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quantum matter in the gravitational field

Colella, Overhauser, Werner (1975)
▶ external field (Earth)
▶ Newtonian gravity

iℏ ψ̇ =

(
− ℏ2

2m∇2 −mgx
)
ψ
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the gravitational field of quantum matter
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the gravitational field of quantum matter

What is the gravitational field of a superposition state?
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solution 1: quantised gravity

In analogy to electrodynamics:
The field sourced by a superposition state is itself in a superposition
⇒ superposition of two spacetimes

Problems:

▶ Nonrenormalisability of gravity as a field theory:
→ gravity must be different in some respect
→ there is no fully consistent theory of quantum gravity (yet?)

▶ How to identify points in different spacetimes?
→ quantum matter on curved spacetime is not a conceptually
consistent theory even in the Newtonian, low energy limit of the
double slit experiment
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solution 2: semi-classical gravity

▶ Quantum fields living on spacetime and dynamics of spacetime
are two conceptually very different things

▶ Take (classical) GR seriously
(and leave it to experiments, at which point it might brake down):
spacetime is a 4-dim. manifold with quantum matter living on it

Rμν −
1
2Rgμν︸ ︷︷ ︸

spacetime (class.)

E
=

8πG
c4 T̂μν︸ ︷︷ ︸

matter (quantum)

▶ Quantisation of gravity: spacetime is “quantum” in some way
At low energies: gμν = ημν + hμν with “quantum field” ĥμν(x)

▶ Gravitisation of QM: replace T̂μν by a classical object, e. g. ⟨T̂μν⟩
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newtonian semi-classical gravity



the schrödinger-newton equation

In the weak-field nonrelativistic limit: ρ̂ = mψ̂†ψ̂

Rμν − 1
2Rgμν =

8π G
c4 ⟨ψ| T̂μν |ψ⟩ → ∇2V = 4π G ⟨ψ| ρ̂ |ψ⟩

Ĥint = − 1
2
∫
d3r hμν T̂μν → Ĥint =

∫
d3r V ρ̂

Results in the Schrödinger-Newton equation (here for one particle)

iℏ ψ̇(t, r) =
(
− ℏ2

2m∇2 − Gm2
∫
d3r′ |ψ(t, r

′)|2

|r− r′|

)
ψ(t, r)

⇒ Nonlinear Schrödinger equation
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many particles to centre of mass

Realistic systems for testing SN are not single particles:

iℏΨ̇N(rN) =
[
−

N∑
i=1

ℏ2

2mi
Δri + Vlinear(rN) + VG[ΨN(rN)]

]
ΨN(rN)

VG[ΨN(rN)] = −G
N∑
i=1

N∑
j=1

mimj

∫ ∣∣∣ΨN(r′N)∣∣∣2∣∣∣ri − r′j
∣∣∣ dV′N

Centre of mass equation (approx.), separation ΨN = ψ⊗ χN−1:

iℏ ψ̇(t, r) =
(

− ℏ2

2M∇2+Vext.lin. − G
∫
d3r′

∣∣ψ(t, r′)∣∣2 Iρ(r− r′)
)
ψ(t, r)

Iρ(d) =
∫
d3xd3yρ(x)ρ(y− d)

|x− y| (where ρ is given by
∣∣χN−1

∣∣2)
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experimental tests



inhibition of free expansion — wide wave-functions

wave-function≫ particle size ⇒ ρ ≈ δ(rcm) ⇒ Iρ(d) ≈ 1/ |d|:

iℏ ψ̇(t, r) =
(
− ℏ2

2m∇2 − Gm2
∫
d3r′ |ψ(t, r

′)|2

|r− r′|

)
ψ(t, r)
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ρ = 4π r2 |ψ|2 for masses of 7× 109 u and 1010 u

Problem: time scale (order of hours!)
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inhibition of free expansion

For narrower wave-functions (here O(10 nm) ≲ particle size):
approximate ODE (assume: Gaussian wave-packet remains Gaussian)

d3

dt3 ⟨r
2⟩ = −3ω2

SN f(⟨r2⟩)
d
dt ⟨r

2⟩
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rel. deviation from standard Schrödinger evolution for m = 109 u and 1010 u
⇒ 1% deviation after 200 s → maybe in space?
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tests with optomechanics i.) spectrum
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tests with optomechanics ii.) squeezed state

Yang et al. PRL 110 (2013) 170401
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localised states in crystalline matter

d

R

σ

a

ρnucl

ρ

▶ the relevant radius is σ
(localisation of the nuclei)

▶ effective mass density ρnucl
∼ 103ρ

▶ ωSN =
√

Gmatom
σ3 ∼

√
Gρnucl

∼ 1 Hz for osmium

Need ground state cooling for:
mass ∼ 1015 u (μm sized) particle

trapped at O(10Hz)
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conclusions



what would we test?

▶ Testing the Schrödinger-Newton equation is feasible
▶ However, only tests the specific semi-classical coupling

Rμν −
1
2Rgμν =

8π G
c4 ⟨T̂μν⟩

▶ Other approaches for semi-classical coupling possible:
∙ Source gravity from stochastic CSL collapse events1

Rμν −
1
2Rgμν =

8π G
c4

(
⟨T̂μν⟩+ δTμν

)
→ yields linear master equation (no superluminal signalling problem)
→ experimental predictions less clear (has free parameters)
→ stochastic field of unexplained origin

∙ Stochastic gravity2

1 Tilloy & Diósi, PRD 93, 024026 (2016)
2 Hu & Verdaguer, Living Rev. Relativ. 11, 3 (2008)
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Thank You!

Questions?

Layout based on mtheme by M. Vogelgesangcba 18



additional slides



difficulties with semi-classical gravity

▶ An instantaneous collapse violates divergence freedom of
Einstein’s equations

▶ A macroscopic superposition of here and there “collapses”
in the middle (rather than 50:50 here or there)

▶ With the standard collapse: faster-than-light signalling

20
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inhibition of free expansion, scaling law

In the wide wave function limit: one-particle SN equation
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ρ = 4π r2 |ψ|2 for masses of 7× 109 u and 1010 u

▶ For a mass of ∼ 1010 u and a wave packet size of about 500nm a
significant deviation is visible after several hours

▶ Scaling law: with ψ(t, x) for mass m, a solution for mass μm is
obtained as μ9/2ψ(μ5t,μ3x) ⇒ e. g. 1011 u at 0.5 nm would
show an effect in less than a second but must remain in wide
wave function regime (Os at 1010 u has 100nm diameter)
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realistic model for time evolution

Assumption: a Gaussian wave packet stays approximately Gaussian

The free spreading of a Gaussian wave packet and spherical particle
can be approximated by a third order ODE for the width u(t) = ⟨r2⟩(t):

...u(t) = −3ω2
SN f(u(t)) u̇(t)

with ωSN =
√
Gm/R3 ∼

√
Gρ, initial conditions

u(0) = u0 , u̇(0) = 0 , ü(0) = 9ℏ2
2m2 u0

−ω2
SN g(u0)u0 ,

and the functions (with u in units of R)

f(u) = erf
(√

3
u

)
+

√
u
3π

(
u− 7

2 − 324− 162u− 35u4 + 70u5
70u4 e−3/u

)

g(u) = erf
(√

3
u

)
+

√
u
3π

(
2
3u− 3+ 486+ 105u3 − 70u4

105u3 e−3/u
)
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short time expansion

u(t) ≈ u0 +
1
2 ü(0) t

2

▶ exact without self-gravity term
▶ deviates from usual evolution by dependence on g(u0) in

ü(0) = 9ℏ2
2m2 u0

−ω2
SN g(u0)u0

▶ stationarity condition ü(0) = 0 yields (pessimistic) estimate for
the scales where self-gravity becomes important

▶ Assume osmium particle initially trapped with ω0
⇒ characteristic time scale τ = ω−1

0 , u0 = 3ℏ τ/m
▶ ü(0) = 0 determines characteristic (m, τ) graph
▶ limit g(u) → 1 for u→ 0 yields τ(m) = const. for large m
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evolution time and mass requirements

green line intuitively: free wave-function would have increased by
25% but maintains its width due to self-gravity 24



mass density dependence of sn

For a homogeneous sphere:

Iρ(d) = −M
2

R ×

{
6
5 − 2

( d
2R
)2

+ 3
2
( d
2R
)3 − 1

5
( d
2R
)5

(d ≤ 2R)
R
d (d > 2R)

▶ different behaviour for narrow and wide wave functions
▶ enhancement of O(103) for narrow wf. in crystalline matter
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material choices

ωSN =

√
Gmatom
σ3

Material matom / u ρ / g cm-3 σ / pm ωSN / s-1

Silicon 28.086 2.329 6.96 0.096
Tungsten 183.84 19.30 3.48 0.695
Osmium 190.23 22.57 2.77 0.996
Gold 196.97 19.32 4.66 0.464

Note: ωSN enters squared in the evolution equation
⇒ osmium two orders of magnitude better than silicon
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experimental setup (proposal)
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