physics:

- CPT and QM tests with kaon interferometry
- Direct T and CPT tests using entanglement
- CP violation and CPT test:
$\mathrm{K}_{\mathrm{s}}->3 \pi^{0}$
direct measurement of $\operatorname{Im}\left(\varepsilon^{\prime} / \varepsilon\right)$ (lattice calc. improved)
- CKM Vus:
K_{S} semileptonic decays and A_{S} (also CP and CPT test) $\mathrm{K} \mu 3$ form factors, Kl 3 radiative corrections
- $\chi \mathrm{pT}: \mathrm{K}_{s}->\gamma \gamma$
- Search for rare K_{S} decays

Hadronic cross section

- Measurement of $\mathrm{a}_{\mu}{ }^{\text {HLO }}$ in the space-like
- ISR studies with $3 \pi, 4 \pi$ final states
- F_{π} with increased statistics

> region using Bhabha process

Dark forces:

- Improve limits on:

U γ associate production $\mathrm{e}+\mathrm{e}-\rightarrow \mathrm{U} \gamma \rightarrow \pi \pi \gamma, \mu \mu \gamma$

- Higgstrahlung

$$
\mathrm{e}+\mathrm{e}-\rightarrow \text { Uh' } \rightarrow \mu+\mu-+ \text { miss. energy }
$$

- Leptophobic B boson search
$\phi \rightarrow \eta \mathrm{B}, \mathrm{B} \rightarrow \pi^{0} \gamma, \eta \rightarrow \gamma \gamma$
$\eta \rightarrow B \gamma, B \rightarrow \pi^{0} \gamma, \eta \rightarrow \pi^{0} \gamma \gamma$
- Search for U invisible decays

Light meson Physics:

- η decays, ω decays, TFF $\phi \rightarrow \eta \mathrm{e}^{+} \mathrm{e}^{-}$
- C,P,CP violation:
improve limits on $\eta \rightarrow \gamma \gamma \gamma, \pi^{+} \pi^{-}, \pi^{0} \pi^{0}, \pi^{0} \pi^{0} \gamma$
- improve $\eta \rightarrow \pi^{+} \pi^{-} \mathrm{e}^{+} \mathrm{e}^{-}$
- $\chi \mathrm{pT}: \eta \rightarrow \pi^{0} \gamma \gamma$
- Light scalar mesons: $\phi \rightarrow \mathrm{K}_{\mathrm{s}} \mathrm{K}_{\mathrm{s}} \gamma$
- $\gamma \gamma$ Physics: $\gamma \gamma \rightarrow \pi^{0}$ and π^{0} TFF
- light-by-light scattering
- axion-like particles

Direct test of Time Reversal symmetry with neutral kaons

T symmetry test
Reference

Transition	Final state	Transition	Final state
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{-}$	$\left(\ell^{+}, \pi^{0} \pi^{0} \pi^{0}\right)$	$\mathrm{K}_{-} \rightarrow \overline{\mathrm{K}}^{0}$	$\left(\pi^{0} \pi^{0} \pi^{0}, \ell^{-}\right)$
$\mathrm{K}_{+} \rightarrow \mathrm{K}^{0}$	$\left(\pi^{0} \pi^{0} \pi^{0}, \ell^{+}\right)$	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{+}$	$\left(\ell^{-}, \pi \pi\right)$
$\overline{\mathrm{K}}^{0} \rightarrow \mathrm{~K}_{+}$	$\left(\ell^{+}, \pi \pi\right)$	$\mathrm{K}_{+} \rightarrow \overline{\mathrm{K}}^{0}$	$\left(\pi^{0} \pi^{0} \pi^{0}, \ell^{-}\right)$
$\mathrm{K}_{-} \rightarrow \mathrm{K}^{0}$	$\left(\pi \pi, \ell^{+}\right)$	$\mathrm{K}^{0} \rightarrow \mathrm{~K}_{-}$	$\left(\ell^{-}, \pi \pi\right)$

One can define the following ratios of probabilities:

$$
\begin{aligned}
R_{1}(\Delta t) & =P\left[\mathrm{~K}^{0}(0) \rightarrow \mathrm{K}_{+}(\Delta t)\right] / P\left[\mathrm{~K}_{+}(0) \rightarrow \mathrm{K}^{0}(\Delta t)\right] \\
R_{2}(\Delta t) & =P\left[\mathrm{~K}^{0}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right] / P\left[\mathrm{~K}_{-}(0) \rightarrow \mathrm{K}^{0}(\Delta t)\right] \\
R_{3}(\Delta t) & =P\left[\overline{\mathrm{~K}}^{0}(0) \rightarrow \mathrm{K}_{+}(\Delta t)\right] / P\left[\mathrm{~K}_{+}(0) \rightarrow \overline{\mathrm{K}}^{0}(\Delta t)\right] \\
R_{4}(\Delta t) & =P\left[\overline{\mathrm{~K}}^{0}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right] / P\left[\mathrm{~K}_{-}(0) \rightarrow \overline{\mathrm{K}}^{0}(\Delta t)\right] .
\end{aligned}
$$

Any deviation from $\mathrm{R}_{\mathrm{i}}=1$ constitutes a violation of T-symmetry

[^1]
Direct test of Time Reversal symmetry with neutral kaons

Two observable ratios of double decay intensities

$$
\begin{aligned}
R_{2, \mathcal{T}}^{\exp }(\Delta t) & \equiv \frac{I\left(\ell^{-}, 3 \pi^{0} ; \Delta t\right)}{I\left(\pi \pi, \ell^{+} ; \Delta t\right)} \\
R_{4, \mathcal{T}}^{\exp }(\Delta t) & \equiv \frac{I\left(\ell^{+}, 3 \pi^{0} ; \Delta t\right)}{I\left(\pi \pi, \ell^{-} ; \Delta t\right)}
\end{aligned}
$$

Direct test of Time Reversal symmetry with neutral kaons

Explicitly in standard Wigner Weisskopf approach for $\Delta t>0$:

$$
\begin{aligned}
R_{2, \mathcal{T}}^{\exp }(\Delta t) & =\frac{P\left[\mathrm{~K}^{0}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right]}{P\left[\mathrm{~K}_{-}(0) \rightarrow \mathrm{K}^{0}(\Delta t)\right]} \times D_{\mathcal{T}, 2} \\
& =(1-4 \Re \epsilon)\left|1+2 \epsilon e^{-i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}\right|^{2} \times D_{\mathcal{C P} \mathcal{T}} \\
R_{4, \mathcal{T}}^{\exp }(\Delta t) & =\frac{P\left[\overline{\mathrm{~K}}^{0}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right]}{P\left[\mathrm{~K}_{-}(0) \rightarrow \overline{\mathrm{K}}^{0}(\Delta t)\right]} \times D_{\mathcal{T}, 4} \\
& =(1+4 \Re \epsilon)\left|1-2 \epsilon e^{-i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}\right|^{2} \times D_{\mathcal{C P} \mathcal{T}}
\end{aligned}
$$

Impact of the approximations

In general K_{+}and K_{-} (and K0 and KO) can be non-orthogonal

Direct CP (CPT) violation
$\eta_{\pi \pi}=\epsilon_{L}+\epsilon_{\pi \pi}^{\prime}$
$\eta_{3 \pi^{0}}=\epsilon_{S}+\epsilon_{3 \pi^{0}}^{\prime}$

CPT cons. and CPT viol. $\Delta S=\Delta Q$ violation

$$
x_{+}, x_{-}
$$

Orthoghonal bases

$$
\left\{\mathrm{K}_{+}, \widetilde{\mathrm{K}}_{-}\right\} \quad\left\{\widetilde{\mathrm{K}}_{+}, \mathrm{K}_{-}\right\} \quad\left\{\widetilde{\mathrm{K}}_{0}, \mathrm{~K}_{\overline{0}}\right\} \text { and }\left\{\widetilde{\mathrm{K}}_{\overline{0}}, \mathrm{~K}_{0}\right\}
$$

Explicitly for $\Delta t>0$:

$$
\begin{aligned}
R_{2, \mathcal{T}}^{\exp }(\Delta t) & =\frac{P\left[\widetilde{\mathrm{~K}}_{0}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right]}{P\left[\widetilde{\mathrm{~K}}_{-}(0) \rightarrow \mathrm{K}_{0}(\Delta t)\right]} \times D_{\mathcal{T}, 2} \\
& =\left(1-4 \Re \epsilon+4 \Re x_{+}+4 \Re y\right)\left|1+\left(2 \epsilon+\epsilon_{3 \pi^{0}}^{\prime}+\epsilon_{\pi \pi}^{\prime}\right) e^{-i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}\right|^{2} \times D_{\mathcal{C P} \mathcal{T}} \\
R_{4, \mathcal{T}}^{\exp }(\Delta t) & =\frac{P\left[\widetilde{\mathrm{~K}}_{\overline{0}}(0) \rightarrow \mathrm{K}_{-}(\Delta t)\right]}{P\left[\widetilde{\mathrm{~K}}_{-}(0) \rightarrow \mathrm{K}_{\overline{0}}(\Delta t)\right]} \times D_{\mathcal{T}, 4} \\
& =\left(1+4 \Re \epsilon+4 \Re x_{+}-4 \Re y\right)\left|1-\left(2 \epsilon+\epsilon_{3 \pi^{0}}^{\prime}+\epsilon_{\pi \pi}^{\prime}\right) e^{-i\left(\lambda_{S}-\lambda_{L}\right) \Delta t}\right|^{2} \times D_{\mathcal{C P} \mathcal{T}}
\end{aligned}
$$

Direct test of Time Reversal symmetry with neutral kaons

plots with CPV Res and Im ε values

Modifications due to direct CP violation effects (unrealistically amplified ~x100)

Direct test of Time Reversal symmetry with neutral kaons

plots with CPV Res and Ime values

[^0]: J. Bernabeu, A.D.D., P. Villanueva, JHEP 10 (2015) 139

[^1]: J. Bernabeu, A.D.D., P. Villanueva: NPB 868 (2013) 102

