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Introduction and Motivation

Main Objective

Study properties of string/M theory compactifications beyond low-energy SUGRA.

E.g. unconventional compactifications
(winding modes, dualities, non-geometric fluxes, non-commutative manifolds etc.).

Frameworks:

4 Doubled formalism - Twisted Doubled Tori

4 Generalized Complex Geometry

4 Double Field Theory

4 CFT - Sigma models

4 Matrix Models

See lectures by Hull,

talks by Lindstrom and Lüst.

A. Chatzistavrakidis (BCTP Bonn) Matrix theory origins of non-geometric fluxes 2 / 21



Introduction and Motivation

Main Objective

Study properties of string/M theory compactifications beyond low-energy SUGRA.

E.g. unconventional compactifications
(winding modes, dualities, non-geometric fluxes, non-commutative manifolds etc.).

Frameworks:

4 Doubled formalism - Twisted Doubled Tori

4 Generalized Complex Geometry

4 Double Field Theory

4 CFT - Sigma models

4 Matrix Models

See lectures by Hull,

talks by Lindstrom and Lüst.
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Introduction and Motivation

Main Objective

Study properties of string/M theory compactifications beyond low-energy SUGRA.

E.g. unconventional compactifications
(winding modes, dualities, non-geometric fluxes, non-commutative manifolds etc.).

Frameworks:

4 Doubled formalism - Twisted Doubled Tori
Hull; Hull, Reid-Edwards; Dall’Agata, Prezas, Samtleben, Trigiante

4 Generalized Complex Geometry
Andriot, Hohm, Larfors, Lüst, Patalong; Berman, Musaev, Thompson

4 Double Field Theory
Hohm, Hull, Zwiebach; Aldazabal et.al.; Geissbuhler; Grana, Marques; Dibitetto et.al.

4 CFT - Sigma models
Lüst; Blumenhagen, Plauschinn; Mylonas, Schupp, Szabo

4 Matrix Models
Lowe, Nastase, Ramgoolam; A.C., Jonke
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Why Matrix Models?

I ♥ SUGRA
but...

For certain aspects Matrix Models appear more advantageous:

4 Matrix Theory: inherently quantum-mechanical (crucial role of phase space).

4 Non-commutative structures.

4 SUGRA excludes stringy winding modes.

4 Flux Quantization.

Non-perturbative framework, analytical and numerical approaches.
What is more, recent progress in

• Particle physics, “matrix model building“.
Aoki ’10, A.C., Steinacker, Zoupanos ’11

• Early and late time cosmology.
Kim, Nishimura, Tsuchiya ’11-’12
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Matrix Models as non-perturbative definitions of string/M theory.
Banks, Fischler, Shenker, Susskind ’96, Ishibashi, Kawai, Kitazawa, Tsuchiya ’96, ...

Matrix Model Compactifications (MMC) on non-commutative tori.
Connes, Douglas, A. Schwarz ’97

Constant background B-field ←→ Non-commutative deformation

Bij
CDS←→ θij

What about fluxes?

• Geometric (related e.g. to nilmanifolds/twisted tori): f

• NSNS (non-constant B-fields): H

• “Non-geometric” (T-duality): Q,R

Q: How can they be traced in Matrix Compactifications?
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Main Results

4 MMC on nilmanifolds in diverse dimensions. Analog of geometric flux.

4 MMC with diverse algebraic structures.
Interpretation as analogs of NSNS and non-geometric fluxes.

4 (Generalized) T-duality operations connecting different flux situations
appear as phase space transformations in the MM.

4 Trading of properties between geometric and non-geometric fluxes
under position-momentum space exchange.
 relations between non-commutativity and generalized geometry.

4 Resolution of non-associativity among unitary operators  flux quantization.

4 Effective actions for non-commutative gauge theories with fluxes.
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Overview

1 Matrix Model Compactification

2 Fluxes in MMC

3 T-duality, Non-associativity and Flux Quantization

4 Concluding Remarks
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Matrix Theory and Compactification
Matrix Theory: suggested as non-perturbative definition of M-theory.
Banks, Fischler, Shenker, Susskind ’96

Action:

SBFSS =
1

2g

∫
dt

[
Tr
(
ẊaẊa −

1

2
[Xa,Xb]2

)
+ fermions

]
,

Xa(t): 9 time-dependent N × N Hermitian matrices (large N).

EOM:
Ẍa + [Xb, [X b,Xa]] = 0.

Compactification : Restriction of the action functional under certain conditions
(same logic for any MM, e.g. type IIB models).

Toroidal Td :

Xi + Ri = U iXi (U
i )−1, i = 1, ..., d ,

Xa = U iXa(U i )−1, a 6= i , a = 1, . . . , 9,

with U i unitary and invertible.
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Toroidal Compactification

Solutions: Connes, Douglas, Schwarz ’97

Xi = iRi D̂i , Xm = Am, (m = d + 1, . . . , 9), U i=e i x̂
i

,

with covariant derivatives D̂i = ∂̂i − iAi .

Phase space of x̂ and p̂ with algebra:

[x̂ i , x̂ j ] = iθij ,

[x̂ i , p̂j ] = iδij ,

[p̂i , p̂j ] = 0.

The U-algebra is: U iU j = λijU jU i with complex constants λij = e−iθ
ij

.
This is a non-commutative torus in Connes’ non-commutative geometry.

Substitution back into the action  NCSYM theory on a dual NC torus.

Interpretation: Deformation parameters θ are reciprocal to background field in
SUGRA, (θ−1)ij ∝

∫
dx idx jBij .
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Twisted Toroidal Compactification
Twisted Tori: twisted fibrations of toroidal fibers over toroidal bases;
the geometry of the fiber changes non-trivially as the base is traversed.
Scherk, Schwarz ’79; Kaloper, Myers ’99; Kachru et.al. ’02; Hull, Reid-Edwards ’05; Grana et.al. ’06

Described as:

4 Homogeneous spaces constructed out of nilpotent Lie groups (nilmanifolds).

4 T-duals of square tori with H flux.

MMC: Same logic; restrict the action by imposing conditions corresponding to
nilmanifolds.
Lowe, Nastase, Ramgoolam ’03; A.C., Jonke ’11-’12

Twisted T̃
3
:

U iXi (U
i )−1 = Xi + 1, i = 1, 2, 3,

U1X3(U1)−1 = X3 − NX2, U2X3(U2)−1 = X3 + NX1,

U iXa(U i )−1 = Xa, a 6= i , a = 1, . . . , 9, (a, i) 6= {(3, 1), (3, 2)}.
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Solutions:

Xi = iRi D̂i , Xm = Am, (m = 4, . . . , 9), U i=e i x̂
i

,

with covariant derivatives D̂i = ∂̂i − iAi + Nf jk
i Aj ∂̂k , f 12

3 = 1.

Algebra of phase space:

[x̂ i , x̂ j ] = iθij + iNf ijk x̂
k ,

[p̂i , p̂j ] = 0,

[p̂i , x̂
j ] = −iδji − iNf jk

i p̂k .

The U-algebra is now given by: U iU j = e−iθ
ij−iNf ijk x̂

k

U jU i .
This is a non-commutative twisted torus.

The effective action is a NC gauge theory on a dual NC twisted torus.

Interpretation: The non-constant deformation is the analog of a geometric flux.

Direct generalization for a large class of higher-D nilmanifolds.
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More fluxes?

At hand: geometric flux f k
ij (twisted torus).

T-dual to NSNS flux Hijk : Hijk
Tk−→ f k

ij .

Enlarged chain with unconventional fluxes:

Hijk
Tk−→ f k

ij

Tj−→ Q jk
i

Ti−→ R ijk .

Q: Matrix Model description?

Observe: Although full phase space operates, e i p̂i were previously ignored...

Introduce:

Xi = i ∂̂i + Âi ,

X̃ i = (−1)ci x̂ i + ˆ̃Ai ,

and:

U i = e i x̂
i

,

Ũi = e(−1)ci ∂̂i .

The grading will guarantee correct Heisenberg relation.
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Algebraic Building Blocks

The set-up reminds of the doubled formalism  Twisted Doubled Tori.
Hull, Reid-Edwards ’07, Dall’Agata, Prezas, Samtleben, Trigiante ’07

Use TDT formalism to describe MMC, then project to appropriate subsector.

H-block: (H123 = 1 and ci = 0 for every i = 1, 2, 3.)

Compactification Conditions:

U iXi (U
i )−1 = Xi + 1,

Ũi X̃ i (Ũi )
−1 = X̃ i + 1,

U i X̃ j(U i )−1 = X̃ j + H ijkXk ,

Phase space algebra:
c.f. Lüst ’10

[x̂ i , x̂ j ] = iH ijk p̂k ,

[p̂i , p̂j ] = 0,

[p̂i , x̂
j ] = −iδji .

The U-algebra is: U iU j = e−H
ijk ∂̂kU jU i , i.e. θij = H ijk p̂k .

The Connes-Douglas-Schwarz correspondence suggests a SUGRA B-field

B = x1dx2 ∧ dx3 + x2dx3 ∧ dx1 + x3dx1 ∧ dx2,

where x i are standard toroidal coordinates.
A. Chatzistavrakidis (BCTP Bonn) Matrix theory origins of non-geometric fluxes 13 / 21



Q-block: (Q1
23 = 1, while c1 = 0 and c2 = c3 = 1.)

Compactification Conditions:

U iXi (U
i )−1 = Xi + 1,

U1X2(U1)−1 = X2 + X̃ 3,

U1X3(U1)−1 = X3 − X̃ 2,

and

Ũi X̃ i (Ũi )
−1 = X̃ i + 1,

Ũ2X3(Ũ2)−1 = X3 + X1,

Ũ3X2(Ũ3)−1 = X2 −X1,

Ũ2X̃ 1(Ũ2)−1 = X̃ 1 − X̃ 3,

Ũ3X̃ 1(Ũ3)−1 = X̃ 1 + X̃ 2,

Phase space algebra:

[x̂ i , x̂ j ] = 0,

[p̂i , p̂j ] = −iQ k
ij p̂k ,

[p̂i , x̂
j ] = −iδji + iQ j

ik x̂k .

The U-algebra is commutative. But the Ũ one is not: Ũi Ũj = eQ
k

ij ∂̂k Ũj Ũi .

θ̃ij = −Q k
ij p̂k , expected to account for non-geometric Q flux.
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R-block: (c1 = 1 for all i = 1, 2, 3.)

Compactification Conditions:

U iXi (U
i )−1 = Xi + 1,

Ũi X̃ i (Ũi )
−1 = X̃ i + 1,

ŨiXj(Ũi )
−1 = Xj + Rijk X̃k .

Phase space algebra:

[x̂ i , x̂ j ] = 0,

[p̂i , p̂j ] = iRijk x̂
k ,

[p̂i , x̂
j ] = −iδji .

The Us commute again, unlike the Ũs: Ũi Ũj = e−iRijk x̂
k

Ũj Ũi .

θ̃ij = Rijk x̂k , expected to account for non-geometric R flux.
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Block-to-block moves and T-duality

At hand: 4 types of solutions of the compactified Matrix Model.

Q: Which operations take each solution to the other?

H → f :

At the level of the phase-space algebra,

x̂3 → − p̂3,

p̂3 → x̂3.

May be represented as a matrix MH→f

acting on

(
x̂ i

p̂i

)
.

Grading correction,

(−1)ĉif = diag(1, 1, 1, 1, 1,−1).
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Block-to-block moves and T-duality

Full Picture:

H
T3←→ f

T2←→ Q
T1←→ Rxy xy xy xy

θ(p̂)
MH→f ·(−1)

ĉi
f←→ θ(x̂)

Mf→Q ·(−1)
ĉi
Q←→ θ̃(p̂)

MQ→R ·(−1)
ĉi
R←→ θ̃(x̂)

with θij = [x̂ i , x̂ j ] and θ̃ij = [p̂i , p̂j ].
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Finding the correct subsector

Matrix theory does not really possess X̃ i as dynamical DoF.
Q: Which is the correct subsector?

For f and H cases, easy: formulate everything just for Xi .

But: for Q and R cases, compactification on Xi -sector is not well-defined.
What is more, for the R case: [Xi ,Xj ,Xk ] 6= 0!
But Hermitian matrices cannot be non-associative!

Resolution: For Q and R, the correct subsector is the X̃ i in the momentum rep.

 There is a correspondence:

θij |f or θij |H in x̂-space ←→ θ̃ij |Q or θ̃ij |R in p̂-space .

Similar result in Generalized Complex Geometry approach...
Andriot, Larfors, Lüst, Patalong ’11

Indication: Just as θij ∼ (Bij)
−1, also θ̃ij ∼ (βij)−1, β: the bivector of GCG.
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Non-Associativity and Flux Quantization

All encountered phase space algebras exhibit some non-associativity.

E.g. [p̂i , x̂
j , x̂k ] ∝ f jk

i for the f -block, [x̂ i , x̂ j , x̂k ] ∝ H ijk for the H-block, etc.

The induced non-associativity of Xi is resolved as above.

Q: What about the algebraic elements U i , which define the NC torus?

H-case: U i (U jUk) = e
i
2 H

ijk

(U iU j)Uk .

 3-cocycle; typical in QM systems with fluxes. Jackiw ’85

Resolution: The flux has to be quantized,

H = 4πn, n ∈ Z.

 Flux Quantization.

Similar to DFT, where large gauge transformations associate even when
coordinate maps do not. Hohm, Zwiebach ’12
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Gauge Theories

Effective action for toroidal matrix compactification:

S ∝
∫

dt Tr(FijF
ij + scalars + fermions),

with Tr→
∫
d3x tr and Fij = ∂iAj − ∂jAi + iAi ? Aj − iAj ? Ai

Moyal-Weyl ? product: f ? g = e
i
2

∂

∂xi
θ̂ij ∂

∂yj f (x)g(y)|y→x .

Effective actions with fluxes: additional terms are induced.

 diverse non-commutative gauge theories and ? products.

e.g. for the nilmanifold:

f ? g = e
− i

2 f
ij

kx
k ∂

∂yi
∂

∂zj f (y)g(z)|y ,z→x .
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Main messages

4 Matrix Models: useful framework for unconventional string compactifications.

4 Fluxes, dualities, non-geometry, non-commutativity.

4 Relations to other frameworks (double field theory, generalized geometry, etc.)

Some prospects

• Analysis of the effective theories with fluxes. in progress, with L. Jonke

• Full study of possible vacua. Coexistence of all types of fluxes.
in progress, with M. Schmitz

• Phenomenology of unconventional compactifications?

• Non-perturbative dualities?
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