Light neutralinos and white dwarfs

John Conley[↑], Herbi Dreiner[↑], Jeff Fortin[∗], Lorenzo Ubaldi[↑]

^TBethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn,

Germany

* University of California, San Diego

Corfu, September 2012

Can we put bounds on SUSY with light neutralinos using white dwarf cooling?

I. Why light neutralinos?

2. Why white dwarfs?

I. Why light neutralinos?

In this talk the neutralino is the Lightest Supersymmetric Particle (LSP)

How light can the neutralino be?

<u>Assuming</u> gaugino mass unification, limits on the chargino masses from LEP translate into a lower bound for the neutralino mass

m_χ > 46 GeV BUT...

Dropping this assumption, *particle physics* does NOT impose any bound on the mass of the neutralino.

A massless neutralino LSP is possible!

Maybe astrophysics can put bounds on light neutralinos...

Thursday, September 20, 12

Supernovas and light neutralinos: SN 1987A bounds on supersymmetry reexamined

H. K. Dreiner,¹ C. Hanhart,² U. Langenfeld,¹ and D. R. Phillips³

¹Physikalisches Institut, Universität Bonn, Nuβallee 12, 53113 Bonn, Germany
 ²Institut für Kernphysik, Forschungszentrum Jülich, 52428 Jülich, Germany
 ³Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA (Received 5 May 2003; published 29 September 2003)

The idea

Neutralinos can be produced in a supernova $e^+ + e^- \rightarrow \tilde{\chi} + \tilde{\chi}$, pair production

neutralinostrahlung $N+N \rightarrow N+N+\tilde{\chi}+\tilde{\chi}$.

and escape, contributing to the supernova cooling. Demand that the neutralino cooling doesn't alter the measured neutrino signal.

2. Why white dwarfs?

Sloan Digital Sky Survey (SDSS)

WD luminosity function pre-SDSS

WD luminosity function after SDSS

Do we understand the physics of WD cooling well? YES

Are the latest SDSS measurements precise enough to be used to put *significant* bounds on new physics from WD cooling?

Maybe. Let's try!

What's a white dwarf anyway?

- It's a star with a typical mass of 0.6 M_☉ that has burnt all its fuel. It consists mostly of nuclei of carbon and oxygen and of highly degenerate electrons.
- It's a simple object! It just cools down via emission of photons and neutrinos.

Neutralino cooling

The name of the game

- Standard-Model particle physics already gives a very good fit to the WD luminosity function (LF).
- Add the neutralino-cooling contribution, compute the new LF curve and its chi square fit to the data.
- Establish a chi-square criterium to put bounds on this new contribution.
- As a first step, take a the neutralino to be massless.
 This will set bounds on the selectron mass.

Time for answers?

Can we put bounds on SUSY with light neutralinos using white dwarf cooling?

Are the latest SDSS measurements precise enough to be used to put *significant* bounds on new physics from WD cooling?

Unfortunately not for the bound

eutralino and selectron,

The hope

With the "expertise" gained doing this exercise, study different new physics models and see if we can put significant bounds.

Advertisement

GREAT BOOK!!

Georg G. Raffelt