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Direct detection of gravitational waves by LIGO and Virgo
Scientific Collab. [arXiv:1602.03837], [arXiv:1606.04855], [arXiv:1706.01812]

= new observational tool to probe nature and test theories.
— models beyond four-dimensional (4d) General Relativity
Here: test idea of having N extra dimensions: D =4 + N.

If 3 extra dimensions

Introduction

— (detectable) effect on 4d gravitational waves?

Many models with extra dimensions, from pheno. to

qu. grav.: large extra dimensions (ADD models),
Randall-Sundrum models, universal extra dimensions,
supergravities, string theories, M-theory...

Variety of models: number, size, shape of extra dimensions...
Previous literature: typically very model dependent

= here, remain as generic as possible.
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Most work on gravitational waves is about source: compute
waveform for some emission. In 4d, governed by

oghy ~ Tlgzl/) +  gauge fixing.
Here: away from source (avoids model dependence).
Assume waves emitted (initial conditions), study propagation
— corrections to o4h,, = 0 + gauge firing due to extra dim.?

D-dimensional General Relativity with cosmo. constant
— derive gravitational wave equation and gauge fixing on
generic background

— split dimensions: D =4 + N = split equations

— modifications of those on h,,? Yes!

In general, too complicated to read-off effect on wave

— restrict background to Minkowski x My .
Minkowski: v~ for physical purposes; M compact Ricci-flat.

= Two effects:
1. Breathing mode: new polarization mode in massless wave.
2. Additional (massive) waves of high frequencies.

— Observable in a near future?
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2KpD

— Einstein equation: Ryn — 52 gp un = 0

Background + fluctuation: gp yn = gun + hun
— develop equation at 0" and 1¢ order:

RO~ 28 gan =0, Ry — 28 hasw =0

Introduction
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where gn = Vg)gPQhQN — %Vge)hp, with hp = gMNhMN.
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z+/|gp| (Rp —2ADp)

— Einstein equation: Ryn — 52 gp un = 0

General Relativity: S = 51

Background + fluctuation: gp yn = gun + hun

— develop equation at 0" and 1¢ order:

Ry — 22 gun =0, Ry —Z2Bhyn =0

¢ order: —1 u%” han +RO%ynp g"%hqs + v(MgN) =0
where Gy = VW ¢"%hon — 1V P hp, with hp = ¢MVhan.

de Donder (Lorenz) gauge fixing: Gy =0

,% N N +R(O)S]\[NPQ Qthio
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hain: Ruw, Bum, hmn, generic coordinate dependence
traces ha = huw 3", ha = huw G " e, Ay = Bmng™™.
D-dimensional wave equation: sy components:

e *455h,, + Ay — by AaqIn €4

— 2R 110G hpm — %eﬂAgpqapeZA(?quA ([],,uhz; - hwesz)

— eV hym g™ One®?t — Gk (Vrapem 4 %e_QAé‘reQA&peQA) =0
e 6_2A54h,,n + Aphpn + e_QAgquph,maquA + e 2 pmg PV nope
— 2¢ *  hym g™ PO 0ne®t — e A h i gPl0pe?  9geh — thunArmIn e
— e GV e hppOne®® + €24 gP10, b0, = 0

e ?454hmn + Arthmn + 26724 gP10,>V s hinn + 20770 hy(mOnye”

— 2R mnpg" has — 26 A GV hp(mOnye®? — haVn(e 4 0me®?) = 0
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hain: Ruw, Bum, hmn, generic coordinate dependence
traces ha = huw 3", ha = huw G " e, Ay = Bmng™™.
D-dimensional wave equation: sy components:

6_2A54h,,y + AMhu,j = hMuAM In €2A

— 27é7ruudgaphp7r — 5672‘49”(%62‘4&162‘4 (gyuh[l — huM672A)

— eV hym g™ One®?t — Gk (Vrﬁpem 4 %e_QAé‘reQAapeQA) =0
. e 248,hn + Athun + € 24PV o hundee® + € A humg PV 0pe? A
— 2¢ *  hym g™ PO 0ne®t — e A h i gPl0pe?  9geh — thunArmIn e
— e A GV hppOn€®? + €724 gP10, hnpdge®t = 0

e 54 hmn + Apthmn + 26 4GP10,2 AV o + 26710pe A hyg(m Oy

— 2Rsmnpgpqhqs — 26_4A§7rp@ﬂ-hp(man)€2A — h4vn (€_2Aa'm62A) =0

Conclusion

D-dimensional de Donder gauge:
e GV whpy — 2oV oha — 3V RN + Vi + 2hpgPle” 0,624 = 0

IV phgr — oo Voha — IV, AN + GV rhpr + 2hmrg™Pe 240,624 = 0
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Many terms, coupling to h,, and ., or d,e*"
— constant e?4: 9,4 = 0. e =1, G — G-
For physics: Minkowski
background equation = Ricci-flat My: Rpmn = 0 (e.g. any CY).
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> T o 1 —2A pgA 2A~ 2A [~ —2A
— 2R” o g Phor — ze” " g 0pe" " Oge Gupha — hype
A

—2A & mn A~ 2A ~ r A 2A 1 —2AA 2AA~ 2A
—e v(uh‘v)mg Oneé —guuhp(vr(/,)(; + 5€e ore” " Ope ):0

Many terms, coupling t0 hun and hpyn, or d,e*

— constant e?4: 9,4 = 0. e =1, G — G-

For physics: Minkowski

background equation = Ricci-flat My: Rpmn = 0 (e.g. any CY).
oshuy + Anmhuy =0
ahyn + Apmhpn =0

X 04 Amn + Arhmn = 2R mnpg”hgs

mn

— oghy + Apmhyn =0

— 1Vihs — 3Vohn + ¢7Vphg =0
%vvhml - %vvhl\l + gpqvlthr =0
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Interested in 4d wave hy., e.g. in o4h,, + iy = O

Consider My compact (without boundary)

— use basis of eigenfunctions {wk(y)} of A,

discrete basis, label k: Axjwi = —mi wi (e.g. TV: wi(y) = e™V)

Field (Kaluza—Klein mode) decomposition:

hun (@, y) = Yy hiin (@) wic(y) = oahf, —mi by, =0 .

Focus on zero-mode: mo = 0. Properties: wo unique, constant.

Equations with 4d wave A9, :

oahd, =0, oA =0
9"’V hd, — %V,,hg = %V,,h?\,

“Coupling” with zero-mode of internal trace A% = (9™ hmn)°.
Both decouple from other fields/modes — analyse this system.
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- use this freedom, i.e. fix completely the gauge — expression
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i.e. coordinates such that propagation along x>.
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1 1
oahy, =0, oah}% =0, ¢"Vahy, — SVohd = SVLRY

With these equations: residual gauge freedom

- verify that h% cannot be gauged away = deviation w.r.t.
usual 4d de Donder gauge.

- use this freedom, i.e. fix completely the gauge — expression
(solution) of the wave kY, (textbook procedure).

Fourier expansion on plane waves with wave vector k”:
P = fd“k e Re(e"*"} , B} = fd“k f& Refe™=")

el polarization matrix, f§ amplitude of internal trace.
kP: light-like = k* = (w,0,0, k) with w = k (take c = h = 1),
i.e. coordinates such that propagation along x>.

On each plane-wave, gauge condition + residual gauge freedom

k k
€11 €12 0
k k k
eis —ein — fy O
0 0 0

ij
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With these equations: residual gauge freedom

- verify that h% cannot be gauged away = deviation w.r.t.
usual 4d de Donder gauge.

- use this freedom, i.e. fix completely the gauge — expression
(solution) of the wave kY, (textbook procedure).

Fourier expansion on plane waves with wave vector k”:
o o p
Tntmcineem hfw — fd“k efw Re{e"%z }, S = fd4k fr Re{elkpfv }

el polarization matrix, f§ amplitude of internal trace.
kP: light-like = k* = (w,0,0, k) with w = k (take c = h = 1),
i.e. coordinates such that propagation along x>.

On each plane-wave, gauge condition + residual gauge freedom

Conclusion

efj = h?j(t,x3) =
elfl 61{:2 0 h+_ %fN hX 0
e’fz —elfl - fz’fr 0 R —hT— %fN 0 | cos(w(t — 133))
0 0 0 0 0 0

ij ij
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04h0, =0, o4k =0, g"°Vh3, — ivyhﬁf = 5vm?V

With these equations: residual gauge freedom

- verify that h% cannot be gauged away = deviation w.r.t.
usual 4d de Donder gauge.

- use this freedom, i.e. fix completely the gauge — expression
(solution) of the wave kY, (textbook procedure).

Fourier expansion on plane waves with wave vector k”:
P = fd“k e Re(e"*"} , B} = fd“k f& Refe™=")

el polarization matrix, f§ amplitude of internal trace.
kP: light-like = k* = (w,0,0, k) with w = k (take c = h = 1),
i.e. coordinates such that propagation along x>.

On each plane-wave, gauge condition + residual gauge freedom
6?' = h'LOj (tv xS) =

J

elfl 61{:2 0 h+_ %fN hX 0

e’fz —elfl - fz’fr 0 R —hT— %fN 0 | cos(w(t — 133))
0 0 0/,, 0 0 0/,,

zhf/+hj]+hlc,

— G. R. hjj, b, polarization modes and breathing mode h; .
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= standard Transverse—Traceless massive graviton:

"hy, =0, hE =0



David
ANDRIOT Focus on hf70: equations: sshy, —mj h¥, = 0 4+ gauge cond.
Residual gauge freedom = fix it (subtle)
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To get an expression for hﬁfoz
Fourier expansion on plane waves with wave vector pj:
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ph = (wk, Pk), massive dispersion relation wi = mg + p¢.

Conclusion
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Focus on hf70: equations: sshy, —mj h¥, = 0 4+ gauge cond.
Residual gauge freedom = fix it (subtle)
= standard Transverse—Traceless massive graviton:

To get an expression for A

hk, =0, h5=0

k+#0.
(7

Fourier expansion on plane waves with wave vector pj:

Rk, =

Qv

J d*pic ells Re{e™xe™"}

ph = (wk, Pk), massive dispersion relation wi = mg + p¢.
Pick reference frame s.t. p} = (w,0,0,0), solve:

€12
—€11 — €33
€23

€13
€23
€33
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Focus on hf70: equations: sshy, —mj h¥, = 0 4+ gauge cond.
Residual gauge freedom = fix it (subtle)
= standard Transverse—Traceless massive graviton:

hk, =0, h5=0

To get an expression for A

k0.
[
Fourier expansion on plane waves with wave vector pj:

ph = (wk, Pk), massive dispersion relation wi = mg + p¢.
Pick reference frame s.t. p} = (w,0,0,0), solve:

k#0
€ij = h’ij (t) =
171, x l
€11 €12 €13 h+ — §h o h h1
€12 —e11 —e33 €23 h* —ht— %hl’o hb cos(wk t)
€13 €23 €33 hY nb hto

ij
All six polarization modes, only 5 independent ones.
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Conclusion

Focus on hf70: equations: sshy, —mj h¥, = 0 4+ gauge cond.
Residual gauge freedom = fix it (subtle)
= standard Transverse—Traceless massive graviton:

"hy, =0, hE =0

To get an expression for hﬁfoz
Fourier expansion on plane waves with wave vector pj:

hﬁy = Jd4pk enx Re{eipk”xp}

ph = (wk, Pk), massive dispersion relation wi = mg + p¢.
Pick reference frame s.t. p} = (w,0,0,0), solve:

k0
€ij = h’ij (t) =
171, x !
€11 e12 €13 ht— 1hHO h hi
€12 —e11 —e33 €23 h* —ht— %hl’o hb cos(wk t)
€13 €23 €33 hY nb hto

ij
All six polarization modes, only 5 independent ones.
(High) angular frequency wy ~ my.
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1. New polarization mode in massless wave: breathing mode.
2. Additional (massive) waves of high frequencies.

Each polarization mode — specific space deformation
(stretch and shrink) with ¢ = zf + Az’
Geodesic equation & = 2,67 v Az’ = Lh{a)
Deformation of test-point circle in transverse plane:
aF (©)
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y y

e,

N (N :
./ L/

e

Breathing mode: need several detectors, different orientations
Amplitude? Related to that h%,... Emission?



David
ANDRIOT

Introduction

General

equations
An.

Eff
Breathing mode

Additional waves

Conclusion

All six polarization modes — various space deformations.



David
ANDRIOT

Introduction

General

equations
An.

Eff
Breathing mode

Additional waves

Conclusion

All six polarization modes — various space deformations.

Angular frequency: w2 = m2 + p2.



David
ANDRIOT

Introduction

General

equations
An.

Eff
Breathing mode

Additional waves

Conclusion

All six polarization modes — various space deformations.

Angular frequency: w2 = m2 + p2.

Px: Minkowski spatial components, governed by 4d physics
= [Pl ~ 1/Aa

But mi ~ 1/ry, (Kaluza—Klein) internal length 7y .



David
ANDRIOT

Introduction

All six polarization modes — various space deformations.

Angular frequency: w2 = m2 + p2.

Px: Minkowski spatial components, governed by 4d physics
= [Pl ~ 1/Aa

But mi ~ 1/ry, (Kaluza—Klein) internal length 7y .

— ry < A\ so that mi > ||pk]| =  wk ~mk very high.



David
ANDRIOT

Introduction

Conclusion

All six polarization modes — various space deformations.

Angular frequency: w2 = m2 + p2.

Px: Minkowski spatial components, governed by 4d physics
= [Pl ~ 1/Aa

But mi ~ 1/ry, (Kaluza—Klein) internal length 7y .

— ry < A\ so that mi > ||pk]| =  wk ~mk very high.

Table-top experiment bound: ry < 10=4m (about 1073 eV)
= v ~ 102 Hz » upper bound of LIGO ~ 103-10* Hz
— unobservable.



David
ANDRIOT

Introduction

Conclusion

All six polarization modes — various space deformations.

Angular frequency: w2 = m2 + p2.

Px: Minkowski spatial components, governed by 4d physics
= [Pl ~ 1/Aa

But mi ~ 1/ry, (Kaluza—Klein) internal length 7y .

— ry < A\ so that mi > ||pk]| =  wk ~mk very high.

Table-top experiment bound: ry < 10=4m (about 1073 eV)
= v ~ 102 Hz » upper bound of LIGO ~ 103-10* Hz
— unobservable.

Worse in future (planned) detectors.
Energy — amplitude is low...
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Introduction

To-do:

o Compare to scalar-tensor models and their emission
constraints

Conclusion

@ Study emission

e Start from D-dimensional supergravity, get more involved
My and a mass for hQ?

Thank you for your attention!
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