Spin-dependent constraints on neutralino dark matter in (N)MSSM

Marek Olechowski

Institute of Theoretical Physics Faculty of Physics, University of Warsaw

Corfu Summer Institute 2017

based on:

M. Badziak, M.O. and P. Szczerbiak, Phys. Lett. B70 (2017) 226; JHEP 07 (2017) 050

Outline

- Introduction
- Experimental searches for Dark Matter
 - limits on spin-independent cross-sections ⇒ blind spots
 - new strong limits on spin-dependent cross-sections
- Bino-higgsino LSP in MSSM
- Singlino-higgsino LSP in NMSSM
- Conclusions

Introduction

One of the motivations for SUSY extensions of the SM: they naturally can accommodate Dark Matter (DM) particles

- In many cases Lightest Supersymmetric Particle (LSP)
 - has mass of the order of the EW scale
 - has weak-strength interactions
- ⇒ LSP is a good candidate for DM
- Many Direct Detection (DD) and Indirect Detection (ID) experiments searching for DM particles
 - no (confirmed) positive results of these searches
- DM relic density is known with a good precision (especially with Planck data)
 - in general we have the upper bound on the LSP relic density
 - also the lower bound if LSP is to be dominant component of DM
- No DM particle discovered at LHC
- ullet \Rightarrow Strong constraints on LSP interactions and SUSY spectrum
- Can all such constraints be fulfilled in (simple) SUSY models?

Experimental searches for DM

Constraints on interactions of DM particles with SM particles

Experimental searches for DM

DD experiments

- searches for events of DM scattering on nuclei
- LUX, XENON, PandaX, LZ, CDMS, CRESST, PICO ...
- ullet very strong limits on $\sigma^{
 m SI}$ and strong limits on $\sigma^{
 m SD}$

ID experiments

- searches for products of DM annihilation
- IceCube, Fermi-LAT, AMS, MAGIC, HESS, ANTARES . . .
- typically less restrictive than the recent DD results

LHC experiments

- searches for production of DM particles
- limits on masses and interactions of other SUSY particles
- Higgs properties

Experimental searches for DM

Experimental bounds on σ^{SI} are much stronger than on σ^{SD}

Limits presented by LUX at Moriond 2017:

$$\sigma^{
m SI} < 2.2 \cdot 10^{-46} \, {
m cm}^2 \qquad {
m for} \ m_{
m LSP} = 50 \, {
m GeV}$$
 $\sigma^{
m SD} < 1.6 \cdot 10^{-41} \, {
m cm}^2 \qquad {
m for} \ m_{
m LSP} = 35 \, {
m GeV}$

But in some cases it is easier to fulfill bounds on σ^{SI}

We consider neutralino DM in MSSM and NMSSM with decoupled squarks (and gluinos)

DM-nucleon cross sections

- spin-independent
 - mediated by scalars and squarks
- spin-dependent
 - mediated by Z and squarks

Blind-spots:

points in the parameter space for which DM-nucleon cross-section is very small (eg. below the neutrino background)

- possible for $\sigma^{\rm SI}$
 - contributions from scalars may be small or may interfere destructively
- not possible for σ^{SD}
 - ullet typically coupling to Z can not be very small because it is important also for the relic abundance of DM

$$\begin{split} \sigma^{\rm SI} &= \frac{4\mu_{\rm red}^2}{\pi} \; \frac{\left[Zf^{(p)} + (A-Z)f^{(n)}\right]^2}{A^2} \\ f^{(N)} &\approx \sum_{i=1}^{2(3)} f_{h_i}^{(N)} \equiv \sum_{i=1}^{2(3)} \frac{\alpha_{h_i \chi \chi} \alpha_{h_i NN}}{2m_{h_i}^2} \end{split}$$

$$\begin{split} \alpha_{h_{i}\chi\chi} &= \sqrt{2}\lambda \left(S_{i1}N_{14}N_{15} + S_{i2}N_{13}N_{15} + S_{i3}N_{13}N_{14}\right) - \sqrt{2}\kappa S_{i3}N_{15}^{2} \\ &+ g_{1}\left(S_{i1}N_{11}N_{13} - S_{i2}N_{11}N_{14}\right) - g_{2}\left(S_{i1}N_{12}N_{13} - S_{i2}N_{12}N_{14}\right) \\ \alpha_{h_{i}NN} &= \frac{m_{N}}{\sqrt{2n}}\left(\frac{S_{i1}}{\cos\beta}F_{d}^{(N)} + \frac{S_{i2}}{\sin\beta}F_{u}^{(N)}\right) \end{split}$$

 h_i scalar mass eigenstates

 S_{ij} $\left(N_{kl}
ight)$ mixing matrix in the scalar (neutralino) sector

 $\mathsf{MSSM}\colon \quad i,j=1,2 \qquad k,l=1,\dots,4$

NMSSM: i,j=1,2,3 $k,l=1,\ldots,5$

$$\sigma^{\mathrm{SD}} = C \cdot 10^{-38} \mathrm{cm}^2 \, \left(N_{13}^2 - N_{14}^2 \right)^2$$

If DM annihilation dominated by $\chi\chi o Z o tar t$ then $\Omega h^2\sim (\sigma^{
m SD})^{-1}$

$$\Omega h^2 pprox \left(rac{0.05}{N_{13}^2-N_{14}^2}
ight)^2 \left[\sqrt{1-rac{m_t^2}{m_\chi^2}} + rac{3}{4x_f}\left(1-rac{m_t^2}{2m_\chi^2}
ight)rac{1}{\sqrt{1-rac{m_t^2}{m_\chi^2}}}
ight]^{-1}$$

Well-tempered bino-higgsino (higgsino-bino) neutralino in MSSM

- no resonant annihilation via s-channel
- no coannihilation with particles other than charginos and neutralinos

For heavy (decoupled) H and A we find

$$lpha_{h\chi\chi} pprox -\sqrt{2}g_1N_{11}^2rac{M_Z\sin heta_W}{\mu}\,rac{m_\chi/\mu+\sin(2eta)}{1-(m_\chi/\mu)^2}$$

 \Rightarrow it is easier to explore (exclude) parts of the parameter space with $M_1\mu>0$ because $\sigma^{\rm SI}$ is bigger

For positive $M_1\mu$ much stronger constraints from experiments sensitive to $\sigma^{\rm SI}$

Almost pure higgsino with mass ~ 1100 GeV still allowed

MSSM – heavy s

For negative $M_1\mu$ recent results excluded large part of the parameter space

Well-tempered bino-higgsino still allowed

but only for small values of $aneta\Rightarrow$ stops must be heavy $m_{ ilde t}\gtrsim 50$ TeV XENON1T sensitivity:

 $\sigma^{
m SI}$ or $\sigma^{
m SD}$ alone may push this limit to about 200 TeV $\sigma^{
m SI}$ and $\sigma^{
m SD}$ together to about 900 TeV

MSSM - heavy H

The exclusion/sensitivity regions change if the uncertainty in the relic abundance calculations are taken into account

Present limits for bino-higgsino LSP: $aneta\lesssim 3.0,\ 2.7,\ 2.4 \Rightarrow m_{\tilde{t}}\gtrsim 25,\ 50,\ 90\ \text{TeV}$ In any case stops must be very heavy

Allowing for relatively light H and A does not help much in the case of well-tempered bino-higgsino LSP

Bounds on aneta obtained by ATLAS and CMS searches for H/A o au au play important role

Small marginally allowed region $m_\chi\sim 300$ GeV, $aneta\sim 7$ and $m_A\sim 350$ GeV likely to be excluded very soon

3 possibilities left in MSSM

- small an eta and very heavy stops (at least 25 TeV) • sensitivity of LZ to $\sigma^{\rm SD}$ enough to probe the whole region
- almost pure higgsino
- tuned SUSY spectrum (resonant annihilation)

NMSSM

There are many new interesting possibilities in NMSSM

Especially interesting are new singlet particles:

- singlino additional component of LSP
- ullet scalar additional contribution to $\sigma^{
 m SI}$
- pseudoscalar new features of the relic abundance calculation

We concentrate on:

- singlino-higgsino LSP (all gauginos decoupled)
- LSP is thermal dominant component of DM
- ullet blind-spots points in the parameter space giving $\sigma^{
 m SI}$ below the neutrino background
- ullet impact of the present and planned measurements of $\sigma^{
 m SD}$

NMSSM - heavy s

Simple case with negligible

- contributions from s and H exchange to $\sigma^{
 m SI}$
- mixing of h with s and H

LUX limits on $\sigma^{\rm SD}$ stronger than the corresponding limits from IceCube

Allowed regions

- ullet small aneta, $m_{
 m LSP}\gtrsim 300$ GeV will be fully explored by <code>XENON1T</code>
- Z resonance will be fully explored by LZ

Similar to well-tempered bino-higgsino in MSSM

If the singlet-dominated scalar is light and contributes to $\sigma^{\rm SI}$ the simple blind-point condition

$$\frac{m_\chi}{\mu} - \sin(2\beta) = 0$$

takes the form

$$rac{\gamma + \mathcal{A}_s}{1 - \gamma \mathcal{A}_s} = -\eta$$

where

$$\mathcal{A}_spprox -\gamma rac{1+c_s}{1+c_h}\left(rac{m_h}{m_s}
ight)^2 \qquad c_{h_i}\equiv 1+rac{ ilde{S}_{h_i\hat{H}}}{ ilde{S}_{h_i\hat{h}}}\left(aneta-rac{1}{ aneta}
ight) \ \gamma\equivrac{ ilde{S}_{h\hat{s}}}{ ilde{S}_{h\hat{h}}} \qquad \eta\equivrac{N_{15}(N_{13}\sineta+N_{14}\coseta)}{N_{13}N_{14}-rac{\kappa}{\lambda}N_{15}^2}$$

 c_{h_i} – ratio of the couplings, normalized to the SM values, of h_i to the b quarks and to the Z^0 bosons

For $m_s < m_h$ the s-h mixing may increase m_h by up to ~ 5 GeV

Regions with large s-h mixing are allowed by all present data with resonant LSP annihilation

For $m_s < m_h$ the s-h mixing may increase m_h by up to ~ 5 GeV

Regions with large s-h mixing are allowed by all present data without resonant LSP annihilation

There are correlations with the properties of Higgs

Increasing the s-h mixing leads to growing change in $\tan \beta$ (necessary to keep the Blind Spot and correct value of Ωh^2)

 $an \beta$ grows (decreases) for negative (positive) mixing parameter γ

- sign of γ is correlated with BR(h o bar b)
- values of $\tan \beta$ and $|\gamma|$ are related with stop masses necessary to get the correct Higgs mass
- \Rightarrow lighter stops are allowed when $rac{\mathrm{BR}(h o bar{b})}{\mathrm{BR}(h o ZZ)}$ is below the SM value

For smaller s-h mixing the lower bound on m_{LSP} even in the \mathbb{Z}_3 -symmetric NMSSM may be relaxed to

- about 250 GeV for moderate aneta (no resonant annihilation)
- below 150 GeV for big aneta (resonant annihilation with a exchanged)

Parts of the allowed regions beyond the reach of XENON1T

(sa, ha ect. final states are important for non-resonant annihilation)

Conclusions

- Strong experimental limits on SI interactions of DM are fulfilled close to Blind Spots
- No analogous BS for SD interactions
- Regions close to BS for $\sigma^{\rm SI}$ may be explored by combining data from experiments sensitive to $\sigma^{\rm SD}$, from LHC and from the relic abundance
- MSSM: well-tempered bino-higgsino LSP allowed for
 - $m_{
 m LSP}\gtrsim 250$ GeV, small aneta and very heavy stops (at least 25 TeV)
 - this region of the parameter space will be covered by LZ
 - small region $m_{
 m LSP}\sim 300$ GeV, $aneta\sim 8$, $m_A\sim 400$ GeV region will be covered by XENON1T and LHC
- ullet NMSSM singlino-higgsino LSP, heavy s and H scalars:
 - ullet $m_{
 m LSP}\gtrsim$ 300 GeV, $aneta\lesssim3.5$
 - $m_{
 m LSP}\lesssim 700$ GeV if λ is to be perturbative till $M_{
 m GUT}$ region will be covered by XENON1T
 - ullet small region close to the Z resonance (will be covered by LZ)

Conclusions

- NMSSM singlino-higgsino LSP, light s and a:
 - ullet light s gives more possibilities for SD blind spots
 - $oldsymbol{s}$ as intermediate particle, $oldsymbol{s}$ - $oldsymbol{h}$ mixing
 - light a and s give more possibilities to obtain correct Ωh^2 without influencing σ^{SD}
 - s and a as intermediate particles, additional final states, interference
 - several kinds of allowed regions in the parameter space
 - quite wide ranges of $m_{
 m LSP}$ and $anoldsymbol{eta}$
 - even for the \mathbb{Z}_3 -symmetric NMSSM
 - relatively light stops allowed, especially when
 - $-m_s < m_h$
 - BR(h o bar b) below the SM prediction
 - some parts of the allowed regions beyond XENON1T sensitivity