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Hyperkähler spaceM, I, J,K |IJ = −JI = K ,
aI + bJ + cK is again a Kähler structure onM if
a2 + b2 + c2 = 1, i.e., if {a,b, c} ∈ S2 w P1.
The Twistor space Z of a hyperkähler spaceM is the product
ofM with this two-sphere Z =M× P1.
ζ coordinate on P1

A choice of ζ corresponds to a choice of a preferred complex
structure, e.g., J, with Kähler form ω(1,1)

I and K can be used to construct the holomorphic and
antiholomorphic symplectic two-forms ω(2,0) and ω(0,2).

Ω(ζ) ≡ ω(2,0) + ζω(1,1) − ζ2ω(0,2) ,

4d Hyperkähler space obeys the Monge-Ampère equation,

2ω(2,0) ω(0,2) = (ω(1,1))2 ,

⇔

Ω2 = 0 .

U. Lindström Superspace is smarter



Higher dimensions

Ωn+1 = 0

dΩ = 0, Ω nondegenerate,
=⇒ ∃ Darboux coordinates Υp and Υ̃p :

Ω(ζ) = i dΥp(ζ) dΥ̃p(ζ)

Real-structure R on P1 defined by complex conjugation
composed with the antipodal map.
Reality condition

Ω(ζ) = −ζ2R(Ω(ζ)) ;

R(Υp(ζ)) = Ῡp(−1
ζ

)
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i dΥp(ζ) dΥ̃p(ζ) = i ζ2dῩp(−1
ζ

) d ¯̃Υp(−1
ζ

)

Υ, Υ̃ related to Ῡ, ¯̃Υ by a twisted symplectomorphism.
Generating function f (Υ, Ῡ; ζ)

Υ̃p = ζ
∂f
∂Υp ,

¯̃Υp = −1
ζ

∂f
∂Ῡp

;

then

i dΥp dΥ̃p = i ζ
∂2f

∂Υp∂Ῡq
dΥp dῩq ≡ i ζ∂∂̄f ,

The reality condition on Ω and the relation btw the two Darboux
sets imply: ∮

dζ
2πiζ

ζ i ∂f
∂Υp = 0 , i > 2 ,
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Sigma Model

{Da±, D̄b
±} = ±iδb

a∂++
=
, {Da±,Db±} = 0

{Da±,Db∓} = 0 , {Da±, D̄b
∓} = 0

∇(ζ) = D2 + ζD1 , ∇̄(ζ) = D̄1 − ζD̄2

The bar on ∇ denotes conjugation with respect to a real
structure R defined as complex conjugation composed with the
antipodal map on P1 w S2.

{∇, ∇̄} = 0

They may be used to introduce constraints on superfields
similarly to how the N = (2,2) derivatives are used to impose
chirality constraints. Superfields now live in an extended
superspace with coordinates x , ζ, θ.
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The superfields Υ we shall be interested in satisfy the
projective chirality constraint

∇Υ = ∇̄Υ = 0

and are taken to have the following ζ-expansion:

Υ =
∑

i

Υiζ
i

When the index i ∈ [0,∞) the field Υ is analytic around the
north pole of the P1 and consequently called an arctic multiplet.
Real structure acting on superfields, R(Υ) ≡ Ῡ, may be used to
impose reality conditions on the superfields.
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An O(2n)

Υ ≡ η(2n) = (−)nζ2nῩ

The ζ-expansion is useful in displaying the N = 1 content of
the multiplets.

η(4) = φ+ ζΣ + ζ2X − ζ3Σ + ζ4φ̄

N = 1 fields: chiral φ, unconstrained X and complex linear Σ.

D̄2Σ = 0

and is dual to a chiral superfield.
A general arctic projective chiral Υ has the expansion

Υ = φ+ ζΣ +
∞∑

i=2

Xiζ
i

with all Xi ’s unconstrained.
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The Generalized Legendre Transform

A N = 2 invariant action is

S =

∫
D2D̄2F

with

F ≡
∮

C

dζ
2πiζ

f (Υ, Ῡ; ζ)

Eliminating the auxiliary fields Xi by their equations of motion
will yield an N = 1 model defined on the tangent bundle
parametrized by (φ,Σ). Dualizing the complex linear fields Σ to
chiral fields φ̃ the final result is a N = 1 sigma model in terms
of (φ, φ̃) which is guaranteed by construction to have N = 2
supersymmetry, and thus to define a hyperkähler metric.
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These steps are:

Solve the equations of motion for the auxiliary fields:

∂F
∂Υi

=

∮
C

dζ
2πiζ

ζ i
(
∂

∂Υ
f (Υ, Ῡ; ζ)

)
= 0 , i ≥ 2

Solving these equations puts us on N = 2-shell, which means
that only the N = 1 component symmetry remains off-shell.
In N = 1 superspace the resulting model, after eliminating Xi ,
is given by a Lagrangian K (φ, φ̄,Σ, Σ̄). This is finally dualized to
K̃ (φ, φ̄, φ̃, ¯̃φ) via a Legendre transform

K̃ (φ, φ̄, φ̃, ¯̃φ) = K (φ, φ̄,Σ, Σ̄)− φ̃Σ− ¯̃φΣ̄

φ̃ =
∂K
∂Σ

, ¯̃φ =
∂K
∂Σ̄
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Generating Function

Ω ≡ iζ∂∂̄f = iζ
∂2

∂Υa∂Ῡb̄
f (Υ, Ῡ; ζ) dΥadῩb̄

Ω = idΥdΥ̃ = iζ2dῩd ˜̄Υ

where ˜̄Υ = −1
ζ
∂
∂Ῡ

f . Note that because Υ, Υ̃ are arctic and Ῡ, ¯̃Υ
are antarctic, equation this implies that Ω is a section of an
O(2) bundle.
This relation has the form of a twisted symplectomorphism, and
therefore there should exist a generating function for this
transformation. It is the N = 2 superspace Lagrangian
f (Υ, Ῡ; ζ).
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Hyperkähler Metrics on Hermitian Symmetric Spaces

The generalized Legendre transform has been used to find
metrics on the Hermitian symmetric spaces listed in the
following table:

Compact Non-Compact
U(n + m)/U(n)× U(m) U(n,m)/U(n)× U(m)
SO(2n)/U(n); Sp(n)/U(n) SO∗(2n)/U(n); Sp(n,R)/U(n)
SO(n + 2)/SO(n)× SO(2) SO0(n + 2)/SO(n)× SO(2)
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Example Kuzenko

CPn ≡ G1,n+1(C) = U(n + 1)/U(n)× U(1)
Start from a solution at the origin

Υ(0) = ζΣ(0)

Choose coset representative L(φ, φ̄) to extend the solution from
the origin to an arbitrary point.

Υ∗ =
Υ(0) + φ

1−Υ(0)φ̄
=

ζΣ(0) + φ

1− ζΣ(0)φ̄

Σ ≡ dΥ∗

dζ
|ζ=0 = (1 + φφ̄)Σ(0)

yields

Υ∗ =
(1 + φφ̄)φ+ ζΣ

(1 + φφ̄)− ζΣφ̄
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K (Υ∗, Ῡ∗) = K (φ, φ̄) + ln(1− gφφ̄ΣΣ̄)

The final Legendre transform replacing the linear multiplet by a
new chiral field Σ→ φ̃ produces the Kähler potential
K (φ, φ̄, φ̃, ¯̃φ) for the Eguchi–Hanson metric.
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Generalization

Doubly projective superspace (d = 2): At each point in ordinary
superspace we introduce one P1 for each chirality and denote
the corresponding coordinates by ζL and ζR.

∇+(ζL) = D2+ + ζLD1+

∇−(ζR) = D2+ + ζRD1−

R acting on both ζL and ζR.

Υ =
∑
i,j

Υi,jζ
i
Lζ

j
R

Both left and right projectively chiral.
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We may also impose reality conditions using R, as well as
particular conditions on the components, such as the
“cylindrical” condition

Υi,j+k = Υi,j

for some k . Actions are formed in analogy to previous. The
N = (2,2) components of such a model include twisted chiral
fields χ, as well as semi-chiral ones XL,R. This is the context in
which the semi-chiral N = (2,2) superfields were introduced
(T.Busher, U.L and M. Roček 1987)
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