Signatures of extra dimensions in gravitational waves

D. ANDRIOT

CERN, Geneva, Switzerland

Based on arXiv:1704.07392 with G. Lucena Gómez

Workshop on Testing Fundamental Physics Principles, 27/09/2017, Corfu, Greece

Introduction

equations

Analysis

Effects

${ m Introduction}$

Direct detection of gravitational waves by LIGO and Virgo Scientific Collab. [arXiv:1602.03837], [arXiv:1606.04855], [arXiv:1706.01812]

 \Rightarrow new observational tool to probe nature and test theories.

Introduction

equation

Analweie

Effects

${ m Introduction}$

Direct detection of gravitational waves by LIGO and Virgo Scientific Collab. [arXiv:1602.03837], [arXiv:1606.04855], [arXiv:1706.01812]

- \Rightarrow new observational tool to probe nature and test theories.
- \hookrightarrow models beyond four-dimensional (4d) General Relativity Here: test idea of having N extra dimensions: D=4+N.

Introduction

General

equations

. . .

Introduction

equation

Analyei

Conclusio

${ m Introduction}$

Direct detection of gravitational waves by LIGO and Virgo Scientific Collab. [arXiv:1602.03837], [arXiv:1606.04855], [arXiv:1706.01812]

- \Rightarrow new observational tool to probe nature and test theories.
- \hookrightarrow models beyond four-dimensional (4d) General Relativity Here: test idea of having N extra dimensions: D = 4 + N.

If \exists extra dimensions \rightarrow (detectable) effect on 4d gravitational waves?

Introduction

equation

Analwai

Effects

Conclusion

${ m Introduction}$

Direct detection of gravitational waves by LIGO and Virgo Scientific Collab. [arXiv:1602.03837], [arXiv:1606.04855], [arXiv:1706.01812]

- Here: test idea of having N extra dimensions: D = 4 + N.

If \exists extra dimensions \rightarrow (detectable) effect on 4d gravitational waves?

Many models with extra dimensions, from pheno. to qu. grav.: large extra dimensions (ADD models), Randall-Sundrum models, universal extra dimensions, supergravities, string theories, M-theory...

Introduction

equation

Analysi

Effects

Conclusion

${ m Introduction}$

Direct detection of gravitational waves by LIGO and Virgo Scientific Collab. [arXiv:1602.03837], [arXiv:1606.04855], [arXiv:1706.01812]

- ⇒ new observational tool to probe nature and test theories.
- \hookrightarrow models beyond four-dimensional (4d) General Relativity Here: test idea of having N extra dimensions: D = 4 + N.

If \exists extra dimensions \rightarrow (detectable) effect on 4d gravitational waves?

Many models with extra dimensions, from pheno. to qu. grav.: large extra dimensions (ADD models), Randall-Sundrum models, universal extra dimensions, supergravities, string theories, M-theory...

Variety of models: number, size, shape of extra dimensions...
Previous literature: typically very model dependent

⇒ here, remain as generic as possible.

Most work on gravitational waves is about source: compute waveform for some emission. In 4d, governed by

$$\Box_4 h_{\mu\nu} \approx T_{\mu\nu}^{(1)} + gauge fixing.$$

Introduction

equation

Analysis

 $_{
m Effects}$

Most work on gravitational waves is about source: compute waveform for some emission. In 4d, governed by

$$\Box_4 h_{\mu\nu} \approx T_{\mu\nu}^{(1)} + gauge fixing.$$

Here: away from source (avoids model dependence). Assume waves emitted (initial conditions), study propagation \hookrightarrow corrections to $\Box_4 h_{\mu\nu} = 0 + gauge fixing$ due to extra dim.?

Introduction

equation

Analysi

Effects

~ - - -1.. - : - -

Most work on gravitational waves is about source: compute waveform for some emission. In 4d, governed by

$$\Box_4 h_{\mu\nu} \approx T_{\mu\nu}^{(1)} + gauge fixing.$$

Here: away from source (avoids model dependence). Assume waves emitted (initial conditions), study propagation \hookrightarrow corrections to $\Box_4 h_{\mu\nu} = 0 + gauge fixing$ due to extra dim.?

D-dimensional General Relativity with cosmo. constant \rightarrow derive gravitational wave equation and gauge fixing on generic background

- \rightarrow split dimensions: $D = 4 + N \Rightarrow$ split equations
- \hookrightarrow modifications of those on $h_{\mu\nu}$? Yes!

Introduction

equation

Analysi:

Effects

Most work on gravitational waves is about source: compute waveform for some emission. In 4d, governed by

$$\Box_4 h_{\mu\nu} \approx T_{\mu\nu}^{(1)} + gauge fixing.$$

Here: away from source (avoids model dependence). Assume waves emitted (initial conditions), study propagation \hookrightarrow corrections to $\Box_4 h_{\mu\nu} = 0 + gauge fixing$ due to extra dim.?

D-dimensional General Relativity with cosmo. constant \rightarrow derive gravitational wave equation and gauge fixing on generic background

- \rightarrow split dimensions: $D = 4 + N \Rightarrow$ split equations
- \hookrightarrow modifications of those on $h_{\mu\nu}$? Yes!

In general, too complicated to read-off effect on wave \hookrightarrow restrict background to Minkowski $\times \mathcal{M}_N$.

Minkowski: \checkmark for physical purposes; \mathcal{M}_N compact Ricci-flat.

Introduction

equation

Effects

Most work on gravitational waves is about source: compute waveform for some emission. In 4d, governed by

$$\Box_4 h_{\mu\nu} \approx T_{\mu\nu}^{(1)} + gauge fixing.$$

Here: **away from source** (avoids model dependence). Assume waves emitted (initial conditions), study **propagation** \hookrightarrow corrections to $\Box_4 h_{\mu\nu} = 0 + gauge fixing$ due to extra dim.?

D-dimensional General Relativity with cosmo. constant

→ derive gravitational wave equation and gauge fixing on
generic background

- \rightarrow split dimensions: $D = 4 + N \Rightarrow$ split equations
- \hookrightarrow modifications of those on $h_{\mu\nu}$? Yes!

In general, too complicated to read-off effect on wave \hookrightarrow restrict background to Minkowski $\times \mathcal{M}_N$. Minkowski: \checkmark for physical purposes; \mathcal{M}_N compact Ricci-flat.

- \Rightarrow Two effects:
 - 1. Breathing mode: new polarization mode in massless wave.
 - 2. Additional (massive) waves of high frequencies.
- \hookrightarrow Observable in a near future?

Introduction

equation

Analysis

Effects

General equations for gravitational waves

In D dimensions

General Relativity:
$$S = \frac{1}{2\kappa_D} \int d^D x \sqrt{|g_D|} \ (\mathcal{R}_D - 2\Lambda_D)$$

 \hookrightarrow Einstein equation: $\mathcal{R}_{MN} - \frac{2\Lambda_D}{D-2} g_{DMN} = 0$

Introduction

General equations D dimensions 4+N dimensions

General equations for gravitational waves

In D dimensions

General Relativity:
$$S = \frac{1}{2\kappa_D} \int d^D x \sqrt{|g_D|} \ (\mathcal{R}_D - 2\Lambda_D)$$

 \hookrightarrow Einstein equation: $\mathcal{R}_{MN} - \frac{2\Lambda_D}{D-2} g_{DMN} = 0$

Background + fluctuation: $g_{DMN} = g_{MN} + h_{MN}$ \hookrightarrow develop equation at 0th and 1st order:

$$\mathcal{R}_{MN}^{(0)} - \frac{2\Lambda_D}{D-2} g_{MN} = 0 , \quad \mathcal{R}_{MN}^{(1)} - \frac{2\Lambda_D}{D-2} h_{MN} = 0$$

Effects

General equations for gravitational waves

In D dimensions

General Relativity:
$$S = \frac{1}{2\kappa_D} \int d^D x \sqrt{|g_D|} \ (\mathcal{R}_D - 2\Lambda_D)$$

 \hookrightarrow Einstein equation: $\mathcal{R}_{MN} - \frac{2\Lambda_D}{D-2} g_{DMN} = 0$

Background + fluctuation: $g_{DMN} = g_{MN} + h_{MN}$ \hookrightarrow develop equation at 0th and 1st order:

$$\mathcal{R}_{MN}^{(0)} - \frac{2\hat{\Lambda}_D}{D-2}g_{MN} = 0 , \quad \mathcal{R}_{MN}^{(1)} - \frac{2\hat{\Lambda}_D}{D-2}h_{MN} = 0$$

1st order:
$$-\frac{1}{2} \Box_D^{(0)} h_{MN} + \mathcal{R}^{(0)S}{}_{MNP} g^{PQ} h_{QS} + \nabla_{(M}^{(0)} \mathcal{G}_{N)} = 0$$

where $\mathcal{G}_N = \nabla_P^{(0)} g^{PQ} h_{QN} - \frac{1}{2} \nabla_N^{(0)} h_D$, with $h_D = g^{MN} h_{MN}$.

Introduction

equations

D dimensions

4 + N dimension

Allaly

General equations for gravitational waves

In D dimensions

General Relativity:
$$S = \frac{1}{2\kappa_D} \int \mathrm{d}^D x \sqrt{|g_D|} \ (\mathcal{R}_D - 2\Lambda_D)$$

 \hookrightarrow Einstein equation: $\mathcal{R}_{MN} - \frac{2\Lambda_D}{D-2} g_{DMN} = 0$

Background + fluctuation: $g_{DMN} = g_{MN} + h_{MN}$ \hookrightarrow develop equation at 0th and 1st order:

$$\mathcal{R}_{MN}^{(0)} - \frac{2\Lambda_D}{D-2} g_{MN}^{(1)} = 0 , \quad \mathcal{R}_{MN}^{(1)} - \frac{2\Lambda_D}{D-2} h_{MN} = 0$$

1st order:
$$-\frac{1}{2}\Box_D^{(0)} h_{MN} + \mathcal{R}^{(0)S}{}_{MNP} g^{PQ} h_{QS} + \nabla_{(M}^{(0)} \mathcal{G}_{N)} = 0$$

where $\mathcal{G}_N = \nabla_P^{(0)} g^{PQ} h_{QN} - \frac{1}{2} \nabla_N^{(0)} h_D$, with $h_D = g^{MN} h_{MN}$.

de Donder (Lorenz) gauge fixing: $G_N = 0$

$$-\frac{1}{2} \, \Box_D^{(0)} \, h_{MN} + \mathcal{R}^{(0)S}{}_{MNP} \, g^{PQ} h_{QS} = 0$$

Introduction

equations

D dimensions

4 + N dimension

Split into 4 + N dimensions

Background: $ds^2 = e^{2A(y)}\tilde{g}_{\mu\nu}(x)dx^{\mu}dx^{\nu} + g_{mn}(y)dy^mdy^n$

Introduction

Genera

n u

4 1 Nr di------

Analysis

Effects

Split into 4 + N dimensions

Background: $ds^2 = e^{2A(y)} \tilde{g}_{\mu\nu}(x) dx^{\mu} dx^{\nu} + g_{mn}(y) dy^m dy^n$ h_{MN} : $h_{\mu\nu}, h_{\mu m}, h_{mn}$, generic coordinate dependence traces $\tilde{h}_4 = h_{\mu\nu} \tilde{g}^{\nu\mu}, h_4 = h_{\mu\nu} \tilde{g}^{\nu\mu} e^{-2A}, h_N = h_{mn} g^{nm}$.

Introduction

Genera

D dimensi

4 + N dimensions

Analysis

Effects

Split into 4 + N dimensions

Background: $ds^2 = e^{2A(y)} \tilde{g}_{\mu\nu}(x) dx^{\mu} dx^{\nu} + g_{mn}(y) dy^m dy^n$ h_{MN} : $h_{\mu\nu}, h_{\mu m}, h_{mn}$, generic coordinate dependence traces $\tilde{h}_4 = h_{\mu\nu} \tilde{g}^{\nu\mu}, h_4 = h_{\mu\nu} \tilde{g}^{\nu\mu} e^{-2A}, h_N = h_{mn} g^{nm}$.

D-dimensional wave equation: $_{MN}$ components:

$$e^{-2A}\tilde{\mathbf{a}}_{\mathbf{4}}\mathbf{h}_{\mu\nu} + \Delta_{\mathcal{M}}h_{\mu\nu} - h_{\mu\nu}\Delta_{\mathcal{M}}\ln e^{2A}$$

$$-2\tilde{\mathcal{R}}^{\pi}{}_{\mu\nu\sigma}g^{\sigma\rho}h_{\rho\pi} - \frac{1}{2}e^{-2A}g^{pq}\partial_{p}e^{2A}\partial_{q}e^{2A}\left(\tilde{g}_{\nu\mu}h_{4} - h_{\nu\mu}e^{-2A}\right)$$

$$-e^{-2A}\tilde{\nabla}_{(\mu}h_{\nu)m}g^{mn}\partial_n e^{2A} - \tilde{g}_{\mu\nu}h^{rp}\left(\nabla_r\partial_p e^{2A} + \frac{1}{2}e^{-2A}\partial_r e^{2A}\partial_p e^{2A}\right) = 0$$

$$e^{-2A}\tilde{\mathfrak{g}}_{4}\mathbf{h}_{\mu\mathbf{n}} + \Delta_{\mathcal{M}}h_{\mu n} + e^{-2A}g^{pq}\nabla_{p}h_{\mu n}\partial_{q}e^{2A} + e^{-2A}h_{\mu m}g^{mp}\nabla_{n}\partial_{p}e^{2A}$$

$$-2e^{-4A}h_{\mu m}g^{mp}\partial_{p}e^{2A}\partial_{n}e^{2A} - e^{-4A}h_{\mu n}g^{pq}\partial_{p}e^{2A}\partial_{q}e^{2A} - \frac{1}{2}h_{\mu n}\Delta_{\mathcal{M}}\ln e^{2A}$$

$$-e^{-4A}\tilde{g}^{\pi\rho}\tilde{\nabla}_{\pi}h_{\mu\rho}\partial_{n}e^{2A} + e^{-2A}g^{pq}\partial_{\mu}h_{np}\partial_{q}e^{2A} = 0$$

$$e^{-2A}\tilde{o}_4\mathbf{h}_{mn} + \Delta_{\mathcal{M}}h_{mn} + 2e^{-2A}g^{pq}\partial_p e^{2A}\nabla_q h_{mn} + 2g^{pq}\partial_p e^{-2A}h_{q(m}\partial_{n)}e^{2A}$$

$$-2\mathcal{R}^{s}{}_{mnp}g^{pq}h_{qs} - 2e^{-4A}\tilde{g}^{\pi\rho}\tilde{\nabla}_{\pi}h_{\rho(m}\partial_{n)}e^{2A} - h_{4}\nabla_{n}(e^{-2A}\partial_{m}e^{2A}) = 0$$

Introduction

D dimensions
4 + N dimensions

Analy

Effects

David

Background: $ds^2 = e^{2A(y)} \tilde{g}_{\mu\nu}(x) dx^{\mu} dx^{\nu} + g_{mn}(y) dy^m dy^n$ h_{MN} : $h_{\mu\nu}, h_{\mu m}, h_{mn}$, generic coordinate dependence traces $h_4 = h_{\mu\nu}\tilde{g}^{\nu\mu}$, $h_4 = h_{\mu\nu}\tilde{g}^{\nu\mu}e^{-2A}$, $h_N = h_{mn}q^{nm}$.

D-dimensional wave equation: MN components:

$$e^{-2A}$$
 $\tilde{\mathbf{a}}_{\mathbf{h}\mu\nu} + \Delta_{\mathcal{M}}h_{\mu\nu} - h_{\mu\nu}\Delta_{\mathcal{M}}\ln e^{2A}$

$$-2\tilde{\mathcal{R}}^{\pi}{}_{\mu\nu\sigma}g^{\sigma\rho}h_{\rho\pi} - \frac{1}{2}e^{-2A}g^{pq}\partial_{p}e^{2A}\partial_{q}e^{2A}\left(\tilde{g}_{\nu\mu}h_{4} - h_{\nu\mu}e^{-2A}\right)$$

 $-e^{-2A}\tilde{\nabla}_{(\mu}h_{\nu)m}g^{mn}\partial_n e^{2A} - \tilde{g}_{\mu\nu}h^{rp}\left(\nabla_r\partial_p e^{2A} + \frac{1}{2}e^{-2A}\partial_r e^{2A}\partial_p e^{2A}\right) = 0$

 e^{-2A} $\tilde{a}_{4}h_{\mu n} + \Delta_{M}h_{\mu n} + e^{-2A}q^{pq}\nabla_{n}h_{\mu n}\partial_{a}e^{2A} + e^{-2A}h_{\mu m}q^{mp}\nabla_{n}\partial_{n}e^{2A}$ $-2e^{-4A}h_{um}q^{mp}\partial_{\nu}e^{2A}\partial_{n}e^{2A}-e^{-4A}h_{un}q^{pq}\partial_{\nu}e^{2A}\partial_{q}e^{2A}-\frac{1}{2}h_{un}\Delta_{\mathcal{M}}\ln e^{2A}$

$$-2e^{-4A}h_{\mu m}g^{mp}\partial_{p}e^{2A}\partial_{n}e^{2A} - e^{-4A}h_{\mu n}g^{pq}\partial_{p}e^{2A}\partial_{q}e^{2A} - \frac{1}{2}h_{\mu n}\Delta_{\mathcal{M}}\ln e^{2A}$$

$$-e^{-4A}\tilde{q}^{\pi\rho}\tilde{\nabla}_{\pi}h_{\mu\rho}\partial_{n}e^{2A} + e^{-2A}q^{pq}\partial_{\mu}h_{np}\partial_{q}e^{2A} = 0$$

$$e^{-2A} \tilde{\mathbf{o}}_{\mathbf{4}} \mathbf{h}_{\mathbf{m}n} + \Delta_{\mathcal{M}} h_{mn} + 2e^{-2A} g^{pq} \partial_{p} e^{2A} \nabla_{q} h_{mn} + 2g^{pq} \partial_{p} e^{-2A} h_{q(m} \partial_{n)} e^{2A} - 2\mathcal{R}^{s}_{mnp} g^{pq} h_{qs} - 2e^{-4A} \tilde{g}^{\pi \rho} \tilde{\nabla}_{\pi} h_{\rho(m} \partial_{n)} e^{2A} - h_{4} \nabla_{n} (e^{-2A} \partial_{m} e^{2A}) = 0$$

D-dimensional de Donder gauge: $e^{-2A}\tilde{g}^{\pi\rho}\tilde{\nabla}_{\pi}h_{\rho\nu} - \frac{e^{-2A}}{2}\tilde{\nabla}_{\nu}\tilde{h}_{4} - \frac{1}{2}\nabla_{\nu}h_{N} + \nabla^{q}h_{q\nu} + 2h_{p\nu}g^{pq}e^{-2A}\partial_{q}e^{2A} = 0$ $q^{pq}\nabla_{n}h_{qr} - \frac{e^{-2A}}{2}\nabla_{r}\tilde{h}_{4} - \frac{1}{2}\nabla_{r}h_{N} + g^{\pi\rho}\tilde{\nabla}_{\pi}h_{\rho r} + 2h_{mr}g^{mp}e^{-2A}\partial_{p}e^{2A} = 0$

$$e^{-2A}\tilde{\mathbf{1}}_{4}h_{\mu\nu} + \Delta_{\mathcal{M}}h_{\mu\nu} - h_{\mu\nu}\Delta_{\mathcal{M}}\ln e^{2A}$$

$$-2\tilde{\mathcal{R}}^{\pi}_{\ \mu\nu\sigma}g^{\sigma\rho}h_{\rho\pi} - \frac{1}{2}e^{-2A}g^{pq}\partial_{p}e^{2A}\partial_{q}e^{2A}\left(\tilde{g}_{\nu\mu}h_{4} - h_{\nu\mu}e^{-2A}\right)$$

$$-e^{-2A}\tilde{\nabla}_{(\mu}h_{\nu)m}g^{mn}\partial_{n}e^{2A} - \tilde{g}_{\mu\nu}h^{rp}\left(\nabla_{r}\partial_{p}e^{2A} + \frac{1}{2}e^{-2A}\partial_{r}e^{2A}\partial_{p}e^{2A}\right) = 0$$

Introduction

equation

D dimensions

4 + N dimensions

Analys

Effects

$$e^{-2A}\tilde{\mathbf{a}}_{4}h_{\mu\nu} + \Delta_{\mathcal{M}}h_{\mu\nu} - h_{\mu\nu}\Delta_{\mathcal{M}}\ln e^{2A}$$

$$-2\tilde{\mathcal{R}}^{\pi}{}_{\mu\nu\sigma}g^{\sigma\rho}h_{\rho\pi} - \frac{1}{2}e^{-2A}g^{pq}\partial_{p}e^{2A}\partial_{q}e^{2A}\left(\tilde{g}_{\nu\mu}h_{4} - h_{\nu\mu}e^{-2A}\right)$$

$$-e^{-2A}\tilde{\nabla}_{(\mu}h_{\nu)m}g^{mn}\partial_{n}e^{2A} - \tilde{g}_{\mu\nu}h^{rp}\left(\nabla_{r}\partial_{p}e^{2A} + \frac{1}{2}e^{-2A}\partial_{r}e^{2A}\partial_{p}e^{2A}\right) = 0$$
Many terms, coupling to $h_{\mu n}$ and h_{mn} , or $\partial_{p}e^{2A}$.

Introduction

General

D dimens

4 + N dimensions

Analysi

Effects

$$e^{-2A} \tilde{c}_{4} h_{\mu\nu} + \Delta_{\mathcal{M}} h_{\mu\nu} - h_{\mu\nu} \Delta_{\mathcal{M}} \ln e^{2A}$$

$$-2\tilde{\mathcal{R}}^{\pi}{}_{\mu\nu\sigma} g^{\sigma\rho} h_{\rho\pi} - \frac{1}{2} e^{-2A} g^{pq} \partial_{p} e^{2A} \partial_{q} e^{2A} \left(\tilde{g}_{\nu\mu} h_{4} - h_{\nu\mu} e^{-2A} \right)$$

$$-e^{-2A} \tilde{\nabla}_{(\mu} h_{\nu)m} g^{mn} \partial_{n} e^{2A} - \tilde{g}_{\mu\nu} h^{rp} \left(\nabla_{r} \partial_{p} e^{2A} + \frac{1}{2} e^{-2A} \partial_{r} e^{2A} \partial_{p} e^{2A} \right) = 0$$

Many terms, coupling to $h_{\mu n}$ and h_{mn} , or $\partial_p e^{2A}$.

$$\hookrightarrow$$
 constant e^{2A} : $\partial_p e^{2A} = 0$. $e^{2A} = 1$, $\tilde{g}_{\mu\nu} \to g_{\mu\nu}$.

Introduction

General

D dimen

4 + N dimensions

Analys

Effects

$$e^{-2A}\tilde{\mathbf{D}}_{4}h_{\mu\nu} + \Delta_{\mathcal{M}}h_{\mu\nu} - h_{\mu\nu}\Delta_{\mathcal{M}}\ln e^{2A}$$

$$-2\tilde{\mathcal{R}}^{\pi}_{\ \mu\nu\sigma}g^{\sigma\rho}h_{\rho\pi} - \frac{1}{2}e^{-2A}g^{pq}\partial_{p}e^{2A}\partial_{q}e^{2A}\left(\tilde{g}_{\nu\mu}h_{4} - h_{\nu\mu}e^{-2A}\right)$$

$$-e^{-2A}\tilde{\nabla}_{(\mu}h_{\nu)m}g^{mn}\partial_{n}e^{2A} - \tilde{g}_{\mu\nu}h^{rp}\left(\nabla_{r}\partial_{p}e^{2A} + \frac{1}{2}e^{-2A}\partial_{r}e^{2A}\partial_{p}e^{2A}\right) = 0$$

Many terms, coupling to $h_{\mu n}$ and h_{mn} , or $\partial_p e^{2A}$.

$$\hookrightarrow$$
 constant e^{2A} : $\partial_p e^{2A} = 0$. $e^{2A} = 1$, $\tilde{g}_{\mu\nu} \to g_{\mu\nu}$.

For physics: Minkowski

background equation \Rightarrow Ricci-flat \mathcal{M}_N : $\mathcal{R}_{mn} = 0$ (e.g. any CY).

Introduction

D dimensions

4 + N dimensions

Analysi

 $_{
m Effects}$

$$e^{-2A}\tilde{b}_{4}h_{\mu\nu} + \Delta_{\mathcal{M}}h_{\mu\nu} - h_{\mu\nu}\Delta_{\mathcal{M}}\ln e^{2A}$$

$$-2\tilde{\mathcal{R}}^{\pi}{}_{\mu\nu\sigma}g^{\sigma\rho}h_{\rho\pi} - \frac{1}{2}e^{-2A}g^{pq}\partial_{p}e^{2A}\partial_{q}e^{2A}\left(\tilde{g}_{\nu\mu}h_{4} - h_{\nu\mu}e^{-2A}\right)$$

$$-e^{-2A}\tilde{\nabla}_{(\mu}h_{\nu)m}g^{mn}\partial_{n}e^{2A} - \tilde{g}_{\mu\nu}h^{rp}\left(\nabla_{r}\partial_{p}e^{2A} + \frac{1}{2}e^{-2A}\partial_{r}e^{2A}\partial_{p}e^{2A}\right) = 0$$

Many terms, coupling to $h_{\mu n}$ and h_{mn} , or $\partial_p e^{2A}$.

$$\hookrightarrow$$
 constant e^{2A} : $\partial_p e^{2A} = 0$. $e^{2A} = 1$, $\tilde{g}_{\mu\nu} \to g_{\mu\nu}$.

For physics: Minkowski

background equation \Rightarrow Ricci-flat \mathcal{M}_N : $\mathcal{R}_{mn} = 0$ (e.g. any CY).

$$\Box_4 h_{\mu\nu} + \Delta_{\mathcal{M}} h_{\mu\nu} = 0$$

$$\Box_4 h_{\mu n} + \Delta_{\mathcal{M}} h_{\mu n} = 0$$

$$\Box_4 h_{mn} + \Delta_{\mathcal{M}} h_{mn} = 2\mathcal{R}^s{}_{mnp} g^{pq} h_{qs}$$

$$g^{\pi\rho} \nabla_{\pi} h_{\rho\nu} - \frac{1}{2} \nabla_{\nu} h_4 - \frac{1}{2} \nabla_{\nu} h_N + g^{pq} \nabla_p h_{q\nu} = 0$$

$$g^{\pi\rho} \nabla_{\pi} h_{\rho r} - \frac{1}{2} \nabla_r h_4 - \frac{1}{2} \nabla_r h_N + g^{pq} \nabla_p h_{qr} = 0$$

Introduction

General

D dimens

4 + N dimensions

Analys

Effects

$$e^{-2A}\tilde{\mathbf{a}}_{4}h_{\mu\nu} + \Delta_{\mathcal{M}}h_{\mu\nu} - h_{\mu\nu}\Delta_{\mathcal{M}}\ln e^{2A}$$

$$-2\tilde{\mathcal{R}}^{\pi}{}_{\mu\nu\sigma}g^{\sigma\rho}h_{\rho\pi} - \frac{1}{2}e^{-2A}g^{pq}\partial_{p}e^{2A}\partial_{q}e^{2A}\left(\tilde{g}_{\nu\mu}h_{4} - h_{\nu\mu}e^{-2A}\right)$$

$$-e^{-2A}\tilde{\nabla}_{(\mu}h_{\nu)m}g^{mn}\partial_{n}e^{2A} - \tilde{g}_{\mu\nu}h^{rp}\left(\nabla_{r}\partial_{p}e^{2A} + \frac{1}{2}e^{-2A}\partial_{r}e^{2A}\partial_{p}e^{2A}\right) = 0$$

Many terms, coupling to $h_{\mu n}$ and h_{mn} , or $\partial_p e^{2A}$.

$$\hookrightarrow$$
 constant e^{2A} : $\partial_p e^{2A} = 0$. $e^{2A} = 1$, $\tilde{g}_{\mu\nu} \to g_{\mu\nu}$.

For physics: Minkowski

background equation \Rightarrow Ricci-flat \mathcal{M}_N : $\mathcal{R}_{mn} = 0$ (e.g. any CY).

$$\Box_4 h_{\mu\nu} + \Delta_{\mathcal{M}} h_{\mu\nu} = 0$$

$$\Box_4 h_{\mu n} + \Delta_{\mathcal{M}} h_{\mu n} = 0$$

$$g^{mn} \times \Box_4 h_{mn} + \Delta_{\mathcal{M}} h_{mn} = 2\mathcal{R}^s{}_{mnp} g^{pq} h_{qs}$$

$$\Leftrightarrow \Box_4 h_N + \Delta_{\mathcal{M}} h_N = 0$$

$$g^{\pi\rho} \nabla_{\pi} h_{\rho\nu} - \frac{1}{2} \nabla_{\nu} h_4 - \frac{1}{2} \nabla_{\nu} h_N + g^{pq} \nabla_{p} h_{q\nu} = 0$$

$$g^{\pi\rho} \nabla_{\pi} h_{\rho r} - \frac{1}{2} \nabla_{r} h_4 - \frac{1}{2} \nabla_{r} h_N + g^{pq} \nabla_{p} h_{qr} = 0$$

Introduction

D dimensions

4 + N dimensions

Analys

Effects

Equation analysis

Interested in 4d wave $h_{\mu\nu}$, e.g. in $\Box_4 h_{\mu\nu} + \Delta_{\mathcal{M}} h_{\mu\nu} = 0$

Introduction

General equations

Massless modes

Massive mode

Effects

Equation analysis

Interested in 4d wave $h_{\mu\nu}$, e.g. in $\Box_4 h_{\mu\nu} + \Delta_M h_{\mu\nu} = 0$

Introduction

General equations

Massless modes

Massive mode

Effects

Equation analysis

```
Interested in 4d wave h_{\mu\nu}, e.g. in {}^{\circ}_{4}h_{\mu\nu} + \Delta_{\mathcal{M}}h_{\mu\nu} = 0
Consider \mathcal{M}_{N} compact (without boundary)
\rightarrow use basis of eigenfunctions \{\omega_{\mathbf{k}}(y)\} of \Delta_{\mathcal{M}},
discrete basis, label \mathbf{k}: \Delta_{\mathcal{M}}\omega_{\mathbf{k}} = -m_{\mathbf{k}}^{2}\omega_{\mathbf{k}} (e.g. T^{N}: \omega_{\mathbf{k}}(y) = e^{i\mathbf{k}\cdot\mathbf{y}})
```

Introduction

General equations

Analysis Massless modes

Massive

Equation analysis

Interested in 4d wave $h_{\mu\nu}$, e.g. in $\mathbf{a}_4 h_{\mu\nu} + \Delta_M h_{\mu\nu} = 0$ Consider \mathcal{M}_N compact (without boundary) \rightarrow use basis of eigenfunctions $\{\omega_{\mathbf{k}}(y)\}$ of Δ_M , discrete basis, label \mathbf{k} : $\Delta_M \omega_{\mathbf{k}} = -m_{\mathbf{k}}^2 \omega_{\mathbf{k}}$ (e.g. T^N : $\omega_{\mathbf{k}}(y) = e^{i\mathbf{k}\cdot\mathbf{y}}$)

Field (Kaluza–Klein mode) decomposition:

$$h_{MN}(x,y) = \sum_{\mathbf{k}} h_{MN}^{\mathbf{k}}(x) \,\omega_{\mathbf{k}}(y) \Rightarrow \Box_4 h_{\mu\nu}^{\mathbf{k}} - m_{\mathbf{k}}^2 h_{\mu\nu}^{\mathbf{k}} = 0.$$

Introduction

equation

Analysis

Massive modes

Effect:

Equation analysis

Interested in 4d wave $h_{\mu\nu}$, e.g. in $\Box_4 h_{\mu\nu} + \Delta_M h_{\mu\nu} = 0$ Consider \mathcal{M}_N compact (without boundary) \rightarrow use basis of eigenfunctions $\{\omega_{\mathbf{k}}(y)\}$ of Δ_M , discrete basis, label \mathbf{k} : $\Delta_M \omega_{\mathbf{k}} = -m_{\mathbf{k}}^2 \omega_{\mathbf{k}}$ (e.g. T^N : $\omega_{\mathbf{k}}(y) = e^{i\mathbf{k}\cdot\mathbf{y}}$)

Field (Kaluza–Klein mode) decomposition: $h_{MN}(x,y) = \sum_{\mathbf{k}} h_{MN}^{\mathbf{k}}(x) \, \omega_{\mathbf{k}}(y) \Rightarrow \Box_4 h_{\mu\nu}^{\mathbf{k}} - m_{\mathbf{k}}^2 \, h_{\mu\nu}^{\mathbf{k}} = 0 \ .$

Massless modes

Focus on zero-mode: $m_0 = 0$. Properties: ω_0 unique, constant.

Introduction

equations

Massless modes
Massive modes

 $_{
m Effects}$

equations

Analysis Massless modes Massive modes

Effects

Conclusion

Equation analysis

Interested in 4d wave $h_{\mu\nu}$, e.g. in $\Box_4 h_{\mu\nu} + \Delta_M h_{\mu\nu} = 0$ Consider \mathcal{M}_N compact (without boundary) \rightarrow use basis of eigenfunctions $\{\omega_{\mathbf{k}}(y)\}$ of Δ_M , discrete basis, label \mathbf{k} : $\Delta_M \omega_{\mathbf{k}} = -m_{\mathbf{k}}^2 \omega_{\mathbf{k}}$ (e.g. T^N : $\omega_{\mathbf{k}}(y) = e^{i\mathbf{k}\cdot\mathbf{y}}$)

Field (Kaluza–Klein mode) decomposition: $h_{MN}(x,y) = \sum_{\mathbf{k}} h_{MN}^{\mathbf{k}}(x) \, \omega_{\mathbf{k}}(y) \Rightarrow \square_4 h_{\mu\nu}^{\mathbf{k}} - m_{\mathbf{k}}^2 \, h_{\mu\nu}^{\mathbf{k}} = 0 \ .$

Massless modes

Focus on zero-mode: $m_0=0$. Properties: ω_0 unique, constant. Equations with 4d wave $h_{\mu\nu}^0$:

$$\Box_4 h_{\mu\nu}^{\mathbf{0}} = 0$$

$$g^{\pi\rho} \nabla_{\pi} h_{\rho\nu}^{\mathbf{0}} - \frac{1}{2} \nabla_{\nu} h_4^{\mathbf{0}} = \frac{1}{2} \nabla_{\nu} h_N^{\mathbf{0}}$$

Introduction

Analysis

Massless modes

Massive modes

Effects

Conclusio

Equation analysis

Interested in 4d wave $h_{\mu\nu}$, e.g. in $\Box_4 h_{\mu\nu} + \Delta_M h_{\mu\nu} = 0$ Consider \mathcal{M}_N compact (without boundary) \rightarrow use basis of eigenfunctions $\{\omega_{\mathbf{k}}(y)\}$ of Δ_M , discrete basis, label \mathbf{k} : $\Delta_M \omega_{\mathbf{k}} = -m_{\mathbf{k}}^2 \omega_{\mathbf{k}}$ (e.g. T^N : $\omega_{\mathbf{k}}(y) = e^{i\mathbf{k}\cdot\mathbf{y}}$)

Field (Kaluza–Klein mode) decomposition: $h_{MN}(x,y) = \sum_{\mathbf{k}} h_{MN}^{\mathbf{k}}(x) \,\omega_{\mathbf{k}}(y) \Rightarrow \Box_{4} h_{\mu\nu}^{\mathbf{k}} - m_{\mathbf{k}}^{2} h_{\mu\nu}^{\mathbf{k}} = 0 \ .$

Massless modes

Focus on zero-mode: $m_0=0$. Properties: ω_0 unique, constant. Equations with 4d wave $h^0_{\mu\nu}$:

$$\Box_4 h_{\mu\nu}^{\mathbf{0}} = 0$$

$$g^{\pi\rho} \nabla_{\pi} h_{\rho\nu}^{\mathbf{0}} - \frac{1}{2} \nabla_{\nu} h_4^{\mathbf{0}} = \frac{1}{2} \nabla_{\nu} h_N^{\mathbf{0}}$$

"Coupling" with zero-mode of internal trace $h_N^0 = (g^{mn}h_{mn})^0$.

Introduction

Analysis

Massless modes

Massive modes

Effects

Conclusio

Equation analysis

Interested in 4d wave $h_{\mu\nu}$, e.g. in $\Box_4 h_{\mu\nu} + \Delta_M h_{\mu\nu} = 0$ Consider \mathcal{M}_N compact (without boundary) \rightarrow use basis of eigenfunctions $\{\omega_{\mathbf{k}}(y)\}$ of Δ_M , discrete basis, label \mathbf{k} : $\Delta_M \omega_{\mathbf{k}} = -m_{\mathbf{k}}^2 \omega_{\mathbf{k}}$ (e.g. T^N : $\omega_{\mathbf{k}}(y) = e^{i\mathbf{k}\cdot\mathbf{y}}$)

Field (Kaluza–Klein mode) decomposition: $h_{MN}(x,y) = \sum_{\mathbf{k}} h_{MN}^{\mathbf{k}}(x) \, \omega_{\mathbf{k}}(y) \Rightarrow \square_4 h_{\mu\nu}^{\mathbf{k}} - m_{\mathbf{k}}^2 \, h_{\mu\nu}^{\mathbf{k}} = 0 \ .$

Massless modes

Focus on zero-mode: $m_0=0$. Properties: ω_0 unique, constant. Equations with 4d wave $h^0_{\mu\nu}$:

$$\Box_4 h_{\mu\nu}^{\mathbf{0}} = 0 , \quad \Box_4 h_N^{\mathbf{0}} = 0$$
$$g^{\pi\rho} \nabla_{\pi} h_{\rho\nu}^{\mathbf{0}} - \frac{1}{2} \nabla_{\nu} h_4^{\mathbf{0}} = \frac{1}{2} \nabla_{\nu} h_N^{\mathbf{0}}$$

"Coupling" with zero-mode of internal trace $h_N^{\mathbf{0}} = (g^{mn}h_{mn})^{\mathbf{0}}$. Both decouple from other fields/modes \rightarrow analyse this system.

$$\Box_4 h_{\mu\nu}^{\mathbf{0}} = 0 \; , \quad \Box_4 h_N^{\mathbf{0}} = 0 \; , \qquad g^{\pi\rho} \nabla_{\pi} h_{\rho\nu}^{\mathbf{0}} - \frac{1}{2} \nabla_{\nu} h_4^{\mathbf{0}} = \frac{1}{2} \nabla_{\nu} h_N^{\mathbf{0}}$$

With these equations: residual gauge freedom

Introduction

equation:

Massless modes

Massive mode

Effects

$$\Box_4 h_{\mu\nu}^{\mathbf{0}} = 0 \; , \quad \Box_4 h_N^{\mathbf{0}} = 0 \; , \qquad g^{\pi\rho} \nabla_{\pi} h_{\rho\nu}^{\mathbf{0}} - \frac{1}{2} \nabla_{\nu} h_4^{\mathbf{0}} = \frac{1}{2} \nabla_{\nu} h_N^{\mathbf{0}}$$

With these equations: residual gauge freedom - verify that h_N^0 cannot be gauged away \Rightarrow deviation w.r.t. usual 4d de Donder gauge.

Introduction

equation

Analysis

Massless modes

Effects

$$\Box_4 h_{\mu\nu}^{\mathbf{0}} = 0 \; , \quad \Box_4 h_N^{\mathbf{0}} = 0 \; , \qquad g^{\pi\rho} \nabla_{\pi} h_{\rho\nu}^{\mathbf{0}} - \frac{1}{2} \nabla_{\nu} h_4^{\mathbf{0}} = \frac{1}{2} \nabla_{\nu} h_N^{\mathbf{0}}$$

With these equations: residual gauge freedom

- verify that $h_N^{\mathbf{0}}$ cannot be gauged away \Rightarrow deviation w.r.t. usual 4d de Donder gauge.
- use this freedom, i.e. fix completely the gauge \rightarrow expression (solution) of the wave $h^0_{\mu\nu}$ (textbook procedure).

Introduction

General equations

Massless modes

Effects

$$\Box_4 h_{\mu\nu}^{\mathbf{0}} = 0 \; , \quad \Box_4 h_N^{\mathbf{0}} = 0 \; , \qquad g^{\pi\rho} \nabla_{\pi} h_{\rho\nu}^{\mathbf{0}} - \frac{1}{2} \nabla_{\nu} h_4^{\mathbf{0}} = \frac{1}{2} \nabla_{\nu} h_N^{\mathbf{0}}$$

With these equations: residual gauge freedom

- verify that $h_N^{\mathbf{0}}$ cannot be gauged away \Rightarrow deviation w.r.t. usual 4d de Donder gauge.
- use this freedom, i.e. fix completely the gauge \rightarrow expression (solution) of the wave $h_{\mu\nu}^{0}$ (textbook procedure).

Fourier expansion on plane waves with wave vector k^{ρ} :

$$h_{\mu\nu}^{0} = \int d^{4}k \ e_{\mu\nu}^{k} \operatorname{Re}\{e^{ik_{\rho}x^{\rho}}\}\ , \ h_{N}^{0} = \int d^{4}k \ f_{N}^{k} \operatorname{Re}\{e^{ik_{\rho}x^{\rho}}\}$$

 $e_{\mu\nu}^{k}$ polarization matrix, f_{N}^{k} amplitude of internal trace.

Introduction

Analysis

Massless modes Massive modes

Effects

David

$$\Box_4 h_{\mu\nu}^{\mathbf{0}} = 0 \; , \quad \Box_4 h_N^{\mathbf{0}} = 0 \; , \qquad g^{\pi\rho} \nabla_{\pi} h_{\rho\nu}^{\mathbf{0}} - \frac{1}{2} \nabla_{\nu} h_4^{\mathbf{0}} = \frac{1}{2} \nabla_{\nu} h_N^{\mathbf{0}}$$

With these equations: residual gauge freedom

- verify that h_N^0 cannot be gauged away \Rightarrow deviation w.r.t. usual 4d de Donder gauge.
- use this freedom, i.e. fix completely the gauge \rightarrow expression (solution) of the wave $h_{\mu\nu}^{\mathbf{0}}$ (textbook procedure).

Fourier expansion on plane waves with wave vector k^{ρ} :

$$h_{\mu\nu}^{0} = \int d^{4}k \ e_{\mu\nu}^{k} \operatorname{Re}\{e^{ik_{\rho}x^{\rho}}\}\ , \ h_{N}^{0} = \int d^{4}k \ f_{N}^{k} \operatorname{Re}\{e^{ik_{\rho}x^{\rho}}\}$$

 $e_{\mu\nu}^{k}$ polarization matrix, f_{N}^{k} amplitude of internal trace. k^{ρ} : light-like $\Rightarrow k^{\rho} = (\omega, 0, 0, k)$ with $\omega = k$ (take $c = \hbar = 1$),

i.e. coordinates such that propagation along x^3 .

Massless modes

equation

Massless modes
Massive modes

Effects

Conclusion

$$\Box_4 h_{\mu\nu}^{\mathbf{0}} = 0 \; , \quad \Box_4 h_N^{\mathbf{0}} = 0 \; , \qquad g^{\pi\rho} \nabla_{\pi} h_{\rho\nu}^{\mathbf{0}} - \frac{1}{2} \nabla_{\nu} h_4^{\mathbf{0}} = \frac{1}{2} \nabla_{\nu} h_N^{\mathbf{0}}$$

With these equations: residual gauge freedom

- verify that $h_N^{\mathbf{0}}$ cannot be gauged away \Rightarrow deviation w.r.t. usual 4d de Donder gauge.
- use this freedom, i.e. fix completely the gauge \to expression (solution) of the wave $h^{\bf 0}_{\mu\nu}$ (textbook procedure).

Fourier expansion on plane waves with wave vector k^{ρ} :

$$h_{\mu\nu}^{\mathbf{0}} = \int d^4k \ e_{\mu\nu}^k \operatorname{Re}\{e^{ik_{\rho}x^{\rho}}\}\ , \ h_N^{\mathbf{0}} = \int d^4k \ f_N^k \operatorname{Re}\{e^{ik_{\rho}x^{\rho}}\}$$

 $e_{\mu\nu}^k$ polarization matrix, f_N^k amplitude of internal trace. k^ρ : light-like $\Rightarrow k^\rho = (\omega,0,0,k)$ with $\omega = k$ (take $c = \hbar = 1$), i.e. coordinates such that propagation along x^3 .

On each plane-wave, gauge condition + residual gauge freedom

$$e_{ij}^k = \\ \begin{pmatrix} e_{11}^k & e_{12}^k & 0 \\ e_{12}^k & -e_{11}^k - f_N^k & 0 \\ 0 & 0 & 0 \end{pmatrix}_{ij}$$

David

$$\Box_4 h_{\mu\nu}^{\mathbf{0}} = 0 \; , \quad \Box_4 h_N^{\mathbf{0}} = 0 \; , \qquad g^{\pi\rho} \nabla_{\pi} h_{\rho\nu}^{\mathbf{0}} - \frac{1}{2} \nabla_{\nu} h_4^{\mathbf{0}} = \frac{1}{2} \nabla_{\nu} h_N^{\mathbf{0}}$$

With these equations: residual gauge freedom

- verify that h_N^0 cannot be gauged away \Rightarrow deviation w.r.t. usual 4d de Donder gauge.
- use this freedom, i.e. fix completely the gauge \rightarrow expression (solution) of the wave $h_{\mu\nu}^{\mathbf{0}}$ (textbook procedure).

Fourier expansion on plane waves with wave vector k^{ρ} :

$$h_{\mu\nu}^{\mathbf{0}} = \int d^4k \ e_{\mu\nu}^k \operatorname{Re}\{e^{ik_{\rho}x^{\rho}}\}\ , \ h_N^{\mathbf{0}} = \int d^4k \ f_N^k \operatorname{Re}\{e^{ik_{\rho}x^{\rho}}\}$$

 $e_{\mu\nu}^{k}$ polarization matrix, f_{N}^{k} amplitude of internal trace. k^{ρ} : light-like $\Rightarrow k^{\rho} = (\omega, 0, 0, k)$ with $\omega = k$ (take $c = \hbar = 1$), i.e. coordinates such that propagation along x^3 .

On each plane-wave, gauge condition + residual gauge freedom

Massless modes

$$\Box_4 h_{\mu\nu}^{\mathbf{0}} = 0 \; , \quad \Box_4 h_N^{\mathbf{0}} = 0 \; , \qquad g^{\pi\rho} \nabla_{\pi} h_{\rho\nu}^{\mathbf{0}} - \frac{1}{2} \nabla_{\nu} h_4^{\mathbf{0}} = \frac{1}{2} \nabla_{\nu} h_N^{\mathbf{0}}$$

With these equations: residual gauge freedom

- verify that h_N^0 cannot be gauged away \Rightarrow deviation w.r.t. usual 4d de Donder gauge.
- use this freedom, i.e. fix completely the gauge \rightarrow expression (solution) of the wave $h^0_{\mu\nu}$ (textbook procedure).

Fourier expansion on plane waves with wave vector k^{ρ} :

$$h_{\mu\nu}^{0} = \int d^{4}k \ e_{\mu\nu}^{k} \operatorname{Re}\{e^{ik_{\rho}x^{\rho}}\}\ , \ h_{N}^{0} = \int d^{4}k \ f_{N}^{k} \operatorname{Re}\{e^{ik_{\rho}x^{\rho}}\}$$

 $e_{\mu\nu}^k$ polarization matrix, f_N^k amplitude of internal trace. k^{ρ} : light-like $\Rightarrow k^{\rho} = (\omega, 0, 0, k)$ with $\omega = k$ (take $c = \hbar = 1$), i.e. coordinates such that propagation along x^3 .

On each plane-wave, gauge condition + residual gauge freedom

 \hookrightarrow G. R. $h_{ij}^{\times}, h_{ij}^{+}$ polarization modes and breathing mode h_{ij}° .

Introduction

Analysis

Massless modes Massive modes

Effects

Massive modes

Focus on $h_{\mu\nu}^{\mathbf{k}\neq\mathbf{0}}$: equations: $\mathbf{q}_4 h_{\mu\nu}^{\mathbf{k}} - m_{\mathbf{k}}^2 h_{\mu\nu}^{\mathbf{k}} = 0 + \text{gauge cond.}$

Introduction

General equations

Analysis

Massive modes

 $_{
m Effects}$

Massive modes

Focus on $h_{\mu\nu}^{\mathbf{k}\neq\mathbf{0}}$: equations: $\Box_4 h_{\mu\nu}^{\mathbf{k}} - m_{\mathbf{k}}^2 h_{\mu\nu}^{\mathbf{k}} = 0 + \text{gauge cond.}$ Residual gauge freedom \Rightarrow fix it (subtle) \Rightarrow standard Transverse–Traceless massive graviton:

$$\partial^{\nu} h_{\mu\nu}^{\mathbf{k}} = 0 \,, \qquad h_4^{\mathbf{k}} = 0$$

Introduction

General equations

Massless mode

Massive modes

Effects

Massive modes

Focus on $h_{\mu\nu}^{\mathbf{k}\neq\mathbf{0}}$: equations: $\Box_4 h_{\mu\nu}^{\mathbf{k}} - m_{\mathbf{k}}^2 h_{\mu\nu}^{\mathbf{k}} = 0 + \text{gauge cond.}$ Residual gauge freedom \Rightarrow fix it (subtle) \Rightarrow standard Transverse–Traceless massive graviton:

$$\partial^{\nu} h_{\mu\nu}^{\mathbf{k}} = 0 \,, \qquad h_4^{\mathbf{k}} = 0$$

To get an expression for $h_{\mu\nu}^{\mathbf{k}\neq\mathbf{0}}$: Fourier expansion on plane waves with wave vector $p_{\mathbf{k}}^{\rho}$:

$$h_{\mu\nu}^{\mathbf{k}} = \int d^4 p_{\mathbf{k}} e_{\mu\nu}^{p_{\mathbf{k}}} \operatorname{Re} \{ e^{i p_{\mathbf{k}\rho} x^{\rho}} \}$$

 $p_{\mathbf{k}}^{\rho} = (\omega_{\mathbf{k}}, \vec{p}_{\mathbf{k}}),$ massive dispersion relation $\omega_{\mathbf{k}}^2 = m_{\mathbf{k}}^2 + \vec{p}_{\mathbf{k}}^2.$

Introduction

equations

Massless modes

Massive modes

Effects

Massive modes

Focus on $h_{\mu\nu}^{\mathbf{k}\neq\mathbf{0}}$: equations: $\Box_4 h_{\mu\nu}^{\mathbf{k}} - m_{\mathbf{k}}^2 h_{\mu\nu}^{\mathbf{k}} = 0 + \text{gauge cond.}$ Residual gauge freedom \Rightarrow fix it (subtle) \Rightarrow standard Transverse–Traceless massive graviton:

$$\partial^{\nu} h_{\mu\nu}^{\mathbf{k}} = 0 \,, \qquad h_4^{\mathbf{k}} = 0$$

To get an expression for $h_{\mu\nu}^{\mathbf{k}\neq\mathbf{0}}$: Fourier expansion on plane waves with wave vector $p_{\mathbf{k}}^{\rho}$:

$$h_{\mu\nu}^{\mathbf{k}} = \int d^4 p_{\mathbf{k}} e_{\mu\nu}^{p_{\mathbf{k}}} \operatorname{Re} \{ e^{i p_{\mathbf{k}\rho} x^{\rho}} \}$$

 $p_{\mathbf{k}}^{\rho} = (\omega_{\mathbf{k}}, \vec{p}_{\mathbf{k}}),$ massive dispersion relation $\omega_{\mathbf{k}}^2 = m_{\mathbf{k}}^2 + \vec{p}_{\mathbf{k}}^2.$ Pick reference frame s.t. $p_{\mathbf{k}}^{\rho} = (\omega_{\mathbf{k}}, 0, 0, 0),$ solve:

Introduction

General equations

Massless modes

Massive modes

Effects

Massive modes

Focus on $h_{\mu\nu}^{\mathbf{k}\neq\mathbf{0}}$: equations: $\Box_4 h_{\mu\nu}^{\mathbf{k}} - m_{\mathbf{k}}^2 h_{\mu\nu}^{\mathbf{k}} = 0 + \text{gauge cond.}$ Residual gauge freedom \Rightarrow fix it (subtle) \Rightarrow standard Transverse–Traceless massive graviton:

$$\partial^{\nu} h_{\mu\nu}^{\mathbf{k}} = 0 \,, \qquad h_4^{\mathbf{k}} = 0$$

To get an expression for $h_{\mu\nu}^{\mathbf{k}\neq\mathbf{0}}$: Fourier expansion on plane waves with wave vector $p_{\mathbf{k}}^{\rho}$:

$$h_{\mu\nu}^{\mathbf{k}} = \int d^4 p_{\mathbf{k}} e_{\mu\nu}^{p_{\mathbf{k}}} \operatorname{Re} \{ e^{ip_{\mathbf{k}\rho}x^{\rho}} \}$$

 $p_{\mathbf{k}}^{\rho} = (\omega_{\mathbf{k}}, \vec{p}_{\mathbf{k}}),$ massive dispersion relation $\omega_{\mathbf{k}}^2 = m_{\mathbf{k}}^2 + \vec{p}_{\mathbf{k}}^2.$ Pick reference frame s.t. $p_{\mathbf{k}}^{\rho} = (\omega_{\mathbf{k}}, 0, 0, 0),$ solve:

$$\begin{pmatrix}
e_{ij} = \\
\begin{pmatrix}
e_{11} & e_{12} & e_{13} \\
e_{12} & -e_{11} - e_{33} & e_{23} \\
e_{13} & e_{23} & e_{33}
\end{pmatrix}
\begin{vmatrix}
h_{ij}^{\mathbf{k}\neq\mathbf{0}}(t) = \\
h^{+} - \frac{1}{2}h^{l,\bigcirc} & h^{\times} & h_{1}^{l} \\
h^{\times} & -h^{+} - \frac{1}{2}h^{l,\bigcirc} & h_{2}^{l} \\
h_{1}^{l} & h_{2}^{l} & h^{l,\bigcirc}
\end{pmatrix}_{ij} \cos(\omega_{\mathbf{k}} t)$$

All six polarization modes, only 5 independent ones.

Introduction

General equations

Massless modes
Massive modes

Effects

Massive modes

Focus on $h_{\mu\nu}^{\mathbf{k}\neq\mathbf{0}}$: equations: $\Box_4 h_{\mu\nu}^{\mathbf{k}} - m_{\mathbf{k}}^2 h_{\mu\nu}^{\mathbf{k}} = 0 + \text{gauge cond.}$ Residual gauge freedom \Rightarrow fix it (subtle) \Rightarrow standard Transverse–Traceless massive graviton:

$$\partial^{\nu} h_{\mu\nu}^{\mathbf{k}} = 0 \,, \qquad h_4^{\mathbf{k}} = 0$$

To get an expression for $h_{\mu\nu}^{\mathbf{k}\neq\mathbf{0}}$:

Fourier expansion on plane waves with wave vector $p_{\mathbf{k}}^{\rho}$:

$$h_{\mu\nu}^{\mathbf{k}} = \int d^4 p_{\mathbf{k}} e_{\mu\nu}^{p_{\mathbf{k}}} \operatorname{Re} \{ e^{i p_{\mathbf{k}\rho} x^{\rho}} \}$$

 $p_{\mathbf{k}}^{\rho} = (\omega_{\mathbf{k}}, \vec{p}_{\mathbf{k}}),$ massive dispersion relation $\omega_{\mathbf{k}}^2 = m_{\mathbf{k}}^2 + \vec{p}_{\mathbf{k}}^2.$ Pick reference frame s.t. $p_{\mathbf{k}}^{\rho} = (\omega_{\mathbf{k}}, 0, 0, 0),$ solve:

$$\begin{pmatrix}
e_{ij} = \\
\begin{pmatrix}
e_{11} & e_{12} & e_{13} \\
e_{12} & -e_{11} - e_{33} & e_{23} \\
e_{13} & e_{23} & e_{33}
\end{pmatrix}
\begin{vmatrix}
h_{ij}^{\mathbf{k}\neq\mathbf{0}}(t) = \\
h^{+} - \frac{1}{2}h^{l,\bigcirc} & h^{\times} & h_{1}^{l} \\
h^{\times} & -h^{+} - \frac{1}{2}h^{l,\bigcirc} & h_{2}^{l} \\
h_{1}^{l} & h_{2}^{l} & h^{l,\bigcirc}
\end{pmatrix}_{ij} \cos(\omega_{\mathbf{k}} t)$$

All six polarization modes, only 5 independent ones. (High) angular frequency $\omega_{\mathbf{k}} \sim m_{\mathbf{k}}$.

Introduction

General equations

Massless modes
Massive modes

Effects

Two effects and observability

- 1. New polarization mode in massless wave: breathing mode.
- 2. Additional (massive) waves of high frequencies.

Introduction

General equations

rinarysic

Effects
Breathing mode

Additional wave

Introduction

equation

Anaiysis

Breathing mode

Conclusion

Two effects and observability

- 1. New polarization mode in massless wave: breathing mode.
- 2. Additional (massive) waves of high frequencies.

Breathing mode in the massless wave

Each polarization mode \rightarrow specific space deformation (stretch and shrink) with $\xi^i = x_0^i + \Delta x^i$ Geodesic equation $\ddot{\xi}_i = \frac{1}{2}\ddot{h}_{ij}^0 \xi^j \rightsquigarrow \Delta x^i = \frac{1}{2}h_{ij}^0 x_0^j$

Introduction

equation

Analysi

DG----

Breathing mode

Conclusion

Two effects and observability

- 1. New polarization mode in massless wave: breathing mode.
- 2. Additional (massive) waves of high frequencies.

Breathing mode in the massless wave

Each polarization mode \rightarrow specific space deformation (stretch and shrink) with $\xi^i = x_0^i + \Delta x^i$ Geodesic equation $\ddot{\xi}_i = \frac{1}{2}\ddot{h}_{ij}^0\xi^j \rightsquigarrow \Delta x^i = \frac{1}{2}h_{ij}^0x_0^j$ Deformation of test-point circle in transverse plane:

Introduction

equation

Analysi

Breathing mode

Conclusion

Two effects and observability

- 1. New polarization mode in massless wave: breathing mode.
- 2. Additional (massive) waves of high frequencies.

Breathing mode in the massless wave

Each polarization mode \rightarrow specific space deformation (stretch and shrink) with $\xi^i = x_0^i + \Delta x^i$ Geodesic equation $\ddot{\xi}_i = \frac{1}{2}\ddot{h}_{ij}^0\xi^j \rightsquigarrow \Delta x^i = \frac{1}{2}h_{ij}^0x_0^j$ Deformation of test-point circle in transverse plane:

Breathing mode: need several detectors, different orientations

Two effects and observability

- 1. New polarization mode in massless wave: breathing mode.
- **2.** Additional (massive) waves of high frequencies.

Breathing mode in the massless wave

Each polarization mode \rightarrow specific space deformation (stretch and shrink) with $\xi^i = x_0^i + \Delta x^i$ Geodesic equation $\ddot{\xi}_i = \frac{1}{2}\ddot{h}_{ij}^0\xi^j \longrightarrow \Delta x^i = \frac{1}{2}h_{ij}^0x_0^j$

Deformation of test-point circle in transverse plane:

Breathing mode: need several detectors, different orientations Amplitude? Related to that h_N^0 ... Emission?

Introduction

equation

Analysis

Effects Breathing mode

Additional (massive) waves

All six polarization modes \rightarrow various space deformations.

Introduction

equations

Analysis

Effects

Sreathing mode

Additional (massive) waves

All six polarization modes \rightarrow various space deformations.

Angular frequency: $\omega_{\mathbf{k}}^2 = m_{\mathbf{k}}^2 + \vec{p}_{\mathbf{k}}^2$.

Introduction

equations

Analysis

Efforts

reathing mode

Additional (massive) waves

All six polarization modes \rightarrow various space deformations.

Angular frequency: $\omega_{\mathbf{k}}^2 = m_{\mathbf{k}}^2 + \vec{p}_{\mathbf{k}}^2$.

 $\vec{p}_{\mathbf{k}}$: Minkowski spatial components, governed by 4d physics

 $\Rightarrow ||\vec{p}_{\mathbf{k}}|| \sim 1/\lambda_4$

But $m_{\mathbf{k}} \sim 1/r_N$, (Kaluza–Klein) internal length r_N .

Introduction

equation

Analysis

Breathing mod

$\begin{array}{c} \text{David} \\ \text{ANDRIOT} \end{array}$

Additional (massive) waves

All six polarization modes \rightarrow various space deformations.

Angular frequency: $\omega_{\mathbf{k}}^2 = m_{\mathbf{k}}^2 + \vec{p}_{\mathbf{k}}^2$.

 $\vec{p}_{\mathbf{k}}$: Minkowski spatial components, governed by 4d physics

 $\Rightarrow ||\vec{p}_{\mathbf{k}}|| \sim 1/\lambda_4$

But $m_{\mathbf{k}} \sim 1/r_N$, (Kaluza–Klein) internal length r_N .

 $\hookrightarrow r_N \ll \lambda_4 \text{ so that } m_{\mathbf{k}} \gg ||\vec{p}_{\mathbf{k}}|| \implies \omega_{\mathbf{k}} \sim m_{\mathbf{k}} \text{ very high.}$

Introduction

equation

Analysis

Breathing mode

Additional (massive) waves

All six polarization modes \rightarrow various space deformations.

Angular frequency: $\omega_{\mathbf{k}}^2 = m_{\mathbf{k}}^2 + \vec{p}_{\mathbf{k}}^2$.

 $\vec{p}_{\mathbf{k}}$: Minkowski spatial components, governed by 4d physics $\Rightarrow ||\vec{p}_{\mathbf{k}}|| \sim 1/\lambda_4$

But $m_{\mathbf{k}} \sim 1/r_N$, (Kaluza–Klein) internal length r_N .

 $\hookrightarrow r_N \ll \lambda_4 \text{ so that } m_{\mathbf{k}} \gg ||\vec{p}_{\mathbf{k}}|| \qquad \Rightarrow \quad \omega_{\mathbf{k}} \sim m_{\mathbf{k}} \text{ very high.}$

Table-top experiment bound: $r_N \lesssim 10^{-4} \,\mathrm{m}$ (about $10^{-3} \,\mathrm{eV}$) $\Rightarrow \nu \sim 10^{12} \,\mathrm{Hz} \gg \mathrm{upper}$ bound of LIGO $\sim 10^3 - 10^4 \,\mathrm{Hz}$ $\hookrightarrow \mathrm{unobservable}$.

Introduction

equation

EG--4-

Breathing mode
Additional wave

Additional (massive) waves

All six polarization modes \rightarrow various space deformations.

Angular frequency: $\omega_{\mathbf{k}}^2 = m_{\mathbf{k}}^2 + \vec{p}_{\mathbf{k}}^2$.

 $\vec{p}_{\mathbf{k}}$: Minkowski spatial components, governed by 4d physics $\Rightarrow ||\vec{p}_{\mathbf{k}}|| \sim 1/\lambda_4$

But $m_{\mathbf{k}} \sim 1/r_N$, (Kaluza–Klein) internal length r_N .

 $\hookrightarrow r_N \ll \lambda_4$ so that $m_{\mathbf{k}} \gg ||\vec{p}_{\mathbf{k}}|| \implies \omega_{\mathbf{k}} \sim m_{\mathbf{k}}$ very high.

Table-top experiment bound: $r_N \lesssim 10^{-4} \,\mathrm{m}$ (about $10^{-3} \,\mathrm{eV}$) $\Rightarrow \nu \sim 10^{12} \,\mathrm{Hz} \gg \mathrm{upper}$ bound of LIGO $\sim 10^3 - 10^4 \,\mathrm{Hz}$ $\hookrightarrow \mathrm{unobservable}$.

Worse in future (planned) detectors. Energy \rightarrow amplitude is low...

Introduction

equation

Analysi

Breathing mode

Additional wave

Introduction

cquario.

Analysi

Effects Conclusion

Conclusion

Done:

- \bullet Propagation equations on most general 4 + N-dimensional background
- On Minkowski₄ × compact Ricci-flat \mathcal{M}_N : two effects of extra dimensions on 4d gravitational waves
- The new polarization mode in the massless 4d wave, the breathing mode, could be observed with more detectors.

Introduction

Analys

Effects

Conclusion

Conclusion

Done:

- \bullet Propagation equations on most general 4 + N-dimensional background
- On Minkowski₄ × compact Ricci-flat \mathcal{M}_N : two effects of extra dimensions on 4d gravitational waves
- The new polarization mode in the massless 4d wave, the breathing mode, could be observed with more detectors.

To-do:

- Compare to scalar-tensor models and their emission constraints
- Study emission
- Start from *D*-dimensional supergravity, get more involved \mathcal{M}_N and a mass for h_N^0 ?

Introduction

Analys

Effects

Conclusion

Conclusion

Done:

- Propagation equations on most general 4 + N-dimensional background
- On Minkowski₄ × compact Ricci-flat \mathcal{M}_N : two effects of extra dimensions on 4d gravitational waves
- The new polarization mode in the massless 4d wave, the breathing mode, could be observed with more detectors.

To-do:

- Compare to scalar-tensor models and their emission constraints
- Study emission
- Start from *D*-dimensional supergravity, get more involved \mathcal{M}_N and a mass for h_N^0 ?

Thank you for your attention!