Matrix theory origins of non-geometric fluxes

Athanasios Chatzistavrakidis

Bethe Center for Theoretical Physics, University of Bonn
Based on:
A.C., 1108.1107 [hep-th] (PRD 84 (2011))
A.C. and Larisa Jonke, 1202.4310 [hep-th] (PRD 85 (2012))
A.C. and Larisa Jonke, 1207.6412 [hep-th]

XVIII European Workshop on String Theory
September 19-27, 2012

Introduction and Motivation

Main Objective

Study properties of string/M theory compactifications beyond low-energy SUGRA.
E.g. unconventional compactifications (winding modes, dualities, non-geometric fluxes, non-commutative manifolds etc.).

Introduction and Motivation

Main Objective

Study properties of string/M theory compactifications beyond low-energy SUGRA.
E.g. unconventional compactifications
(winding modes, dualities, non-geometric fluxes, non-commutative manifolds etc.).
Frameworks:
\checkmark Doubled formalism - Twisted Doubled Tori
\checkmark Generalized Complex Geometry
\checkmark Double Field Theory
See lectures by Hull,
\checkmark CFT - Sigma models
\checkmark Matrix Models

Introduction and Motivation

Main Objective

Study properties of string/M theory compactifications beyond low-energy SUGRA.
E.g. unconventional compactifications (winding modes, dualities, non-geometric fluxes, non-commutative manifolds etc.).

Frameworks:
\checkmark Doubled formalism - Twisted Doubled Tori
Hull; Hull, Reid-Edwards; Dall'Agata, Prezas, Samtleben, Trigiante
\checkmark Generalized Complex Geometry
Andriot, Hohm, Larfors, Lüst, Patalong; Berman, Musaev, Thompson
\checkmark Double Field Theory
Hohm, Hull, Zwiebach; Aldazabal et.al.; Geissbuhler; Grana, Marques; Dibitetto et.al.
\checkmark CFT - Sigma models
Lüst; Blumenhagen, Plauschinn; Mylonas, Schupp, Szabo
\checkmark Matrix Models
Lowe, Nastase, Ramgoolam; A.C., Jonke

Why Matrix Models?

I © SUGRA but...

Why Matrix Models?

I © SUGRA but...

For certain aspects Matrix Models appear more advantageous:
\checkmark Matrix Theory: inherently quantum-mechanical (crucial role of phase space).
\checkmark Non-commutative structures.
\checkmark SUGRA excludes stringy winding modes.
\checkmark Flux Quantization.

Why Matrix Models?

I © SUGRA but...

For certain aspects Matrix Models appear more advantageous:
\checkmark Matrix Theory: inherently quantum-mechanical (crucial role of phase space).
\checkmark Non-commutative structures.
\checkmark SUGRA excludes stringy winding modes.
\checkmark Flux Quantization.
Non-perturbative framework, analytical and numerical approaches. What is more, recent progress in

- Particle physics, "matrix model building".

Aoki '10, A.C., Steinacker, Zoupanos '11

- Early and late time cosmology.

Kim, Nishimura, Tsuchiya '11-'12

Matrix Models as non-perturbative definitions of string/ M theory. Banks, Fischler, Shenker, Susskind '96, Ishibashi, Kawai, Kitazawa, Tsuchiya '96, ...

Matrix Model Compactifications (MMC) on non-commutative tori.
Connes, Douglas, A. Schwarz '97

Constant background B-field \longleftrightarrow Non-commutative deformation

$$
B_{i j} \xrightarrow{C D S} \theta^{i j}
$$

Matrix Models as non-perturbative definitions of string/ M theory. Banks, Fischler, Shenker, Susskind '96, Ishibashi, Kawai, Kitazawa, Tsuchiya '96, ...

Matrix Model Compactifications (MMC) on non-commutative tori.
Connes, Douglas, A. Schwarz '97

Constant background B-field \longleftrightarrow Non-commutative deformation

$$
B_{i j} \xrightarrow{C D S} \theta^{i j}
$$

What about fluxes?

- Geometric (related e.g. to nilmanifolds/twisted tori): f
- NSNS (non-constant B-fields): H
- "Non-geometric" (T-duality): Q, R

Q: How can they be traced in Matrix Compactifications?

Main Results

\checkmark MMC on nilmanifolds in diverse dimensions. Analog of geometric flux.
\checkmark MMC with diverse algebraic structures. Interpretation as analogs of NSNS and non-geometric fluxes.
\checkmark (Generalized) T-duality operations connecting different flux situations appear as phase space transformations in the MM.
\checkmark Trading of properties between geometric and non-geometric fluxes under position-momentum space exchange.
\rightsquigarrow relations between non-commutativity and generalized geometry.
\checkmark Resolution of non-associativity among unitary operators \rightsquigarrow flux quantization.
\checkmark Effective actions for non-commutative gauge theories with fluxes.

Overview

(1) Matrix Model Compactification
(2) Fluxes in MMC
(3) T-duality, Non-associativity and Flux Quantization
(4) Concluding Remarks

Matrix Theory and Compactification

Matrix Theory: suggested as non-perturbative definition of M-theory.
Banks, Fischler, Shenker, Susskind '96
Action:

$$
\mathcal{S}_{\text {BFSS }}=\frac{1}{2 g} \int d t\left[\operatorname{Tr}\left(\dot{\mathcal{X}}_{a} \dot{\mathcal{X}}_{a}-\frac{1}{2}\left[\mathcal{X}_{a}, \mathcal{X}_{b}\right]^{2}\right)+\text { fermions }\right],
$$

$\mathcal{X}_{a}(t): 9$ time-dependent $N \times N$ Hermitian matrices (large N).
EOM:

$$
\ddot{\mathcal{X}}_{a}+\left[\mathcal{X}_{b},\left[\mathcal{X}^{b}, \mathcal{X}_{a}\right]\right]=0 .
$$

Matrix Theory and Compactification

Matrix Theory: suggested as non-perturbative definition of M-theory.
Banks, Fischler, Shenker, Susskind '96
Action:

$$
\mathcal{S}_{\text {BFSS }}=\frac{1}{2 g} \int d t\left[\operatorname{Tr}\left(\dot{\mathcal{X}}_{a} \dot{\mathcal{X}}_{a}-\frac{1}{2}\left[\mathcal{X}_{a}, \mathcal{X}_{b}\right]^{2}\right)+\text { fermions }\right],
$$

$\mathcal{X}_{a}(t): 9$ time-dependent $N \times N$ Hermitian matrices (large N).
EOM:

$$
\ddot{\mathcal{X}}_{a}+\left[\mathcal{X}_{b},\left[\mathcal{X}^{b}, \mathcal{X}_{a}\right]\right]=0 .
$$

Compactification : Restriction of the action functional under certain conditions (same logic for any MM, e.g. type IIB models).

Toroidal T^{d} :

$$
\begin{aligned}
\mathcal{X}_{i}+R_{i} & =U^{i} \mathcal{X}_{i}\left(U^{i}\right)^{-1}, \quad i=1, \ldots, d, \\
\mathcal{X}_{a} & =U^{i} \mathcal{X}_{a}\left(U^{i}\right)^{-1}, \quad a \neq i, \quad a=1, \ldots, 9
\end{aligned}
$$

with U^{i} unitary and invertible.

Toroidal Compactification

Solutions: Connes, Douglas, Schwarz '97

$$
\mathcal{X}_{i}=i R_{i} \hat{\mathcal{D}}_{i}, \quad \mathcal{X}_{m}=\mathcal{A}_{m},(m=d+1, \ldots, 9), \quad U^{i}=e^{i \hat{x}^{i}}
$$

with covariant derivatives $\hat{\mathcal{D}}_{i}=\hat{\partial}_{i}-i \mathcal{A}_{i}$.
Phase space of \hat{x} and \hat{p} with algebra:

$$
\begin{aligned}
{\left[\hat{x}^{i}, \hat{x}^{j}\right] } & =i \theta^{i j}, \\
{\left[\hat{x}^{i}, \hat{p}_{j}\right] } & =i \delta_{j}^{i}, \\
{\left[\hat{p}_{i}, \hat{p}_{j}\right] } & =0 .
\end{aligned}
$$

The U-algebra is: $U^{i} U^{j}=\lambda^{i j} U^{j} U^{i}$ with complex constants $\lambda^{i j}=e^{-i \theta^{i j}}$. This is a non-commutative torus in Connes' non-commutative geometry.

Substitution back into the action \rightsquigarrow NCSYM theory on a dual NC torus.
Interpretation: Deformation parameters θ are reciprocal to background field in SUGRA, $\left(\theta^{-1}\right)_{i j} \propto \int d x^{i} d x^{j} B_{i j}$.

Twisted Toroidal Compactification

Twisted Tori: twisted fibrations of toroidal fibers over toroidal bases; the geometry of the fiber changes non-trivially as the base is traversed.
Scherk, Schwarz '79; Kaloper, Myers '99; Kachru et.al. '02; Hull, Reid-Edwards '05; Grana et.al. '06

Described as:
\checkmark Homogeneous spaces constructed out of nilpotent Lie groups (nilmanifolds).
\checkmark T-duals of square tori with H flux.

Twisted Toroidal Compactification

Twisted Tori: twisted fibrations of toroidal fibers over toroidal bases; the geometry of the fiber changes non-trivially as the base is traversed.
Scherk, Schwarz '79; Kaloper, Myers '99; Kachru et.al. '02; Hull, Reid-Edwards '05; Grana et.al. '06
Described as:
\checkmark Homogeneous spaces constructed out of nilpotent Lie groups (nilmanifolds).
\checkmark T-duals of square tori with H flux.

MMC: Same logic; restrict the action by imposing conditions corresponding to nilmanifolds.

Lowe, Nastase, Ramgoolam '03; A.C., Jonke '11-'12
Twisted $\tilde{\mathrm{T}}^{3}$:

$$
\begin{aligned}
U^{i} \mathcal{X}_{i}\left(U^{i}\right)^{-1} & =\mathcal{X}_{i}+1, \quad i=1,2,3 \\
U^{1} \mathcal{X}_{3}\left(U^{1}\right)^{-1} & =\mathcal{X}_{3}-N \mathcal{X}_{2}, \quad U^{2} \mathcal{X}_{3}\left(U^{2}\right)^{-1}=\mathcal{X}_{3}+N \mathcal{X}_{1} \\
U^{i} \mathcal{X}_{a}\left(U^{i}\right)^{-1} & =\mathcal{X}_{a}, \quad a \neq i, \quad a=1, \ldots, 9, \quad(a, i) \neq\{(3,1),(3,2)\}
\end{aligned}
$$

Solutions:

$$
\mathcal{X}_{i}=i R_{i} \hat{\mathcal{D}}_{i}, \quad \mathcal{X}_{m}=\mathcal{A}_{m},(m=4, \ldots, 9), \quad U^{i}=e^{i \hat{x}^{i}}
$$

with covariant derivatives $\hat{\mathcal{D}}_{i}=\hat{\partial}_{i}-i \mathcal{A}_{i}+N f_{i}{ }^{j k} \mathcal{A}_{j} \hat{\partial}_{k}, \quad f_{3}{ }^{12}=1$.
Algebra of phase space:

$$
\begin{aligned}
{\left[\hat{x}^{i}, \hat{x}^{j}\right] } & =i \theta^{i j}+i N f^{i j}{ }_{k} \hat{x}^{k}, \\
{\left[\hat{p}_{i}, \hat{p}_{j}\right] } & =0, \\
{\left[\hat{p}_{i}, \hat{x}^{j}\right] } & =-i \delta_{i}^{j}-i N f_{i}^{j k} \hat{p}_{k} .
\end{aligned}
$$

The U-algebra is now given by: $U^{i} U^{j}=e^{-i \theta^{i j}-i N f^{i j} \hat{k}^{k}} U^{j} U^{i}$. This is a non-commutative twisted torus.

The effective action is a NC gauge theory on a dual NC twisted torus.
Interpretation: The non-constant deformation is the analog of a geometric flux.
Direct generalization for a large class of higher-D nilmanifolds.

More fluxes?

At hand: geometric flux $f_{i j}{ }^{k}$ (twisted torus).
T-dual to NSNS flux $H_{i j k}: \quad H_{i j k} \xrightarrow{T_{k}} f_{i j}{ }^{k}$.
Enlarged chain with unconventional fluxes:

$$
H_{i j k} \xrightarrow{T_{k}} f_{i j} k \xrightarrow{T_{j}} Q_{i}^{j k} \xrightarrow{T_{i}} R^{i j k} .
$$

Q: Matrix Model description?

More fluxes?

At hand: geometric flux $f_{i j}{ }^{k}$ (twisted torus).
T-dual to NSNS flux $H_{i j k}: \quad H_{i j k} \xrightarrow{T_{k}} f_{i j}{ }^{k}$.
Enlarged chain with unconventional fluxes:

$$
H_{i j k} \xrightarrow{T_{k}} f_{i j} k \xrightarrow{T_{j}} Q_{i}^{j k} \xrightarrow{T_{i}} R^{i j k} .
$$

Q: Matrix Model description?
Observe: Although full phase space operates, $e^{i \hat{p}_{i}}$ were previously ignored...

Introduce:

$$
\begin{aligned}
\mathcal{X}_{i} & =i \hat{\partial}_{i}+\hat{\mathcal{A}}_{i}, \\
\tilde{\mathcal{X}}^{i} & =(-1)^{c_{i}} \hat{x}^{i}+\hat{\mathcal{A}}^{i}
\end{aligned}
$$

$$
\begin{aligned}
U^{i} & =e^{i \chi^{i}}, \\
\tilde{U}_{i} & =e^{(-1)^{c_{i}} \hat{\partial}_{i}} .
\end{aligned}
$$

The grading will guarantee correct Heisenberg relation.

Algebraic Building Blocks

The set-up reminds of the doubled formalism \rightsquigarrow Twisted Doubled Tori.
Hull, Reid-Edwards '07, Dall'Agata, Prezas, Samtleben, Trigiante '07
Use TDT formalism to describe MMC, then project to appropriate subsector.
H-block: $\left(H^{123}=1\right.$ and $c_{i}=0$ for every $i=1,2,3$.)
Compactification Conditions:
Phase space algebra:
c.f. Lüst '10

$$
\begin{array}{rlrl}
U^{i} \mathcal{X}_{i}\left(U^{i}\right)^{-1} & =\mathcal{X}_{i}+1, & {\left[\hat{\chi}^{i}, \hat{x}^{j}\right]} & =i H^{i j k} \hat{p}_{k}, \\
\tilde{U}_{i} \tilde{\mathcal{X}}^{i}\left(\tilde{U}_{i}\right)^{-1} & =\tilde{\mathcal{X}}^{i}+1, & {\left[\hat{p}_{i}, \hat{p}_{j}\right]=0,} \\
U^{i} \tilde{\mathcal{X}}^{j}\left(U^{i}\right)^{-1} & =\tilde{\mathcal{X}}^{j}+H^{i j k} \mathcal{X}_{k}, & {\left[\hat{p}_{i}, \hat{x}^{j}\right]=-i \delta_{j}^{j} .}
\end{array}
$$

The U-algebra is: $U^{i} U^{j}=e^{-H^{i j} \hat{\partial}_{k}} U^{j} U^{i}, \quad$ i.e. $\theta^{i j}=H^{i j k} \hat{p}_{k}$.
The Connes-Douglas-Schwarz correspondence suggests a SUGRA B-field

$$
B=x^{1} d x^{2} \wedge d x^{3}+x^{2} d x^{3} \wedge d x^{1}+x^{3} d x^{1} \wedge d x^{2}
$$

where x^{i} are standard toroidal coordinates.

Q-block: $\left(Q_{23}^{1}=1\right.$, while $c_{1}=0$ and $c_{2}=c_{3}=1$.)
Compactification Conditions:

$$
\begin{aligned}
U^{i} \mathcal{X}_{i}\left(U^{i}\right)^{-1} & =\mathcal{X}_{i}+1 \\
U^{1} \mathcal{X}_{2}\left(U^{1}\right)^{-1} & =\mathcal{X}_{2}+\tilde{\mathcal{X}}^{3} \\
U^{1} \mathcal{X}_{3}\left(U^{1}\right)^{-1} & =\mathcal{X}_{3}-\tilde{\mathcal{X}}^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\tilde{U}_{i} \tilde{\mathcal{X}}^{i}\left(\tilde{U}_{i}\right)^{-1} & =\tilde{\mathcal{X}}^{i}+1 \\
\tilde{U}_{2} \mathcal{X}_{3}\left(\tilde{U}_{2}\right)^{-1} & =\mathcal{X}_{3}+\mathcal{X}_{1} \\
\tilde{U}_{3} \mathcal{X}_{2}\left(\tilde{U}_{3}\right)^{-1} & =\mathcal{X}_{2}-\mathcal{X}_{1} \\
\tilde{U}_{2} \tilde{\mathcal{X}}^{1}\left(\tilde{U}_{2}\right)^{-1} & =\tilde{\mathcal{X}}^{1}-\tilde{\mathcal{X}}^{3} \\
\tilde{U}_{3} \tilde{\mathcal{X}}^{1}\left(\tilde{U}_{3}\right)^{-1} & =\tilde{\mathcal{X}}^{1}+\tilde{\mathcal{X}}^{2}
\end{aligned}
$$

Phase space algebra:

$$
\begin{aligned}
{\left[\hat{x}^{i}, \hat{x}^{j}\right] } & =0 \\
{\left[\hat{p}_{i}, \hat{p}_{j}\right] } & =-i Q_{i j}^{k} \hat{p}_{k}, \\
{\left[\hat{p}_{i}, \hat{x}^{j}\right] } & =-i \delta_{i}^{j}+i Q_{i k}^{j} \hat{x}^{k}
\end{aligned}
$$

The U-algebra is commutative. But the \tilde{U} one is not: $\tilde{U}_{i} \tilde{U}_{j}=e^{Q_{i j}{ }^{k} \hat{\partial}_{k}} \tilde{U}_{j} \tilde{U}_{i}$.
$\tilde{\theta}_{i j}=-Q_{i j}{ }^{k} \hat{p}_{k}$, expected to account for non-geometric Q flux.

R-block: ($c_{1}=1$ for all $i=1,2,3$.)
Compactification Conditions:

$$
\begin{aligned}
U^{i} \mathcal{X}_{i}\left(U^{i}\right)^{-1} & =\mathcal{X}_{i}+1, \\
\tilde{U}_{i} \tilde{\mathcal{X}}^{i}\left(\tilde{U}_{i}\right)^{-1} & =\tilde{\mathcal{X}}^{i}+1, \\
\tilde{U}_{i} \mathcal{X}_{j}\left(\tilde{U}_{i}\right)^{-1} & =\mathcal{X}_{j}+R_{i j k} \tilde{\mathcal{X}}_{k} .
\end{aligned}
$$

Phase space algebra:

$$
\begin{aligned}
{\left[\hat{x}^{i}, \hat{x}^{j}\right] } & =0, \\
{\left[\hat{p}_{i}, \hat{p}_{j}\right] } & =i R_{i j k} \hat{x}^{k}, \\
{\left[\hat{p}_{i}, \hat{x}^{j}\right] } & =-i \delta_{i}^{j} .
\end{aligned}
$$

The Us commute again, unlike the $\tilde{U} \mathrm{~s}: \tilde{U}_{i} \tilde{U}_{j}=e^{-i R_{j j k} \hat{x}^{k}} \tilde{U}_{j} \tilde{U}_{i}$.
$\tilde{\theta}_{i j}=R_{i j k} \hat{x}_{k}$, expected to account for non-geometric R flux.

Block-to-block moves and T-duality

At hand: 4 types of solutions of the compactified Matrix Model.

Q: Which operations take each solution to the other?
$H \rightarrow f:$
At the level of the phase-space algebra,

$$
\begin{aligned}
& \hat{x}^{3} \rightarrow-\hat{p}_{3}, \\
& \hat{p}_{3} \rightarrow \hat{x}^{3} .
\end{aligned}
$$

Grading correction,

$$
(-1)_{f}^{\hat{c}_{i}}=\operatorname{diag}(1,1,1,1,1,-1) .
$$

May be represented as a matrix $M_{H \rightarrow f}$ acting on $\binom{\hat{x}^{i}}{\hat{p}_{i}}$.

Block-to-block moves and T-duality

Full Picture:

with $\theta^{i j}=\left[\hat{x}^{i}, \hat{x}^{j}\right]$ and $\tilde{\theta}_{i j}=\left[\hat{p}_{i}, \hat{p}_{j}\right]$.

Finding the correct subsector

Matrix theory does not really possess $\tilde{\mathcal{X}}^{i}$ as dynamical DoF. Q: Which is the correct subsector?

For f and H cases, easy: formulate everything just for \mathcal{X}_{i}.
But: for Q and R cases, compactification on \mathcal{X}_{i}-sector is not well-defined. What is more, for the R case: $\left[\mathcal{X}_{i}, \mathcal{X}_{j}, \mathcal{X}_{k}\right] \neq 0$!
But Hermitian matrices cannot be non-associative!

Finding the correct subsector

Matrix theory does not really possess $\tilde{\mathcal{X}}^{i}$ as dynamical DoF. Q: Which is the correct subsector?

For f and H cases, easy: formulate everything just for \mathcal{X}_{i}.
But: for Q and R cases, compactification on \mathcal{X}_{i}-sector is not well-defined.
What is more, for the R case: $\left[\mathcal{X}_{i}, \mathcal{X}_{j}, \mathcal{X}_{k}\right] \neq 0$!
But Hermitian matrices cannot be non-associative!
Resolution: For Q and R, the correct subsector is the $\tilde{\mathcal{X}}^{i}$ in the momentum rep.
\rightsquigarrow There is a correspondence:

$$
\left.\theta^{i j}\right|_{f} \text { or }\left.\theta^{i j}\right|_{H} \text { in } \hat{x} \text {-space }\left.\longleftrightarrow \tilde{\theta}_{i j}\right|_{Q} \text { or }\left.\tilde{\theta}_{i j}\right|_{R} \text { in } \hat{p} \text {-space. }
$$

Similar result in Generalized Complex Geometry approach...
Andriot, Larfors, Lüst, Patalong '11
Indication: Just as $\theta^{i j} \sim\left(B_{i j}\right)^{-1}$, also $\quad \tilde{\theta}_{i j} \sim\left(\beta^{i j}\right)^{-1}, \beta$: the bivector of GCG.

Non-Associativity and Flux Quantization

All encountered phase space algebras exhibit some non-associativity.
E.g. $\left[\hat{p}_{i}, \hat{x}^{j}, \hat{x}^{k}\right] \propto f_{i}{ }^{j k}$ for the f-block, $\left[\hat{x}^{j}, \hat{x}^{j}, \hat{x}^{k}\right] \propto H^{i j k}$ for the H-block, etc.

The induced non-associativity of \mathcal{X}_{i} is resolved as above.
Q: What about the algebraic elements U^{i}, which define the NC torus?

Non-Associativity and Flux Quantization

All encountered phase space algebras exhibit some non-associativity.
E.g. $\left[\hat{p}_{i}, \hat{x}^{j}, \hat{x}^{k}\right] \propto f_{i}^{j k}$ for the f-block, $\left[\hat{x}^{i}, \hat{x}^{j}, \hat{x}^{k}\right] \propto H^{i j k}$ for the H-block, etc.

The induced non-associativity of \mathcal{X}_{i} is resolved as above.
Q: What about the algebraic elements U^{i}, which define the NC torus?
H-case: $\quad U^{i}\left(U^{j} U^{k}\right)=e^{\frac{i}{2} H^{i j k}}\left(U^{i} U^{j}\right) U^{k}$.
$\rightsquigarrow 3$-cocycle; typical in QM systems with fluxes. Jackiw '85
Resolution: The flux has to be quantized,

$$
H=4 \pi n, \quad n \in \mathbb{Z}
$$

\rightsquigarrow Flux Quantization.
Similar to DFT, where large gauge transformations associate even when coordinate maps do not. Hohm, Zwiebach '12

Gauge Theories

Effective action for toroidal matrix compactification:

$$
\mathcal{S} \propto \int d t \operatorname{Tr}\left(F_{i j} F^{i j}+\text { scalars }+ \text { fermions }\right)
$$

with $\operatorname{Tr} \rightarrow \int d^{3} x \operatorname{tr}$ and $F_{i j}=\partial_{i} A_{j}-\partial_{j} A_{i}+i A_{i} \star A_{j}-i A_{j} \star A_{i}$
Moyal-Weyl \star product: $\quad f \star g=\left.e^{\frac{i}{2} \frac{\partial}{\partial x^{i}} \hat{\theta}^{i j} \frac{\partial}{\partial y^{j}}} f(x) g(y)\right|_{y \rightarrow x}$.

Gauge Theories

Effective action for toroidal matrix compactification:

$$
\mathcal{S} \propto \int d t \operatorname{Tr}\left(F_{i j} F^{i j}+\text { scalars }+ \text { fermions }\right),
$$

with $\operatorname{Tr} \rightarrow \int d^{3} x \operatorname{tr}$ and $F_{i j}=\partial_{i} A_{j}-\partial_{j} A_{i}+i A_{i} \star A_{j}-i A_{j} \star A_{i}$
Moyal-Weyl \star product: $\quad f \star g=\left.e^{\frac{i}{2} \frac{\partial}{\partial x^{i}} \hat{\theta}^{i j} \frac{\partial}{\partial y^{j}}} f(x) g(y)\right|_{y \rightarrow x}$.
Effective actions with fluxes: additional terms are induced.
\rightsquigarrow diverse non-commutative gauge theories and \star products.
e.g. for the nilmanifold:

$$
f \star g=\left.e^{-\frac{i}{2} f^{i j}} k^{\kappa^{k} \frac{\partial}{\partial y^{\prime}} \frac{\partial}{\partial z}} f(y) g(z)\right|_{y, z \rightarrow x} .
$$

Main messages

\checkmark Matrix Models: useful framework for unconventional string compactifications.
\checkmark Fluxes, dualities, non-geometry, non-commutativity.
\checkmark Relations to other frameworks (double field theory, generalized geometry, etc.)

Some prospects

- Analysis of the effective theories with fluxes. in progress, with L. Jonke
- Full study of possible vacua. Coexistence of all types of fluxes.
in progress, with M. Schmitz
- Phenomenology of unconventional compactifications?
- Non-perturbative dualities?

