Quasiparticle picture from the Bekenstein bound Alfredo Iorio Charles University, Prague

September 27th 2017

Testing Fundamental Physics Principles

Corfu, Greece

Ref: G. Acquaviva, A.I., M. Scholtz, arXiv:1704.00345 (Ann Phys, tbp)

Quasiparticle picture

It is widely accepted

$$S \le S_{\rm BH} = \frac{1}{4} \frac{\partial V}{\ell_P^2},$$

where $\partial V \equiv A_{\rm EH}$.

One possible interpretation is that, when a BH is formed, the "X level" has been reached.

If

$$S \le S_{BH} = \frac{1}{4} \frac{A}{\ell_P^2}$$

means that fundamental degrees of freedom X exist, then

$$g_{\mu\nu}$$
s AND ϕ s

both emerge from X

- Then, in general:
 - a) particles we call elementary are, in fact, quasiparticles, and
 - b) there is field-geometry entanglement

• Different configurations of X may give rise to the same $g_{\mu\nu}$ but then yield different ϕs

$$(g_{\mu\nu}, \phi), ..., (g_{\mu\nu}, \phi')$$

• Thus, even if

$$g_{\mu\nu}^{< BH} = g_{\mu\nu}^{> BH} \equiv g_{\mu\nu}$$

the emerging quantum fields $\phi \neq \phi'$ and live in different Hilbert spaces.

• Since the Xs rearrange, even a unitary evolution at the X level leads to information loss for ϕ !

Thus BHs are (the only!) drivers of phase transitions between different "emergent" arrangements of the X level

Before formation

After evaporation

$$S \le 2\pi \frac{RE}{\hbar c} \longrightarrow S|_{E=E_S} = \pi R_S^2 \frac{c^3}{\hbar G} = \frac{1}{4} \frac{A_{EH}}{\ell_P^2} \longrightarrow S \le 2\pi \frac{RE}{\hbar c}$$

On the other hand, the following is widely accepted

Take

$$H = H_A^m \otimes H_B^n$$

and $U|\psi_0\rangle \in H$ a random state, with associated $\rho_A(U)$, and $S_{m,n}(U)$

The average entanglement entropy of A

$$S_{m,n} = \langle S_{m,n}(U) \rangle$$

and the average information contained in A

$$I_{m,n} = \ln m - S_{m,n}$$

Page conjectured

$$I_{m,n} = \ln m + \frac{m-1}{2n} - \sum_{k=n+1}^{mn} \frac{1}{k}$$

for m < n

Applied to BH evaporation: A corresponds to the states under the horizon, B corresponds to the radiation

When the BH is formed, n = 1 and $m = \dim H$: $S_{m,n}$ is zero

As the BH evaporates, n increases and m decreases (m n = const.): $S_{m,n}$ increases

At some stage (approximately half time, t_{Page}) $I_{m,n}$ starts to leak from the BH: $S_{m,n}$ decreases

When the BH fully evaporates, m = 1 and $n = \dim H$: $S_{m,n}$ returns to zero

Modeling BH evaporation

The Hilbert space H for the X level is

 N_G allowed geometries

$$|g^{(a)}\rangle, \qquad a=0,1,\dots N_G-1$$
 so $|\psi\rangle=|g^{(a)},\phi\rangle$

The distribution of the X between geometry and the fields in general changes during the unitary evolution.

Assume

$$\mathsf{H} = \bigoplus_{i=1}^{N_T} T_{(i)}, \qquad \dim \mathsf{H} = N_T N$$

where

$$T_{(i)} = \mathsf{H}_{\mathsf{G}}^{p_i} \otimes \mathsf{H}_{\mathsf{F}}^{q_i}, \qquad p_i \, q_i = N$$

A general state $|\psi\rangle \in \mathsf{H}$ admits then the expansion

$$|\psi\rangle = \bigoplus_{i=1}^{N_T} \sum_{I=1}^{p_i} \sum_{n=0}^{q_i-1} c_{In}^{(i)} |I_i\rangle \otimes |n_i\rangle$$

 $|I_i\rangle$ s and $|n_i\rangle$ s bases of $H_G^{p_i}$ and $H_F^{q_i}$, resp.

Denote by $P_{(i)}: H \mapsto T_{(i)}$ a projector onto $T_{(i)}$. Then

$$p_{(i)} = \|\mathsf{P}_{(i)}|\psi\rangle\|^2$$

is the probability of finding the system in the state with the topology $T_{(i)}$.

In general, a state in $T_{(i)}$ has entanglement between geometry and field

$$\mathsf{P}_{(i)}|\psi\rangle = \sum_{I,n} c_{In}^{(i)} |I_i\rangle \otimes |n_i\rangle$$

The associated density matrix representing the state of the field is

$$\rho_{(i)} = \mathrm{Tr}_{\mathsf{H}_{\mathrm{G}}^{p_i}} |\psi\rangle_i \langle\psi|_i$$

where
$$|\psi\rangle_i = p_{(i)}^{-1/2} \mathsf{P}_{(i)} |\psi\rangle$$

The corresponding entanglement entropy

$$S_{(i)} = -\mathrm{Tr}_{\mathsf{H}_{\mathrm{F}}^{q_i}} \rho_{(i)} \ln \rho_{(i)}$$

is the entanglement entropy between the geometry and the fields for a given topology

Since the observer does not distinguish between different topologies, the expected value of the entanglement between the fields and the geometrical dof is

$$\langle S \rangle = \sum_{i} p_{(i)} S_{(i)}$$

Assume $N_T = 2$, $N_G = 30$, $P_G(T_{(1)}) = P_G(T_{(2)}) = H_G$ and N = 1500 and let us set (dim H = 3000)

$$T_{(1)} = \mathsf{H}_{\mathrm{G}}^{30} \otimes \mathsf{H}_{\mathrm{F}}^{50}, \quad p_1 \times q_1 = 30 \times 50$$

 $T_{(2)} = \mathsf{H}_{\mathrm{G}}^{60} \otimes \mathsf{H}_{\mathrm{F}}^{25}, \quad p_2 \times q_2 = 60 \times 25$

Define the "mass operator" M

$$\mathsf{M}|g^{(a)}\rangle = M^{(a)}|g^{(a)}\rangle \equiv \varepsilon \, a \, |g^{(a)}\rangle$$

For a BH of $M^{(a)} = a \varepsilon$ one state in H_G^{30} mapped to one $|g^{(a)}\rangle$ by P_G , while in H_G^{60} to two such states

"Snapshots" of the continuous and unitary evolution in H

$$\langle M \rangle = (N_G - 1 - k)$$
 and $\langle n \rangle = k$,

where $k = 0, 1, \dots N_G - 1$.

Making the long story of the estimate of the expected entanglement entropy for a random state with prescribed expected < n > and < M > short (a story of Hopf coordinates parametrization on S^3 , of solving constrains, of generation of sequences and their random phases... done 5000 times)

$$R_G^1 = 1, R_G^2 = 5$$

 $R_G^1 = 2, R_G^2 = 10$
 $R_G^1 = 4, R_G^2 = 20$

Here $p_i = N_G R_G^i$ and $q_i = N_F^i R_F^i$ We choose $N_G = 30$, $N_T = 2$, and $R_F^i = 1$ for each topology We plot three different cases:

$$N_F^1 = 200, R_G^1 = 1, N_F^2 = 40, R_G^2 = 5$$

 $N_F^1 = 200, R_G^1 = 2, N_F^2 = 40, R_G^2 = 10$
 $N_F^1 = 200, R_G^1 = 4, N_F^2 = 40, R_G^2 = 20$

The residual entropies are

$$S_1 = 0.77, \quad S_2 = 1.43, \quad S_3 = 2.06$$

$$R_G^1 = 1, R_G^2 = 2, R_G^3 = 4$$

$$R_G^1 = 2, R_G^2 = 4, R_G^3 = 8$$

$$R_G^1 = 4, R_G^2 = 20, R_G^3 = 80$$

Again $p_i = N_G R_G^i$ and $q_i = N_F^i R_F^i$ As before $N_G = 30$, but $N_T = 3$, and

$$N_F^1 = 120, N_F^2 = 60, N_F^3 = 30$$
 and $R_G^1 = 1, R_G^2 = 2, R_G^3 = 4,$
 $N_F^1 = 120, N_F^2 = 60, N_F^3 = 30$ and $R_G^1 = 2, R_G^2 = 4, R_G^3 = 8,$
 $N_F^1 = 200, N_F^2 = 40, N_F^3 = 10$ and $R_G^1 = 4, R_G^2 = 20, R_G^3 = 80,$

In this case, the residual entropies are

$$S_1 = 0.34, \quad S_2 = 1.02, \quad S_3 = 2.06$$

What to do with this?

Our quasiparticle picture makes a lot of sense (to us!)

Plenty of further theoretical research (= we still don't understand most of what have done!):

dynamical realizations; more realistic BH evaporation; exact computations of S_{ent} ; realistic estimate of the degeneracy; the classical limit; coherent states; new Stone-von Neumann thrm; dark matter; the fundamental nature of oscillating particles; etc.

We shall probably follow that road, but this will not (and cannot) stop the info-loss-yes-or-not story to keep going forever...

Perhaps, one should try to look for something to measure? Is there anything around that resembles this?

First we need quasi-particles

BCS pairs **Plasmons** Phonons Magnons

Rep of one Cooper pair from Chernodub, M.N. Lect. Notes Phys. 871 (2013) 143

Graphene is unique

Dispersion relations

$$E_{\pm} = V_F \left(\pm |\vec{P}| - A |\vec{P}|^2 \right)$$

with $\vec{P} \equiv (\hbar/\ell)(Re\mathcal{F}_1, Im\mathcal{F}_1)$, $V_F \equiv \eta_1 \ell/\hbar$, $A \equiv (\ell/\hbar)\epsilon(\eta_2)/\eta_1$ and

$$\mathcal{F}_1 = \sum_{i=1}^{3} e^{i\vec{k}\cdot\vec{s}_i^{(1)}} = e^{-i\ell k_y} [1 + 2e^{i\frac{3}{2}\ell k_y}\cos(\frac{\sqrt{3}}{2}\ell k_x)]$$

and $\mathcal{F}_2 = |\mathcal{F}_1|^2 - 3$

Henceforth deformed Dirac Hamiltonian

$$H(P) = V_F \sum_{\vec{k}} \psi_{\vec{k}}^{\dagger} (P - A P P) \psi_{\vec{k}}$$

with standard commutation relations, $[X_i^P, P_j] = i\hbar \delta_{ij}$ Or standard Dirac Hamiltonian, $\vec{Q} \equiv \vec{P}(1 - A|\vec{P}|)$

$$H(Q) = V_F \sum_{\vec{k}} \psi_{\vec{k}}^{\dagger} \mathcal{Q} \psi_{\vec{k}}$$

with deformed commutation relations

$$[X_i^P, Q_j] = i\hbar \left[\delta_{ij} - A \left(Q \delta_{ij} + \frac{Q_i Q_j}{Q} \right) \right]$$

A.I., P.Pais, I.A.Elmashad, A.F.Ali, et al, arXiv:1706.01332 (sbmtd PRD)

To have nonzero intrinsic curvature K on an hexagonal lattice we need <u>disclination</u> defects

$$\sum_{p} (6-p)n_p = 6\chi_M \quad (\clubsuit)$$

and

$$\int_{M} \mathcal{K}(x) \equiv \mathcal{K}_{tot} = 2\pi \chi_{M} \quad (\spadesuit)$$

E.g.,
$$M = S^2 (\chi_{S^2} = 2)$$

$$(6-7) n_7 + (6-6) n_6 + (6-5) n_5 = 12$$

Thus, (\clubsuit) and (\spadesuit) together give

$$\mathcal{K}_5 = +(\frac{3}{\pi}) \frac{\mathcal{K}_{tot}}{12}$$

and

$$\mathcal{K}_7 = -(\frac{3}{\pi}) \frac{\mathcal{K}_{tot}}{12}$$

and so on

This is behind ω_{μ}^{a}

 $(\eta_{\mu
u},\psi)$

Fig.s adapted from: Openov, Podlivaev, Phys Solid State 57 (2015) 1477

Conclusions and credits

- The Bekenstein bound may imply the existence of the "X level"
- Both fields and geometry need be made of the same "X material"
- ullet Even assuming unitary evolution at the X level, such unitarity is unaccessible
- We (= me) do not understand Page curve
- Should we try to test that on... graphene?

- G. Acquaviva, AI, M. Scholtz, (AoP tbp), arXiv:1704.00345; and letter (sbmtd PLB)
- AI, P. Pais, I.A. Elmashad, A.F. Ali, et al, arXiv:1706.01332 (sbmtd PRD)
- R. Gabbrielli, AI, N.M. Pugno, S. Simonucci, S. Taioli, J Phys: Cond Mat 28 (2016) 13LT01
- AI, P Pais, PRD 92 (2015) 125005
- AI, IJMPD 24 (2015) 1530013
- AI, G. Lambiase, PLB 716 (2012) 334; PRD 90 (2014) 025006
- AI, Ann Phys, 326 (2011) 1334

Giovanni Acquaviva

Martin Scholtz

Georgios Lukes-Gerakopoulos

Pablo Pais

Adamantia Zampeli