Generalized Complex Geometry

U. Lindström ${ }^{1}$
${ }^{1}$ Department of Physics and Astronomy Division of Theoretical Physics
University of Uppsala

September 20
 18th EUROPEAN WORKSHOP ON STRING THEORY

Outline

- Formulations of Generalized Kähler Geometry
- The corresponding Sigma Models

M. Göteman, C. Hull, M. Roček, I. Ryb, R. von Unge, M. Zabzine.

Outline II: Sigma Model geometry

- Sigma models
- SUSY sigma models and geometry
- Complex geometry
- Kähler
- Bihermitean geometry
- Generalized complex geometry
- Generalized Kähler geometry
- Superspace descriptions

Outline II: Sigma Model geometry

- Sigma models
- SUSY sigma models and geometry
- Complex geometry
- Kähler
- Bihermitean geometry
- Generalized complex geometry
- Generalized Kähler geometry
- Superspace descriptions

Outline II: Sigma Model geometry

- Sigma models
- SUSY sigma models and geometry
- Complex geometry
- Kähler
- Bihermitean geometry
- Generalized complex geometry
- Generalized Kähler geometry
- Superspace descriptions

Outline II: Sigma Model geometry

- Sigma models
- SUSY sigma models and geometry
- Complex geometry
- Kähler
- Bihermitean geometry
- Generalized complex geometry
- Generalized Kähler geometry
- Superspace descriptions

Outline II: Sigma Model geometry

- Sigma models
- SUSY sigma models and geometry
- Complex geometry
- Kähler
- Bihermitean geometry
- Generalized complex geometry
- Generalized Kähler geometry
- Superspace descriptions

Outline II: Sigma Model geometry

- Sigma models
- SUSY sigma models and geometry
- Complex geometry
- Kähler
- Bihermitean geometry
- Generalized complex geometry
- Generalized Kähler geometry
- Superspace descriptions

Outline II: Sigma Model geometry

- Sigma models
- SUSY sigma models and geometry
- Complex geometry
- Kähler
- Bihermitean geometry
- Generalized complex geometry
- Generalized Kähler geometry
- Superspace descriptions

Outline II: Sigma Model geometry

- Sigma models
- SUSY sigma models and geometry
- Complex geometry
- Kähler
- Bihermitean geometry
- Generalized complex geometry
- Generalized Kähler geometry
- Superspace descriptions

Outline III: Relation to supergravity

- Pure Spinors
- Generalized Calabi Yau
- Supergravity
- Relation to the Sigma Model formulation

Outline III: Relation to supergravity

- Pure Spinors
- Generalized Calabi Yau
- Supergravity
- Relation to the Sigma Model formulation

Outline III: Relation to supergravity

- Pure Spinors
- Generalized Calabi Yau
- Supergravity
- Relation to the Sigma Model formulation

Outline III: Relation to supergravity

- Pure Spinors
- Generalized Calabi Yau
- Supergravity
- Relation to the Sigma Model formulation

Sigma Models

$$
\begin{aligned}
& \phi^{i}: \Sigma \rightarrow \mathcal{T} \\
& \xi \mapsto \phi^{\prime}(\xi) \\
& S=\int_{\Sigma} d \phi^{i} g_{j i}(\phi) * d \phi^{j} \\
& \nabla^{2} \phi^{i}:=\partial^{2} \phi^{i}+\partial \phi^{j} \Gamma_{j_{k}} \partial \partial^{k}=0 \\
& S=\int_{\Sigma_{B}} d \xi\left\{\eta^{\mu \nu} \partial_{\mu} X^{i} g_{j i}(X) \partial_{\nu} x^{j}+\ldots\right\}
\end{aligned}
$$

Susy Sigma Models

Susy σ models \Longleftrightarrow Geometry of \mathcal{T}

$\mathrm{d}=$	6	4	2	Geometry
$\mathrm{N}=$	1	2	4	Hyperkähler
$\mathrm{N}=$		1	2	Kähler
$\mathrm{N}=$			1	Riemannian

(Odd dimensions have the same structure as the even dimension lower.)

Sigma models in d=2

The (1,1) analysis by Gates Hull and Roček gives:

Susy	$(0,0)(1,1)$	$(2,2)$	$(2,2)$	$(4,4)$	$(4,4)$
Bgd	G, B	G	G, B	G	G, B
Geom	Riem.	Kähler	biherm.	hyperk.	bihyperc.

Sigma models in d=2

The (1,1) analysis by Gates Hull and Roček gives:

Susy	$(0,0)(1,1)$	$(2,2)$	$(2,2)$	$(4,4)$	$(4,4)$
Bgd	G, B	G	G, B	G	G, B
Geom	Riem.	Kähler	biherm.	hyperk.	bihyperc.

Complex Geometry

Manifold ($M^{2 d}, ~ J$)
Complex structure: $J \in \operatorname{End}(T M) \quad J^{2}=-1$
Projectors: $\quad \pi_{ \pm}:=\frac{1}{2}(\mathbf{1} \pm i J)$
These define an involutive distribution if

$$
\pi_{\mp}\left[\pi_{ \pm} u, \pi_{ \pm} v\right]=0 \quad \Longleftrightarrow \mathcal{N}(J)=0 \text { (Nijenhuis) }
$$

This is integrability of J.
Local holomorphic coordinates, $M^{2 d} \supset \mathcal{O} \approx \mathbb{C}^{2 k}$, and holomorphic transition functions.

Hermitean Metric: $\quad J^{t} g J=g$
$\left(g \rightarrow g=g+J^{t} g J\right)$
Symplectic 2-form: $\omega:=g J$
Kähler: $\quad d \omega=0, \quad \nabla J=0, \quad g_{z \bar{z}}=\partial_{z} \partial_{\bar{z}} K(z, \bar{z})$
Hyperkähler: $J^{A}, A=1,2,3 \quad J^{A} J^{B}=-\delta^{A B}+\epsilon^{A B C} J^{C}$

Kähler Geometry

Erich Kähler 1906-2000

Gates-Hull-Roček

Bihermitean.

$\left(M, g, J_{(\pm)}, H\right)$

$$
\begin{gathered}
J_{(\pm)}^{2}=-1, \quad J_{(\pm)}^{t} g J_{(\pm)}=g, \quad \nabla^{(\pm)} J_{(\pm)}=0 \\
\Gamma^{(\pm)}=\Gamma^{0} \pm \frac{1}{2} g^{-1} H, \quad H=d B .
\end{gathered}
$$

$$
E:=g+B
$$

GKG II

$\left(M, g, J_{(\pm)}\right)$

$$
\begin{gathered}
J_{(\pm)}^{2}=-1, \quad J_{(\pm)}^{c} g J_{(\pm)}=g, \quad \omega_{(\pm)}:=g J_{(\pm)} \\
d_{(+)}^{c} \omega_{(+)}+d_{(-)}^{c} \omega_{(-)}=0, \quad d d_{(\pm)}^{c} \omega_{(\pm)}=0, \\
H:=d_{(+)}^{c} \omega_{(+)}=-d_{(-)}^{c} \omega_{(-)}
\end{gathered}
$$

Generalized Complex Geometry

Complex structure:

$$
\begin{gathered}
\mathcal{J} \in \operatorname{End}\left(T M \oplus T^{*} M\right), \quad \mathcal{J}^{2}=-1 \\
\Pi_{ \pm}:=\frac{1}{2}(\mathbf{1} \pm \mathcal{J})
\end{gathered}
$$

"Nijenhuis":

$$
\mathcal{N}_{C}(\mathcal{J})=0 \Longleftrightarrow \Pi_{ \pm}\left[\Pi_{ \pm} U, \Pi_{ \pm} V\right]_{C}=0
$$

where

$$
\begin{aligned}
& U=(u, \xi), \quad V=(v, \rho) \\
& {[U, V]_{C}=[u, v]+\mathcal{L}_{u} \rho-\mathcal{L}_{v} \xi-\frac{1}{2} d\left(\imath_{u} \rho-\imath_{v} \xi\right)}
\end{aligned}
$$

When \mathcal{J} is integrable there are local holomorphic and Darboux coordinates such that $M^{2 d}$ looks like $\mathbb{C}^{k} \times \mathbb{R}^{2 d-k}$.

The automorphisms of this courant bracket are diffeomorphisms and b-transforms:

$$
e^{b}(u, \xi)=\left(u, \xi+\imath_{u} b\right), \quad d b=0
$$

In a coordinate basis $\left(\partial_{x}, d x\right)$ a b-transform acts on \mathcal{J} as follows:

$$
\left(\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right) \mathcal{J}\left(\begin{array}{cc}
1 & 0 \\
-b & 1
\end{array}\right)
$$

In such a basis, the natural pairing

$$
<(u, \xi),(v, \rho)>=\imath_{u} \rho+\imath_{v} \xi
$$

is represented by the matrix

$$
\mathcal{I}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

A final requirement of GCG is that

$$
\mathcal{J}^{t} \mathcal{I} \mathcal{J}=\mathcal{I}
$$

Generalized Kähler Geometry

Two commuting generalized complex structures

$$
\begin{aligned}
& \mathcal{J}_{(1,2)}^{2}=-\mathbf{1}, \quad\left[\mathcal{J}_{(1)}, \mathcal{J}_{(2)}\right]=0, \\
& \mathcal{J}_{(1,2)}^{t} \mathcal{I} \mathcal{J}_{(1,2)}=\mathcal{I}, \quad \mathcal{G}:=-\mathcal{J}_{(1)} \mathcal{J}_{(2)}
\end{aligned}
$$

Ex. Kähler ($\omega=g J$):
$\mathcal{J}_{1}=\left(\begin{array}{cc}J & 0 \\ 0 & -J^{t}\end{array}\right) \quad \mathcal{J}_{2}=\left(\begin{array}{cc}0 & -\omega^{-1} \\ \omega & 0\end{array}\right) \quad \mathcal{G}=\left(\begin{array}{cc}0 & g^{-1} \\ g & 0\end{array}\right)$

GKG \leftrightarrow Bi-Hermitean :

$$
\begin{aligned}
& \mathcal{J}_{(1,2)}= \\
& \left(\begin{array}{ll}
1 & 0 \\
B & 1
\end{array}\right)\left(\begin{array}{ll}
J_{(+)} \pm J_{(-)} & -\left(\omega_{(+)}^{-1} \mp \omega_{(-)}^{-1}\right) \\
\omega_{(+)} \mp \omega_{(-)} & -\left(J_{(+)}^{t} \pm J_{(-)}^{t}\right)
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-B & 1
\end{array}\right)
\end{aligned}
$$

$$
[U, V]_{H}=[U, V]_{C}+\imath_{u} \imath_{V} H
$$

GKG IV

Local Symplectic Description

$$
\left(M, J_{(\pm)}\right)
$$

Locally, \exists "symplectic" two-forms $\mathcal{F}_{(\pm)}$such that

$$
\mathcal{F}_{(\pm)}\left(v, J_{(\pm)} v\right)>0, \quad d\left(\mathcal{F}_{(+)} J_{(+)}-J_{(-)}^{t} \mathcal{F}_{(-)}\right)=0
$$

$$
\begin{aligned}
& \mathcal{F}_{(\pm)}=\frac{1}{2} i\left(B_{(\pm)}^{(2,0)}-B_{(\pm)}^{(0,2)}\right) \mp \omega_{(\pm)} \\
& \mathcal{F}_{(+)}=-\frac{1}{2} E_{(+)}^{t} J_{(+)}, \quad \mathcal{F}_{(-)}=-\frac{1}{2} J_{(-)}^{t} E_{(-)}^{t}
\end{aligned}
$$

Generalized Kähler Potential

Geometric data: $\left(M, g, H, J_{(\pm)}\right)$or $\left(M, g, J_{(\pm)}\right)$or $\left(M, \mathcal{F}_{(\pm)}, J_{(\pm)}\right)$. In each case, there is a complete description in terms of a Generalized Kähler potential K. Unlike the Kähler case, the expressions are non-linear in second derivatives of K. E.g.,

$$
\begin{gathered}
J_{(+)}=\left(\begin{array}{cc}
J & 0 \\
\left(K_{L R}\right)^{-1}\left[J, K_{L L}\right] & \left(K_{L R}\right)^{-1} J K_{L R}
\end{array}\right) \\
g=\Omega\left[J_{(+)}, J_{(-)}\right] \\
\mathcal{F}_{(+)}=d \lambda_{(+)}, \quad \lambda_{(+) \ell}=i K_{R} J\left(K_{L R}\right)^{-1} K_{L \ell}, \ldots
\end{gathered}
$$

Generating function

There are two special sets of Darboux coordinates for the symplectic form Ω. One set, $\left(\mathbb{X}^{L}, \mathbb{Y}_{L}\right)$, is also canonical coordinates for $J_{(+)}$and the other set, $\left(\mathbb{X}^{R}, \mathbb{Y}_{R}\right)$ is canonical coordinates for $J_{(-)}$. The symplectomorphism that relates the two sets of coordinates has thus a generating function. This generating function is in fact the generalized Kähler-potential $K\left(\mathbb{X}^{L}, \mathbb{X}^{R}\right)$.

$\left(\mathbb{X}^{L}, \mathbb{Y}_{L}\right)$	$\leftarrow K\left(\mathbb{X}^{L}, \mathbb{X}^{R}\right) \rightarrow$	$\left(\mathbb{X}^{R}, \mathbb{Y}_{R}\right)$
$J_{(+)}=\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)$		$J_{(-)}=\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)$

This fact is a key ingredient in the proof that we have a complete description or GKG.

Superspaces

$d=2, N=(2,2)$
Algebra:

$$
\left\{\mathbb{D}_{ \pm}, \overline{\mathbb{D}}_{ \pm}\right\}=i \partial_{ \pm}
$$

Constrained superfields:

$$
\begin{aligned}
\overline{\mathbb{D}}_{ \pm} \phi^{a} & =0, \\
\overline{\mathbb{D}}_{+} \chi^{a^{\prime}}=\mathbb{D}_{-} \chi^{a^{\prime}} & =0, \\
\overline{\mathbb{D}}_{+} \mathbb{X}^{\ell} & =0, \\
\overline{\mathbb{D}}_{-} \mathbb{X}^{r} & =0 .
\end{aligned}
$$

Notation: $\quad c:=a, \bar{a}, \quad t:=a^{\prime}, \bar{a}^{\prime}, \quad L:=\ell, \bar{\ell}, \quad R:=r, \bar{r}$.

Superspace I

The $(2,2)$ formulation uses the generalized Kähler Potential.

$$
S=\int \mathbb{D}_{+} \overline{\mathbb{D}}_{+} \mathbb{D}_{-} \overline{\mathbb{D}}_{-} K\left(\phi^{c}, \chi^{t}, \mathbb{X}^{L}, \mathbb{X}^{R}\right)
$$

$K \rightarrow K\left(\mathbb{X}^{L}, \mathbb{X}^{R}\right)$
Reduction to $(2,1)$ superspace

$$
\begin{aligned}
\mathbb{D}_{-}=: D_{-}-i Q_{-} & , \quad \mathbb{X} \mid=: X, \quad Q_{-} \mathbb{X}^{L}=: \Psi_{-}^{L} \\
S & =\int \mathbb{D}_{+} \overline{\mathbb{D}}_{+} D_{-}\left(K_{L} \Psi_{-}^{L}+K_{R} J D_{-} X^{R}\right) \\
S & =i \int \mathbb{D}_{+} \overline{\mathbb{D}}_{+} D_{-}\left(\lambda_{(+) \alpha} D_{-} \varphi^{\alpha}+\text { c.c. }\right)
\end{aligned}
$$

which uses the "Liouville form" $\left(\mathcal{F}_{(+)}=d \lambda_{(+)}\right)$

Superspace II

Reduction to $(1,1)$ finally yields

$$
S=\int D_{+} D_{-}\left(D_{+} X E D_{-} X\right)
$$

The reduction goes via $\mathbb{D}_{+}=: D_{+}-i Q_{+}, \quad Q_{+} \mathbb{X}^{R} \mid=: \Psi_{+}^{R}$ and both the auxiliary spinors Ψ_{-}^{L} and Ψ_{+}^{R} have been eliminated.

The $(1,1)$ formulation uses $E=g+B$ directly.

Summary

Superspace encodes and dictates all the geometric formulations of Generalized Kähler Geometry.

Pure Spinors

Multi forms ρ on M are spinors of $T \oplus T^{*}$.
$U=(u, \xi) \in T \oplus T^{*}$ acts on a form ρ according to

$$
U \cdot \rho=\imath_{u} \rho+\xi \wedge \rho
$$

This satisfies the Clifford algebra identity for the indefinite metric \mathcal{I} :

$$
\{U, V\} \cdot \rho=(U \cdot V+V \cdot U) \cdot \rho=2 \mathcal{I}(U, V) \rho
$$

The null space of a spinor ρ

$$
L_{\rho}=\left\{U \in T M \oplus T^{*} M \mid U \cdot \rho=0\right\}
$$

is isotropic. A spinor ρ is pure if its null space is maximally isotropic, rank d.

A GCS \mathcal{J} may alternatively be defined via decomposition

$$
\left(T \oplus T^{*}\right) \otimes \mathbb{C}=L+\bar{L}
$$

where L is the $+i$ eigenbundle of \mathcal{J}.
To every GCS \mathcal{J} with $+i$ eigenbundle $L_{\mathcal{J}}$ is associated a complex pure spinor $\rho_{\mathcal{J}}$:

$$
L_{\mathcal{J}}=L_{\rho_{\mathcal{J}}}
$$

Generalized CY

A generalized Calabi-Yau structure:

$$
d \rho=0, \quad(\rho, \bar{\rho}) \neq 0
$$

A generalized Calabi-Yau metric structure is defined as a pair of closed pure spinors ρ_{1} and ρ_{2} such that the corresponding generalized complex structures \mathcal{J}_{1} and \mathcal{J}_{2} give rise to a GKS and
$\left(\rho_{1}, \bar{\rho}_{1}\right)=\alpha\left(\rho_{2}, \bar{\rho}_{2}\right) \neq 0$
Mukai pairing:

$$
\left(\rho_{1}, \rho_{2}\right)=\sum_{j}(-1)^{j}\left[\rho_{1}^{2 j} \wedge \rho_{2}^{d-2 j}+\rho_{1}^{2 j+1} \wedge \rho_{2}^{d-2 j-1}\right]
$$

Supergravity

The conditions for Type II supergravity solutions in

$$
d s_{(10)}^{2}=e^{2 A(y)} d s_{(4)}^{2}+g_{m n} d y^{m} d y^{n}
$$

is

$$
\begin{aligned}
& d_{H}\left(e^{4 A-\Phi} \Re \rho_{1}\right)=e^{4 A} \tilde{F} \\
& d_{H}\left(e^{3 A-\Phi} \rho_{2}\right)=0 \\
& d_{H}\left(e^{2 A-\Phi} \Im \rho_{1}\right)=0
\end{aligned}
$$

where \tilde{F} is (part of) the polyform of $R R$ fields.

The generalized CY metric structure defines a Type II supersymmetric supergravity solution.
(No RR fluxes).
Use the Gualtieri map to find $\left(g_{\mu \nu}, H_{\mu \nu \rho}, \Phi\right)$.

$$
\begin{gathered}
\left(\rho_{1}, \bar{\rho}_{1}\right)=\alpha\left(\rho_{2}, \bar{\rho}_{2}\right)=e^{-2 \Phi} \sqrt{g} d x^{1} \wedge \ldots \wedge d x^{D} \\
R_{\mu \nu}^{(+)}+2 \nabla_{\mu}^{(-)} \partial_{\nu} \Phi=0,
\end{gathered}
$$

automatically satisfied.

Construction from the sigma model

Ansatz:

$$
\begin{equation*}
\rho_{1,2}=N_{1,2} \wedge e^{R_{1,2}+i S_{1,2}}, \tag{0.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& N_{1}=e^{f(\phi)} d \phi^{1} \wedge \ldots \wedge d \phi^{d_{c}}, \\
& N_{2}=e^{g(\chi)} d \chi^{1} \wedge \ldots \wedge d \chi_{d_{t}}, \\
& R_{1}=-d\left(K_{L} d X_{L}\right), \\
& R_{2}=-d\left(K_{R} d X_{R}\right), \\
& S_{1}=d\left(K_{T} J d \chi+K_{L} J d X_{L}-K_{R} J d X_{R}\right), \\
& S_{2}=-d\left(K_{C} J d \phi+K_{L} J d X_{L}+K_{R} J d X_{R}\right),
\end{aligned}
$$

These are pure spinors with the correct properties.

The Generalized Monge-Ampère equation

$$
\begin{aligned}
& \left(\rho_{1}, \rho_{1}\right)=\alpha\left(\rho_{2}, \rho_{2}\right) \Longrightarrow
\end{aligned}
$$

$$
\begin{align*}
& =\alpha e^{g(x)} e^{\theta(\bar{x})} \operatorname{det}\left(\begin{array}{lll}
K_{\bar{\prime}} & K_{\bar{I}} & K_{\bar{C}} \\
K_{\bar{\prime}} & K_{\bar{I}} & K_{\bar{C}} \\
K_{\bar{C}} & K_{\bar{C}} & K_{c \bar{C}}
\end{array}\right) \\
& e^{2 \Phi}=(-1)^{d_{s} d_{c}} \frac{e^{-f(\phi)} e^{-\bar{f}(\bar{\phi})}}{\operatorname{det} K_{L R}} \operatorname{det}\left(\begin{array}{lll}
-K_{\bar{\Pi}} & -K_{l r} & -K_{\bar{t}} \\
-K_{\overline{\bar{T}}} & -K_{\overline{\bar{F}},} & -K_{\overline{\bar{t}} \bar{t}} \\
-K_{\bar{t}} & -K_{t r} & -K_{t \bar{t}}
\end{array}\right) \tag{0.3}
\end{align*}
$$

Outlook

- Include RR fields in the geometry. See recent work by Waldram and collaborators.
- Understand reduction of GKG. Cavalcanti, Gualtieri,....
- SKT (strong Kähler with Torsion). Cavalcanti,...,(2, 1) -models.

Outlook

- Include RR fields in the geometry. See recent work by Waldram and collaborators.
- Understand reduction of GKG.

Cavalcanti, Gualtieri,....

- SKT (strong Kähler with Torsion). Cavalcanti,...,(2, 1) -models.
- Include RR fields in the geometry. See recent work by Waldram and collaborators.
- Understand reduction of GKG.

Cavalcanti, Gualtieri,....

- SKT (strong Kähler with Torsion). Cavalcanti,...,(2, 1) -models.

Outlook

- Include RR fields in the geometry. See recent work by Waldram and collaborators.
- Understand reduction of GKG.

Cavalcanti, Gualtieri,....

- SKT (strong Kähler with Torsion).

Cavalcanti,...,(2, 1) -models.

-

