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Introduction and Motivation

Main Objective

Study properties of string/M theory compactifications beyond low-energy SUGRA.

E.g. unconventional compactifications
(winding modes, dualities, non-geometric fluxes, non-commutative manifolds etc.).
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Main Objective

Study properties of string/M theory compactifications beyond low-energy SUGRA.

E.g. unconventional compactifications
(winding modes, dualities, non-geometric fluxes, non-commutative manifolds etc.).

Frameworks:
Doubled formalism - Twisted Doubled Tori

AN

Generalized Complex Geometry See lectures by Hull,
Double Field Theory talks by Lindstrom and Liist
CFT - Sigma models

Matrix Models

R X |
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Introduction and Motivation

Main Objective

Study properties of string/M theory compactifications beyond low-energy SUGRA.

E.g. unconventional compactifications
(winding modes, dualities, non-geometric fluxes, non-commutative manifolds etc.).

Frameworks:

v

Doubled formalism - Twisted Doubled Tori
Hull; Hull, Reid-Edwards; Dall'Agata, Prezas, Samtleben, Trigiante

Generalized Complex Geometry

Andriot, Hohm, Larfors, Liist, Patalong; Berman, Musaev, Thompson

Double Field Theory

Hohm, Hull, Zwiebach; Aldazabal et.al.; Geissbuhler; Grana, Marques; Dibitetto et.al.

CFT - Sigma models

Liist; Blumenhagen, Plauschinn; Mylonas, Schupp, Szabo

Matrix Models

Lowe, Nastase, Ramgoolam; A.C., Jonke
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Why Matrix Models?

I © SUGRA
but...
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Why Matrix Models?

I © SUGRA
but...

For certain aspects Matrix Models appear more advantageous:
v Matrix Theory: inherently quantum-mechanical (crucial role of phase space).
v Non-commutative structures.
v SUGRA excludes stringy winding modes.
v Flux Quantization.
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Why Matrix Models?

I © SUGRA
but...

For certain aspects Matrix Models appear more advantageous:
v Matrix Theory: inherently quantum-mechanical (crucial role of phase space).
v Non-commutative structures.
v SUGRA excludes stringy winding modes.
v Flux Quantization.

Non-perturbative framework, analytical and numerical approaches.
What is more, recent progress in

e Particle physics, “matrix model building*.
Aoki '10, A.C., Steinacker, Zoupanos '11

e Early and late time cosmology.
Kim, Nishimura, Tsuchiya '11-'12
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Matrix Models as non-perturbative definitions of string/M theory.
Banks, Fischler, Shenker, Susskind '96, Ishibashi, Kawai, Kitazawa, Tsuchiya '96, ...

Matrix Model Compactifications (MMC) on non-commutative tori.

Connes, Douglas, A. Schwarz '97

Constant background B-field «— Non-commutative deformation

CDS
—

B; 0
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Matrix Models as non-perturbative definitions of string/M theory.
Banks, Fischler, Shenker, Susskind '96, Ishibashi, Kawai, Kitazawa, Tsuchiya '96, ...

Matrix Model Compactifications (MMC) on non-commutative tori.
Connes, Douglas, A. Schwarz '97

Constant background B-field «— Non-commutative deformation

CDS
—

B; 0i

What about fluxes?

o Geometric (related e.g. to nilmanifolds/twisted tori): f
e NSNS (non-constant B-fields): H
e “Non-geometric” (T-duality): Q, R

Q: How can they be traced in Matrix Compactifications?
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Main Results

v MMC on nilmanifolds in diverse dimensions. Analog of geometric flux.

v MMC with diverse algebraic structures.
Interpretation as analogs of NSNS and non-geometric fluxes.

v (Generalized) T-duality operations connecting different flux situations
appear as phase space transformations in the MM.

v Trading of properties between geometric and non-geometric fluxes
under position-momentum space exchange.
~~ relations between non-commutativity and generalized geometry.

v Resolution of non-associativity among unitary operators ~ flux quantization.
v Effective actions for non-commutative gauge theories with fluxes.
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Overview

@ Matrix Model Compactification

© Fluxes in MMC

e T-duality, Non-associativity and Flux Quantization

© Concluding Remarks
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Matrix Theory and Compactification
Matrix Theory: suggested as non-perturbative definition of M-theory.
Banks, Fischler, Shenker, Susskind '96
Action:
Sgrss = — / dt[Tr [Xa,/'\fb] ?) + fermions|,

X,(t): 9 time-dependent N x N Hermitian matrices (large N).

EOM: )
Xy + [Xp, [XP, &) = 0.

A. Chatzistavrakidis (BCTP Bonn) Matrix theory origins of non-geometric fluxes

8/21



Matrix Theory and Compactification

Matrix Theory: suggested as non-perturbative definition of M-theory.
Banks, Fischler, Shenker, Susskind '96
Action:

SeFss = /dt[Tr [Xa,Xb] ?) + fermions|,
X,(t): 9 time-dependent N x N Hermitian matrices (large N).

EOM: )
Xy + [Xp, [XP, &) = 0.

Compactification : Restriction of the action functional under certain conditions
(same logic for any MM, e.g. type |IB models).

Toroidal T¢:

X+ R = UxUHY?Y i=1,..4d,
X, = UXx,WUH) Y, a#i, a=1,...,9,

with U’ unitary and invertible.
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Toroidal Compactification

Solutions: Connes, Douglas, Schwarz '97
X; = IRD;, Xm:Am,(m:d+1,...,9), U'=e"™,

with covariant derivatives D; = 9; — i.A;.

Phase space of X and p with algebra:

[*, %] = igY,
[*.p] = s,
pi.p;] = O.

The U-algebra is: U'U/ = N7 U/ U with complex constants A\J = e~/¢”.
This is a non-commutative torus in Connes’ non-commutative geometry.

Substitution back into the action ~» NCSYM theory on a dual NC torus.
Interpretation: Deformation parameters 6 are reciprocal to background field in

SUGRA, (071); o< [ dx'dx/ B;.
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Twisted Toroidal Compactification
Twisted Tori: twisted fibrations of toroidal fibers over toroidal bases;
the geometry of the fiber changes non-trivially as the base is traversed.
Scherk, Schwarz '79; Kaloper, Myers '99; Kachru et.al. '02; Hull, Reid-Edwards '05; Grana et.al. '06

Described as:

v Homogeneous spaces constructed out of nilpotent Lie groups (nilmanifolds).

v T-duals of square tori with H flux.
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Twisted Toroidal Compactification

Twisted Tori: twisted fibrations of toroidal fibers over toroidal bases;
the geometry of the fiber changes non-trivially as the base is traversed.
Scherk, Schwarz '79; Kaloper, Myers '99; Kachru et.al. '02; Hull, Reid-Edwards '05; Grana et.al. '06

Described as:
v Homogeneous spaces constructed out of nilpotent Lie groups (nilmanifolds).

v T-duals of square tori with H flux.

MMC: Same logic; restrict the action by imposing conditions corresponding to
nilmanifolds.
Lowe, Nastase, Ramgoolam '03; A.C., Jonke '11-'12

Twisted '7'3:
Ux(uht = X +1, i=1,2,3,
Ura(UN) ™ = X5 — NX,, UPA3(UP) 7! = A5 + N,

UX,(U)Y = A&, a#i, a=1,...,9, (a,i)#{(3,1),(3,2)}.
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Solutions:
X,' = I'R,"ﬁ,‘7 Xm :Am,(m:4,...,9), U'.:e'.)?f7
with covariant derivatives D; = 0; — iA; + Nf, jkAj(’A)k, f,12=1

Algebra of phase space:

[)A(i,;(j] = g7+ iNf'jkf(k,
Ai? Aj - 9

[5i, B] 0

(1, &) = —id] — iNF " py.

) ) . T, L
The U-algebra is now given by: U'U/ = e~ /¢~ INFE iyi,
This is a non-commutative twisted torus.

The effective action is a NC gauge theory on a dual NC twisted torus.
Interpretation: The non-constant deformation is the analog of a geometric flux.

Direct generalization for a large class of higher-D nilmanifolds.
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More fluxes?

At hand: geometric flux f (twisted torus).
T-dual to NSNS flux Hy:  Hye — £,*.

Enlarged chain with unconventional fluxes:

iy T;
Hix —5 f; =5 Q% s Rik,

Q: Matrix Model description?
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More fluxes?

At hand: geometric flux f (twisted torus).
T-dual to NSNS flux Hy:  Hye — £;%.
Enlarged chain with unconventional fluxes:

T, T;
Huk k>f , QJkHRUk

Q: Matrix Model description?

Observe: Although full phase space operates, e’? were previously ignored...

Introduce: and:
X, = id+ A, U = &%,
Fo= (c1eR A 0 = etV

The grading will guarantee correct Heisenberg relation.
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Algebraic Building Blocks

The set-up reminds of the doubled formalism ~~ Twisted Doubled Tori.
Hull, Reid-Edwards '07, Dall'Agata, Prezas, Samtleben, Trigiante '07
Use TDT formalism to describe MMC, then project to appropriate subsector.

H-block: (H'? =1 and ¢; = 0 for every i = 1,2,3.)

. " Phase space algebra:
Compactification Conditions: P &

c.f. List '10
i J N = i H g oo
A S [£, %] = iH™py,
Ux'(U)Tt = AT, 5. 5] —
UXI(UNY = A4 Hikx, [bi:Bi] =0,
R ; Fd = —l

The U-algebra is: U'U/ = e=H" O Uiyi, ie. 01 = Hikp,.
The Connes-Douglas-Schwarz correspondence suggests a SUGRA B-field
B = x*dx® A dx® + x%dx3 A dxt + x3dxt A dx?,

where x' are standard toroidal coordinates.
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Q-block: (@5 =1, while ¢ =0and ¢ = 3 = 1.)

Compactification Conditions:

and

. . ~ . - k8, 11 7
The U-algebra is commutative. But the U one is not: U;U; = eQi % [; U;.

Uixf(ui)fl
UIXQ(Ul)fl
Utas(uh)

A. Chatzistavrakidis (BCTP Bonn)

Xi+17
X2 +‘i}3a

X3 — X2,

X41,

A3 + A1,
Ao — Ay,
P
FrlES

Phase space algebra:

[®,%] = o,
b, B] = —iQ; *px,
B, ] = —is +iQ,’%".

[

O = —Q,-j"ﬁk, expected to account for non-geometric @ flux.

Matrix theory origins of non-geometric fluxes
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R-block: (¢, =1foralli=1,2,3))

Compactification Conditions: Phase space algebra:
UiXi(Ui)fl = X +1, [)?i’)?j] = 0
OX(0)" = &'+1, [, p] = iRuR",
0,'/’%'(0,')_1 = &+ Rijkt}z‘k- (B, )?j] = —I'(S{-'.

The Us commute again, unlike the Us: U;U; = e_iRijk)A(k(]jU,‘.

0ij = RjjkXx, expected to account for non-geometric R flux.
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Block-to-block moves and T-duality

At hand: 4 types of solutions of the compactified Matrix Model.

Q: Which operations take each solution to the other?

H—f:
At the level of the phase-space algebra,
B 5 —ps . .
’ Grading correction,
ﬁ3 — )?3.

(-1)& = diag(1,1,1,1,1,-1).

May be represented as a matrix My_,r

. bl
acting on N .
& < b )
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Block-to-block moves and T-duality

Full Picture:
H PREN f LE Q & R
My r-(—1)¢ Mr—o-(—1)3 i Moo (—1)%
ap) "GV gy MRGYe Gip) MEGUR iy

with 09 =[8, %] and G; = [p;, B
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Finding the correct subsector

Matrix theory does not really possess X’ as dynamical DoF.
Q: Which is the correct subsector?

For f and H cases, easy: formulate everything just for X;.

But: for @ and R cases, compactification on Xj-sector is not well-defined.

What is more, for the R case: [X], &}, X] # 0!
But Hermitian matrices cannot be non-associative!
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Finding the correct subsector

Matrix theory does not really possess X as dynamical DoF.
Q: Which is the correct subsector?

For f and H cases, easy: formulate everything just for X;.
But: for @ and R cases, compactification on Xj-sector is not well-defined.
What is more, for the R case: [}, X}, Xx] # 0!
But Hermitian matrices cannot be non-associative!
Resolution: For Q and R, the correct subsector is the X7 in the momentum rep.
~> There is a correspondence:

07)f or 09|y in Kspace <— jlq or ;g in p-space.

Similar result in Generalized Complex Geometry approach...
Andriot, Larfors, Liist, Patalong '11

Indication: Just as 67 ~ (B;)~1, also 0 ~ (87)~!, B: the bivector of GCG.
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Non-Associativity and Flux Quantization

All encountered phase space algebras exhibit some non-associativity.
E.g. [Bi, &, 8K] o £, 7 for the f-block, [#', %/, £K] o< HI¥ for the H-block, etc.
The induced non-associativity of X; is resolved as above.

Q: What about the algebraic elements U’, which define the NC torus?
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Non-Associativity and Flux Quantization

All encountered phase space algebras exhibit some non-associativity.

E.g. [Bi, &, 8K] o £, 7 for the f-block, [#', %/, £K] o< HI¥ for the H-block, etc.
The induced non-associativity of X; is resolved as above.

Q: What about the algebraic elements U’, which define the NC torus?
H-case: Ui(LWUK) = e2H" (U U UX.

~> 3-cocycle; typical in QM systems with fluxes. Jackiw '85

Resolution: The flux has to be quantized,
H=4rn, neZ.

~ Flux Quantization.

Similar to DFT, where large gauge transformations associate even when
coordinate maps do not. Hohm, Zwiebach '12
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Gauge Theories

Effective action for toroidal matrix compactification:
S x /dt Tr(F;FY + scalars + fermions),

with Tr — f d3X tr and F,J == 8,-Aj — 8jA,‘ + IA, * Aj — IAJ *A,‘

q Géu

i 0
Moyal-Weyl * product: fxg =e22"" a7 f(x)g(y)|y—x-
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Gauge Theories

Effective action for toroidal matrix compactification:

S x /dt Tr(F;FY + scalars + fermions),

with Tr — f d3X tr and F,J == 8,-Aj — 8jA,' + IA, * Aj — IAJ * A,‘

q aé'l

i L
Moyal-Weyl % product: f*g =e227" a7 f(x)g(y)|y—x-
Effective actions with fluxes: additional terms are induced.
~ diverse non-commutative gauge theories and * products.

e.g. for the nilmanifold:

i i

frg=e i & oioaf
*xg=e 70 f(y)g(2)ly,z—x -
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Main messages

v Matrix Models: useful framework for unconventional string compactifications.

<

Fluxes, dualities, non-geometry, non-commutativity.

v Relations to other frameworks (double field theory, generalized geometry, etc.)
Some prospects

e Analysis of the effective theories with fluxes. in progress, with L. Jonke

e Full study of possible vacua. Coexistence of all types of fluxes.
in progress, with M. Schmitz

e Phenomenology of unconventional compactifications?

e Non-perturbative dualities?
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