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Quasiparticle picture

It is widely accepted

1oV

S<S — 5
~ ~BH —lf%a

where 0V = Agp.

One possible interpretation is that, when a BH is formed,
the “X level” has been reached.
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1 bit of
information
on every
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o If
1A

means that fundamental degrees of freedom X exist,
then

S < Spg =

both emerge from X

e Then, in general:

a) particles we call elementary are, in fact, quasiparti-
cles, and

b) there is field-geometry entanglement



e Different configurations of X may give rise to the same
g, but then yield different ¢s

(g,u,.;u: O)~ A (g,uz/: O,)

e Thus, even if

<BH __ _>BH __
g LV — g LV — g;w

the emerging quantum fields ¢ # ¢’ and live in different
Hilbert spaces.

e Since the Xs rearrange, even a unitary evolution at the
X level leads to information loss for ¢!




Thus BHs are (the only!) drivers of phase transitions be-
tween different “emergent” arrangements of the X level

Before formation After evaporation




On the other hand, the following is widely accepted

Take

H = Hj @ Hy
and Ulyy) € H a random state, with associated p4(U), and
S m.n ( [T)

The average entanglement entropy of A
S—m.n — <Sm.n.((j)>

and the average information contained in A

[m.n =Inm — Sm.n.

Page conjectured

m — 1 mn 1
I m.n — Inm + ¢ - ) =
n k=n+1 k

for m <n



Applied to BH evaporation: A corresponds to the states
under the horizon, B corresponds to the radiation

When the BH is formed, n =1 and m = dimH: 5, , is zero

As the BH evaporates, n increases and m decreases (mn =const.):
Syn.n INCreases

At some stage (approximately half time, tp,,) I, starts
to leak from the BH: 5,,, decreases

When the BH fully evaporates, m =1 and n = dim H:
Sm.n returns to zero
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Modeling BH evaporation

The Hilbert space H for the X level is

Y) €
|g E Hc |§b c He
N¢ allowed geometries
‘g(a.)>j a=0,1,...Ng—1

so [1) = [\, )

The distribution of the X between geometry and the fields
in general changes during the unitary evolution.



Assume
H= GBT 1), dimH = Np N

where

= H¢ @ HY. piqi =N

i

)) € H admits then the expansion

A general

\T Pi q;—

I; j
V) = 2@1 121 nZO Cm\ i) @ |n;)

I;)s and |n;)s bases of HZ and H{, resp.



Denote by P : H— T{;) a projector onto 7{;). Then
i) = IP@ [y |I°

is the probability of finding the system in the state with

the topology 7(;).

In general, a state in 7(;) has entanglement between geom-
etry and field

V) =% ciall) @ )

The associated density matrix representing the state of the

field 1s
)il

pa) =

—1/9
Where "Q}’)i — p(g)/ P(E)‘QJ)



The corresponding entanglement entropy

S( ) = —TlHqu( ) In i)

is the entanglement entropy between the geometry and the
fields for a given topology

Since the observer does not distinguish between different
topologies, the expected value of the entanglement be-
tween the fields and the geometrical dof is



Assume Ny =2, Ng = 30, P(;(T(l)) — P(;('ﬂg)) — Hgand N =1

and let us set (dimH = 3000)

Ty = HY @ HY,  p1x g1 =30 x50
T = HY @ HE,  p2 X g2 = 60 x 25

N

Define the “mass operator” M

Mlg“) = M|g'") = ca|g")

500

For a BH of MY = q ¢ one state in HY mapped to one |¢\")

by Pg, while in HY to two such states

“Snapshots” of the continuous and unitary evolution in H

(M)=(Ng—1—Fk) and (n)==k,
where £ =0,1,... Ng — 1.



Making the long story of the estimate of the expected en-
tanglement entropy for a random state with prescribed
expected < n > and < M > short (a story of Hopf coor-
dinates parametrization on S°, of solving constrains, of

generation of sequences and their random phases... done
5000 times)
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s —- Rt =1R =5
3 —=-RlL =2 R =10

s, ——RL =4,RR =20

18,

10

Mg 0

Here p, = Ng H?Gr and ¢, = l\"?}} R}r
We choose Ng =30, Ny =2, and R% =1 for each topology
We plot three different cases:
N =200, Ry =1, N7 =40, R, = 5
Nt =200, R, =2, N7 = 40, R% = 10
Ni =200, Rf, =4, N7 = 40, RZ = 20

The residual entropies are

S1 =077, Sy=1.43, 53=2.00



s +R(1}=1’R%=2:Rg=4
3 +Ré=2’1—%=4,1%=8
—e—R.L =4,RR =20, =80
s,
18;
-0

M, 0

Again p, = N R}, and ¢; = N R
As before N = 30, but Ny =3, and

N =120, N7 =60, N2 =30 and Ry=1,R: =2 R} =4,
Nz =120, N7 =60, N2 =30 and R{ =2, R: =4, R =S8,

T

Ni =200, Nf =40, N7 =10 and R} =4, R% =20, R}, = 80,
In this case, the residual entropies are

Sy =034, So=1.02, S5=2.06



What to do with this?

Our quasiparticle picture makes a lot of sense (to us!)

Plenty of further theoretical research (= we still don’t un-
derstand most of what have done!):

dynamical realizations; more realistic BH evaporation; ex-
act computations of S,,;; realistic estimate of the degen-
eracy; the classical limit; coherent states; new Stone-von
Neumann thrm; dark matter; the fundamental nature of
oscillating particles; etc.

We shall probably follow that road, but this will not (and
cannot) stop the info-loss-yes-or-not story to keep going
forever...

Perhaps, one should try to look for Ssomething to me@?
Is there anything around that resembles This?




First we need quasi-particles

BCS pairs
Plasmons
Phonons

Magnons

@

RS

L ¢ ¢

Rep of one Cooper pair from
Chernodub, M.N. Lect. Notes
Phys. 871 (2013) 143


file:///author/profile/Chernodub%2C%20M.N.%3Frecid=1181776&ln=it

Graphene is unique
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Dispersion relations
By = Vp(£|P| - A|PP)
with P = (h/0)(ReF,. ImF)), Ve = ml/h, A= ((/h)e(n,)/m and
- 1) V3

3 1. i2 0k
;C' Z 5 L Eﬁ_-e.f,ll.y[l + 263%(&9. C-OH( 2 TI)]
and F, = |.7[1|2 — ?

Henceforth deformed Dirac Hamiltonian

H(P) = VFZ’L (P =A PP

with standard commutatlon relations, [X P pj=

Or standard Dirac Hamiltonian, Q P(1 — A|P))
H(Q) = VFZ’L @y

with deformed commutation relatlons

ins;;

o)

A.I., P.Pais, I.A.Elmashad, A.F.Ali, et al, arXiv:1706.01332 (sbmtd PRD)



To have nonzero intrinsic curvature K on an hexagonal

lattice we need disclination defects

>(6 = p)ny =06xa ()

and

hyK(x) = Kot =2mx0 (W)

Eg, M = SQ (152 — 2)

(6—T)n7+(6—6)ng+ (6 —5)ng = 12



Thus, (&) and (M) together give

and

| = el aXune

(i)
Q_aﬂu‘l—bﬁ#

eurVeture

(\2¢)

mp—

and so on

This 1s behind u..—ﬂ
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Conclusions and credits

e The Bekenstein bound may imply the existence of the
“X level”

e Both fields and geometry need be made of the same “X
material”

e Even assuming unitary evolution at the X level, such
unitarity is unaccessible

e We (= me) do not understand Page curve

e Should we try to test that on... graphene?
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UNDERSTANDING GRAVITY:
SPACE-TIME. IS LIKE A
RUBBER SHEET, MASSIVE
ORITECTS DISORT THE
SHEET, AND—

S WA,

.
O :

SPACE-TIME 1S LIKE THIS
SET OF EQUATIONS, FOR
WHICH ANY ANALOGY MyST
BE AN APPROXIMATION.
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