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SM Metastability

Aeff < 0 = Metastability
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Tunneling

Standard semiclassical formalism

S. R. Coleman, Phys. Rev. D 15 (1977) 2929.
C. G. Callan, Jr. and S. R. Coleman, Phys. Rev. D 16 (1977) 1762.

O(4) symmetric solution to euclidean equation of motion

Qb—|— 3¢_ 8V(¢)

s = \/)?2+X2.

) qb(s = 0) = 0 near the true vacuum

with

@ ¢(s = 00) = Pmin at the false vacuum
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Action of the bounce solution

se = | dx{%z ((’ﬁfﬁf + v<¢(x))}
_ 27r2/d553 (%qﬂ(s) + V(¢(5))> :

allows us to calculate decay probability dp of a volume

o et SE | et =P+ V(@) [T s,
P= 472 | det[—0% + V" (¢o)]
Simplifying
@ normalisation factor replaced with width of the barrier o< ¢g
° is Ty = 10%0yr
we can calculate the lifetime of the false vacuum (p(7) = 1)
T _ 1 eSE
Tu T,

B ——



Analytical solution

Analytical solutions for simple potentials

K. M. Lee and E. J. Weinberg, Nucl. Phys. B 267 (1986) 181.

Quartic potential:

2
V(¢) = % — Se = %
for A < 0.
Quartic and linear potential :
2
o8 esn L sega-ge
Al = K(¢> n), ¢ >n vy =12

for N<0Oand -1 <~y <0



New extrema created by quantum corrections
(Coleman-Weinberg mechanism)

condition for cancellation of corrections to the derivative of SM

h 4 2 2 4 4 2 2\ 2 g + 95 4 95 4 yi
A= 2562 [91 + 29195 + 395 — 48h; — 3(g1 + g3)° log 1 695 log 1 + 48y, log o
\\\\\\\\\ running A (2loop)
0.10}
< 0.05/ L —
I ] RHS
0.00 \\_——//

Hence sensitivity to New Physics



Effective potential with nonrenormalisable interactions

We add new nonrenormalisable couplings
(similar to V. Branchina and E. Messina, [arXiv:1307.5193].)

Vo~ eff(¢)¢+)\6¢ +_£8

6! M3 8! My
That modify the potential around the Planck scale
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Figure: effective potential with \¢ = —1 and A\g = 1.



Numerical vs Analytical again

As(M))
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Figure: Decimal logatihm of lifetime of the universe in units of Ty as a
function of the nonrenormalisable A\¢(M,) and Ag(M,) couplings,
calculated numerically (left panel) and analytically (right panel).
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Figure 2: Standard Model phase diagram (left panel), the same diagram after including new operators
As(M),) = —1/2 and Ag(M,,) = 1 (middle panel) and A¢(M,) = —1 and Ag(M,) = 1/2 (right panel). The
green region corresponds to absolute stability, the red region to instability, and the yellow region to metasta-
bility.
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New Physics at the scale M

Magnitude of the suppression scale

Approximate lifetime:
T 1 _8m2
= e3|>‘min| .

Ty p*(Amin) T}
Positive A\g and A\g — stabilizing the potential
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Figure: Scale dependence of % = ¢—V4 with A\¢ = \g = 1 for different values of

suppression scale M. The lifetimes corresponding to suppression scales
M = 108,10%, 10 are, respectively, logo(F-) = 00,1302, 581 while for the
Standard Model log,,( ) = 540.
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Magnitude of the suppression scale

Positive A\g and negative A\g — New Minimum
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Figure: Scale dependence of % = ¢_V4 with A\¢ = —1 and A\g = 1 for

different values of suppression scale M. The lifetimes corresponding to
suppression scales M = 108,102, 10%°, are, respectively,
log1o( ;) = —45, =90, —110 while for the Standard Model
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Gauge dependence of the tunneling rate

It is well known that the effective potential, and in general the effective action,
are gauge-dependent objects

However, the statement about the spontaneous breaking of gauge symmetry is
gauge invariant (N. K. Nielsen 1975)

The gauge invariant ”observables” are the values of the effective potential at
the extrema, and the tunneling rate between different minima

When one computes the SM effective potential in a straightforward manner (say
naively), nothing looks gauge independent - neither the value of the effective
potential at the extrema (see L. Di Luzio and L. Mihaila 2014) nor the tunneling
rate (ML,PO,ZL)
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The leading gauge dependence comes from the gauge-dependent anomalous
rescaling of the field

Egauge fizing — 2§W (8M Waz) ElB (8M BMQ)

Contributes to:

« 1-loop potential - More important.

« v function of the scalar field One needs to remember that kinetic
contribution to the action is muliplied by Z.

_ 1 9 2 9 2 2 2 3 2 3 2
Y= 16 (4g2+20g1 3y; — 3V yr+2O€Bgl+4CWg2

Z(u) lcff

— é:=_] 1.05} / 0.06
R é_‘=_l \1_rmr /

— Sezl 0.95 0.02 }
2 —
=1 0.90 | . . .
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L. Di Luzio, L. Mihaila 1404.7450




This is due to the fact that the new extrema are created radiatively and already
one loop effective potential, even in the RGE improved version, contains gauge-
dependent terms

>\h4 2 2
VIS = — LAt epg? (log AEngiziwe) _ 3)
3112 +2 4 2 2 2
+ &y ga (log Ah 5ngi§?291+£wgz) — 9”

As pointed out by A. Andreassen, W. Frost and M. Schwartz 2014, who followed
E. Weinberg and D. Metaxas 1996 and S. Coleman and E. Weinberg 1973, the
key to save in the calculations the gauge independence of the potantial at the
extrema is to realize, that to create extrema radiatively, loop corrections have
to cancel between themselves or the tree-level contributions

he*

In CW model \ ~
1672
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In the SM the equivalent condition is

h 4 2 2 4 4 2 2\ 2 g% + g% 4 g% 4 yt2
A= gees |91+ 29192 + 392 — 48Ky — 3(g1 + 93)" log == — Gg; log 7~ + 48y, log =

which holds at the extrema h = u

Hence ) is of the order hg* and gives a higher order contribution

It has been shown that that taking this relation into account in counting radia-
tive contributions in the SM makes the value of the potential at the extrema
gauge independent at LO (hg?*) and NLO (hg°)
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Gauge fixing independence

EOM: —5F[¢]
5¢ P=dsol
e 0
gauge fixing independence: ¢ 8_§F[¢SOZ]

Nielsen identities:

orfg] _ af 4190 [¢]
LB f ¢ [¢] )
3 v
OKg _ , 2% Ve e OV Ky 9C oy
73 1 o0& 9" 01 Ov )

or
S =TgleB], f[(b] =0
¢ ¢=¢B
. 0 0
desired property: 68_553 = ’U%SB =0

0]

0

— ’U%F[¢sol]

— (0

(4 specific boundary conditions for ¢pg)
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Gauge invariance of the action

SY = / d*z £0(¢%) (which is explicitly gauge fixing independent,)

b+ 26| = [ots £

Nielsen indentities
[dtoag i) - -

C% () oV,
. = /d4x [ 92 (8#(,0)2 + Ca—4
Y=%¥B

Oy

0

ot

0
o 2
+ C (_8u90 + %‘/94)

(Cax(0) Bt )

Y=¢B

| boundary conditions for ¢% EOM




Back to higher-order operators

n)3 A~ )4
5L,0 — Ao (iwi)” | As (pii)

+ + ..
6 A2 8 A4
and new vertices: ~ <Pilipg ) QO?(,O% y e
Moo #° | Aso #°
nonren _
) V = 6 A2 + ] A + ...+

2 2. A4 -6
A —9p%0
- ST vy — (2v0 + &) log 22 90] : ()\60(,0_ + )\80% —

0Kz 00k Vi _ ., OV

v@v_é?gpl’vc% 9% 01

Thus Sp for the bounce obtained in the presence of new operators is gauge
fixing independent to the order ¢°



Gravity Corrections in Curved Space



Effective action in curved background: gauge-less Higgs model

1
— —qdt 2\ / 4 T v
T 167rG/\/ gd’x(R+2A)+ [ V/—gd’z iV, ﬂyh
+ v hVHh — —( — &LR) 1?2 )\hh‘l AZX h2X2¢
1 A
+ v XVIX — o (mk — €xR) X2 - i‘ X4+

h |1 o /. 1 3 9 b y
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b
1
+ Y7’ In (F)R—yth ln(?)

)
+
- 15 (~Rosf + Rapure) (1 (%) +1a (%) 20 () ) +

4

_ gRaﬁuuRaﬁw s (%)] }’ (2.32)



1
BNL — (471‘)2 [18>‘%¢ - 2921 T 4y?>‘h + §A%LX] ;

h
Pax = (47)2
h

Branx = (4m)2 (407 x + 6 nx (An + Ax) + 2Anxy°]

[GAhm% + 2yt2m% + )\hxm?x} :

1
[18A?X + iA%X] ,

my o (47)?
h

Pmse = a2

h 1 1

Be, = (4r)? [6>\h(§h — 6) + Anx (€ — %) + 247 (& — 6)] :

(477?)2 [GAX(SX — %) + Anx (€ — é)] :
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In Robertson-Walker background one may express curvature invariant
through energy density and preassure

- _ 1
R=-3Mp ™" [—p+§/0]

) 1
~RapR*? + Rogyu RO = —12H?~ = 2Mp"p (‘p +p) -

a 3
) 9
a 1 1/1
H* + (5) ] - 12MP4 §p2—i— 1 (§p+p)

h)4

Rupu R¥PH =12
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Large field region

Stability in RD

vty = 22080 ey
A grav thhQ

)

b:
Aot 7 (h) 1 4 b
V 4y _ eff 4 afuv
(") = 4 o 647?23Ra puv " ln( 2>

1 4 48( _ , \’¢ . 1 A

— ~ |\ —— (M — = —Aefr(h)R™

4[/\ff(h)+647r233( pp) h4]|h W= JAeps ()RS
Xesf(p ho) =07

For hg = 10'° GeV and Moff = —0.02 one obtain the scale v ~ 104 GeV

Stability in dS

V(h*) = !

R
. [Aeff(h) - 2&@] '

lh=hg

Aeffr(p,ho) =07 v~ 7-1013 GeV
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Figure 10: The effective quartic Higgs coupling, as defined by the relation Xheff(h) -
i:i@, for various equations of state: flat — flat spacetime result, rad — radiation
dominance (p = ép), dS — de Sitter like (p = —p). The energy density was given by
P = Phe + (yth)‘l, where pp. was specified by the relation (4.36) and equal to pp. =
(2.04 - 1014GeV)%. The X field was constant and set as equal to X = vx. The non-

minimal couplings were &, = £x = 0 at the 4 = m;. The insert shows a close up of the

S

difference for the flat spacetime and the radiation dominated era.
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Figure 11: The effective quartic Higgs coupling, as defined by the relation S\heff(h) =
i(hli@, for various equations of state: flat — flat spacetime result, rad — radiation
dominance (p = %p), dS — de Sitter like (p = —p). The energy density was given by
P = Phe + (%)4, where pp. was specified by the relation (4.36) and equal to pp. =
(2.04 - 10*GeV)*. The X field was constant and set as equal to X = vx. The non-
minimal couplings were &, = £x = % at the u = m;. The insert shows a close up of the

difference for the flat spacetime and the radiation dominated era.
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Coleman-De Luccia bounces

two minima at ¢ = 0 and ¢ = 2a
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Figure 1. Our toy model potential for different values of b parameter. In this example vacuum
energy vanishes ¢ = 0. Different choices of vacuum energy, we will discuss, simply mean adding a
constant to the potential.
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Transition probability

[ = Ae™®

ScoL = S|¢pcpL] — S|ds]

2472
S[¢fv]:_v )

Sloey] =0, (for Minkowski)

(for dS)

ds® = dr* + p(7)?(dQ2)?

1. 1
SE:27T2/dTp3 (§¢2+V+ §R>

R= (§+(§)2—,,%> and ¢ = g2
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Equations of motion

b+356="53

pz\/1+§2(;q52V)

Boundary conditions

$(0) = ¢(7ena) = 0
p(0) =0
p(Tena) = 0,  (for dS)
P(Tend) = Pend # 0, (for Minkowski)
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Coleman and De Luccia formalism (CDL) with &

True vacuum Euclidean action

Sfoead =2 [ arg? (368 +V ~ £ - nge) =
=ar® [ar [p'v = %2 (1= &re?)] + S (1 = wE6") p7p| ™

where

EOM

. é._ _ov
b+300 —tor= 2

False vacuum Euclidean action

S[és] = _247T2(LQ_V’:/€¢21‘V)2 (aS)

S[pn] =0 (Minkowski)




Modification of the vacuum energy by ¢

@ fv: ¢ = 0, no modification of V4,

@ tv: modification!

e V4, can be bigger than V4, making our false vacuum stable

e tfrue vacuum can disappear altogether - we neglect tunnelling then

Bubble profile can sometimes be calculated still but such bubble is not energetically favourable
and would not grow after nucleation.

: : : - 0.08 T ' '
- . Y/ j
A / X ! 'y 10181
0.00 et N A P LS 7 I,,
N W /1 0.06t IS - 7
N ™ al 0%y - — — b=1/20 7
\ Noy [ e - 0.14F b=1/15 " ]
—o.0al g ~ b=1/10 17 |
o 0. \ N — —b=1/5 .5
S \ 0.04} \ h = ’
X Z=
: \ \ [ 10.12} 2 I
= -0.04f //
3 - B:};gg \ - = b=1/25 \ I !
R — [ == = b=1/20 1 A —
b=1/15 \ 0.02 b=1/15 \\ /o0 \\/ RN -
—0.06F b=1/10 \ H b=1/10 \ /| N /
— = D=1/5 — = p=1/5
\ / N N\ N /
\ 0.00f - - /
-0.08} </ oo S -
00 02 04 06 08 10 1.2 00 02 04 06 08 10 12 00 02 04 06 08 10 12
¢ ¢ ¢

Modified potential (connected with the real for acting on our field) for different choices of the vacuum energy

with ¢ = (0,0.05,0.1) and §{ = 0.2.



Hawking-Moss solution

Simpler HM solution sw. Hawking. 1. Moss, PrysLett. 8 110 19820 Aescribes the probability for a whole
spacetime volume to tfransition simultaneously to the top of the barrier (max) and

continue by a classical roll-down:
"4

(¢max ’ Vmax)

St = Smax — Sv =
_2ar’(1—k€2, )" | 2an°(1—kEPR)?

- /432 VmQX + K)z va

including the modification coming from &




Numerical calculation
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Bubble profile, field "velocity" and scale factor and their modification due to the non-minimal
coupling for b = 1/10. Boundary term’s influence can be observed in p(7) for Minkowski case.



Comparison of the results

a=1, b=0.05, c=0.
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Tunnelling action as a function of non-minimal coupling obtained using four different methods
with ¢ = (0.1,0.05, ¢ = 0 (Minkowsk)).
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The influence of non-minimal coupling to gravity is very different in cases of Minkowski
and dS vacua:

@ dS - the decay probability quickly decreases as the coupling grows,
vacuum can be made absolutely stable
@ Minkowski - effect is much weaker, the decay rate increases for small values, TW
approximation works worse significantly overestimating the increase in action due
to &
Even though TW approximation may not give a precise result in a specific model, the
order of magnitude is right (especially in dS case where gravitational correction
decreases the stability).



Domain walls and gravitational waves



Network of walls prefers the true vacuum!
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About our simulation

e We modeled the Higgs field with a positive, real scalar ¢.
* The evolution of ¢ is given by EOM:

0?0 « (dlna) 0o

50V
ar "y \ding) 0 £
n U nn/ on

dp’
with a potential V(¢) equal to the RG improved potential of the
SM Higgs Vsm(|hl).

e The PRS algorithm? (with o = 3, 8 = 0) was used.

e We used the optimization of a time step3.

— A¢p=—a

e Qur simulations were run on a lattice of the size 5123,

2William H. Press, Barbara S. Ryden, and David N. Spergel. “Dynamical Evolution of Domain Walls in
an Expanding Universe”. In: Astrophys. J. 347 (1989), pp. 590-604. DOI: 10.1086/168151.

3Z. Lalak, S. Lola, and P. Magnowski. “Dynamics of domain walls for split and runaway potentials”. In:
Phys. Rev. D78 (2008), p. 085020. DOI: 10.1103/PhysRevD.78.085020. arXiv: 0710.1233 [hep-ph].

38



Initial conditions

Following the general considerations* we assumed that the initial

distribution of field strength is given by probability distribution:

2

P(h)= o VN H

— op ~ ~— 1
V2mog 2T

We considered various combinations of values of o and 6 in order to
cover the set of initial conditions which can be predicted by models of
the early Universe.

Our simulations were initialized at different conformal times 75zt
ranging from 10714 GeV~! to 107190 GeV 1.

4Z. Lalak et al. “Large scale structure from biased nonequilibrium phase transitions: Percolation theory
picture’. In: Nucl. Phys. B434 (1995), pp. 675—696. DOI: 10.1016/0550-3213(94)00557-U. arXiv:
hep-ph/9404218 [hep-ph].

e |
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Dependence on the initialization time

For nearly equal contributions of both vacua at the initialization, late
domain walls decay longer leading to domination of the EW vacuum
even if the fraction of lattice sites occupied by this vacuum decreases

initially.
1.0F
09F
- e “
Nstart= 107"
0.8
_ -13
Volpy Nstare= 10
Vol r
07r — Mstart= 107"
[ _ -11
06 Nstart= 10
[ -10
3 Nstart= 10
05F . J
0. 2. 4. 6. 8. 10. 12.

n—Tsanl 10710 GeV™']

. . Vol . . . T . .
Figure: The fraction OVE}/V as a function of conformal time 7 for different initialization times 74t -

|
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Dependence on the initialization time

The decay of domain walls ending in the state without the EW
vacuum is possible even for the initial configuration with a slight
dominance of the EW vacuum.

0.5 L
0.4 e
I — Nstart= 107"
03f _n-13
Volgw : nstart— 10
Vol
L _ -12
02fF Mstan= 10
—11
F Tlstart= 10
01T 10
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[ \ J
0.0, . : - - n n
0. 2. 4. 6. 8. 10. 12.

N—Nstare[ 1071 GeV_l]

. . Vol . . . T . .
Figure: The fraction OVE;/V as a function of conformal time 7 for different initialization times 7js¢art.
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Dependence on standard deviation ¢

We investigated the initial conditions satisfying 6 + 0 = vj,ax, where
Vmax 1S position of the local maximum of the potential. In this case
the evolution of networks displays the weak dependence on the value
of o and for all simulations the final state is the EW vacuum.
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L L L L L
0.0 0.5 1.0 1.5 2.0 0 2 4

7= 1070 GeV™'] 1T 107 GeV™']

. . VO/EW . . . VO/EW .
Figure: The fraction Vol -~ as a function of Figure: The fraction Vel - as a function of
conformal time 7 for initialization time conformal time 7 for initialization time
Nstart = 10713 Gev ™! and different values of Nstart = 10710 Gev 1! and different values of

standard deviation o. standard deviation o.
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Gravitational waves from domain walls

Energy density generated by one mode pg.,(n, k) can be expressed as:

1
w(n, k) =
09, %) 167r3Mpz2a(n)4V%.:

2

/ " cos (1K (1 — 1)) a()TT 5o, k)
i

(ndem k)a

_|_

/ "t sin (1K) (1 — 7)) a()TTT 35, )

7

after redshift

—4 a’(ndec)4 dpgw
a(npq)”* dlog|k

(m0, k) = (1 + zEQ)
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Expectations:

N. Kitajima and F. Takahashi, Gravitational waves from Higgs domain walls, Phys. Lett. B745
(2015) 112-117, [1502.03725].
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Fig. 3. The typical spectrum of the gravitational waves is shown by the solid (red)
lines. We have taken ¢ =2 x 10° GeV and (V/Vmax)'/4 =5 x 107> for the left
line and @5 =2 x 10'2 GeV and (V/Vmax)'/4 = 1073 for the right line.



Numerical simulations:

Figure 11: Visualization of the isosurface of the field strength ¢ corresponding
the value v, at four different conformal times: n = 107 GeV~! (a) and n =
1.2x 107 GeV™! (b), n=13x 107" GeV~! (c), n =14 x 1077 GeV~!(d). Lengths
are given in units of the lattice spacing i.e. 10710 GeV L.
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Spectrum of GWs after emission
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Figure: Spectrum of gravitational waves €, emitted from SM domain walls at the time of the decay.
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Present spectrum of GWs
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Figure: Predicted sensitivities (dashed) for future[ G\]Ns detectors: aLIGO, ET, LISA, LISA:TNG, DECIGO
and BBO compared with the spectrum of GWs (solid) calculated in lattice simulations for the initial values

of o = 108, 10° GeV and the standard cosmology.
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New physics V&, (h) = 61 A2
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A 3 Mg h®
VSM(h) = Ven + EF

Vsar(hpw) — Vsm (huv) = 0

1m2(ha) 1 1 h2EW
2 4 “heg(hpw b —AXe(hEw;h =
2 hZ, +t1 f(hew; hew) + 6l 6(hew;hew) M2

hov \* |1 m2(hoy) (hew\? 1 1 h2
B —1 [ huv 1 Uv EW 1 , , Uv
=(1+¢) <—hEW> [2 - (huv) + 4>\eff(hUV,hUV) + 6!)‘6(hUVa huv) A2

Appa = 1.88 x 101 GeV, hyy ~ 101 GeV
so LHS ~ 0.1 and [] ~ 1073 on RHS

This implies severe fine-tuning of A\g which implies trouble with numerics!
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Width of domain walls

Furthermore the potential energy density o(x1,x2) of the solution (3.4) is given by the fol-
lowing integral:

z2

(=2) Vanm(p)de
oMz, x0) = | Vdy(p(z))de = ’ SM .
v /ac1 M /<P(w1) V2 (Vi (0) — Viy(hew)

(3.5)

Finally, we have found values ¢ and ¢, such that VA, (¢1) = V&, (¢2) and the majority
of the potential energy density of the solution (3.4) is stored between x(51) and z(p2):

o™ (z(¢1),2(f2)) _
A ton ~ 9T (3.6)

Our estimation of the width of domain walls is then given by:!
w(A) ==z (p2) — 2 (41). (3.7)

The estimated width of domain walls as a function of the suppression scale A of the non-
renormalizable operator h® is presented in the figure 2. Resulting values of the width lay in
the range 3.5 x 107 GeV ™! < w(A) < 5.0 x 1072 GeV 1,

We have chosen the physical lattice spacing ! to be equal to 10710 GeV~! which leads
to widths of walls contained in the range 351 < w(A) < 501. Henceforth, we will use

% = 10'° GeV as our default unit of energy and inverse distance in space-time.
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Figure 2: The width of domain walls as a function of the scale of new physics A.
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Figure 1: The difference 6V := V&;(huv) — Vé(hew) of values of the RG improved
potential Vs‘}v[ at two minima as a function of the scale of new physics A.
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Figure 4: The dependence of the decay time of networks of Higgs domain walls as a function
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Figure 5: The dependence of the decay time of networks of Higgs domain walls as a function
of the standard deviation o of the initialization probability distribution and the suppression
scale of the nonrenormalizable operator h for three different values of the conformal initializa-
tion time 7gtart = 10712 Gev! (a)a Nlstart = 10711 Gev~! (b) and 7start = 10710 Gev~! (C)
Blue regions corresponds to networks decaying to the EWSB vacuum and red to networks
decaying to the high field strength minimum.
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Figure 7: The dependence of the decay time of networks of Higgs domain walls as a function
of the ratio h:az of the standard deviation of initialization probability distribution o over the
position of the local maximum separating the two minima h,., and the suppression scale of
the nonrenormalizable operator h® for three different values of the conformal initialization
time 7start = 10712 GeV ™! (a), Nstart = 10711 GeV~! (b) and 7start = 10710 GeV~! (c)and
the standard deviation o = 3.25 x 10'°GeV at initialization. Blue regions corresponds to
networks decaying to the EWSB vacuum and red to networks decaying to the high field
strength minimum.
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Figure 10: Visualization of the isosurface of the field strength ¢ corresponding to the value
humae at four different conformal times: 7 = 1.41x10~8 GeV~® (a) and n = 2.11x10~% GeV~!
(b), n =2.51 x 10~8 GeV~! (c), n = 3.02 x 1078 GeV~!(d). Lengths are given in units of

the lattice spacing i.e. 10710 GeV L.
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Summary GW

1. Domain walls which separate regions with different VEVs of the
Higgs field could be formed in the early Universe.

2. We observed the evolution of networks of domain walls which ends
in the electroweak vacuum. We found that only small dominance of
the EW vacuum at initialization is needed to reach the final state
with EW vacuum.

3. The decay time of SM domain walls ranges from 8 x 10~11 GevV~!
to 5 x 1079 GeV 1.

4. Models of the early Universe predicting the validity of SM up to
high scales and Higgs field strengths of the order of the local
maximum can lead to an unphysical final state.

5. Decaying networks of domain walls produce gravitational waves too
weak to be detected in the upcoming years.
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SM vacuum can be stabilized by higher order operators if they appear
at suffciently low energy scale 101% — 101q Ge@

SM vacuum lifetime can be dramatically shortened by higher order
operators for any suppression scale

Beyond the leading order one needs to define proper expansion of the
action to demonstrate perturbatively the cancellation of gauge-
dependent contributions to the lifetime of the EW vacuum. In the
abelian Higgs model such a procedure can be carried out at the level
of the renormalized effective action

Peoperties of the electroweak vacuum - critical temperature and
lifetime - can be modified by a fast expansion of the gravitational
background

Tunneling from Minkowski suppressed by gravity but tunnelling from dS
enhanced by CDL bounces

Decaying networks of domain walls produce a signal in the form of
gravitational waves - too weak to be detected anytime soon - if a signal
is detected then either fine-tuning or non-standard cosmology have
occurred



