Matrix theory origins of non-geometric fluxes

Athanasios Chatzistavrakidis

Bethe Center for Theoretical Physics, University of Bonn

Based on:

A.C., 1108.1107 [hep-th] (PRD 84 (2011)) A.C. and Larisa Jonke, 1202.4310 [hep-th] (PRD 85 (2012)) A.C. and Larisa Jonke, 1207.6412 [hep-th]

XVIII European Workshop on String Theory September 19-27, 2012

《日》 《圖》 《日》 《日》

Introduction and Motivation

Main Objective

Study properties of string/M theory compactifications beyond low-energy SUGRA.

E.g. unconventional compactifications

(winding modes, dualities, non-geometric fluxes, non-commutative manifolds etc.).

(日)((同))((日)((日))(日)

Introduction and Motivation

Main Objective

Study properties of string/M theory compactifications beyond low-energy SUGRA.

E.g. unconventional compactifications

(winding modes, dualities, non-geometric fluxes, non-commutative manifolds etc.).

Frameworks:

- Doubled formalism Twisted Doubled Tori
- Generalized Complex Geometry
- ✓ Double Field Theory
- CFT Sigma models
- ✓ Matrix Models

See lectures by Hull, talks by Lindstrom and Lüst.

Introduction and Motivation

Main Objective

Study properties of string/M theory compactifications beyond low-energy SUGRA.

E.g. unconventional compactifications

(winding modes, dualities, non-geometric fluxes, non-commutative manifolds etc.).

Frameworks:

- Doubled formalism Twisted Doubled Tori
 Hull; Hull, Reid-Edwards; Dall'Agata, Prezas, Samtleben, Trigiante
- Generalized Complex Geometry

Andriot, Hohm, Larfors, Lüst, Patalong; Berman, Musaev, Thompson

✓ Double Field Theory

Hohm, Hull, Zwiebach; Aldazabal et.al.; Geissbuhler; Grana, Marques; Dibitetto et.al.

✓ CFT - Sigma models

Lüst; Blumenhagen, Plauschinn; Mylonas, Schupp, Szabo

Matrix Models

Lowe, Nastase, Ramgoolam; A.C., Jonke

Why Matrix Models?

I 💛 SUGRA but...

<ロ> (四) (四) (三) (三) (三)

Why Matrix Models?

I 💛 SUGRA but...

For certain aspects Matrix Models appear more advantageous:

- ✓ Matrix Theory: inherently quantum-mechanical (crucial role of phase space).
- Non-commutative structures.
- SUGRA excludes stringy winding modes.
- ✓ Flux Quantization.

イロン 不同 とくほう 不良 とう

Why Matrix Models?

I 💛 SUGRA but...

For certain aspects Matrix Models appear more advantageous:

- ✓ Matrix Theory: inherently quantum-mechanical (crucial role of phase space).
- Non-commutative structures.
- SUGRA excludes stringy winding modes.
- ✓ Flux Quantization.

Non-perturbative framework, analytical *and* numerical approaches. What is more, recent progress in

- Particle physics, "matrix model building". Aoki '10, A.C., Steinacker, Zoupanos '11
- Early and late time cosmology.

Kim, Nishimura, Tsuchiya '11-'12

イロト 不得下 イヨト イヨト

Matrix Models as non-perturbative definitions of string/M theory. Banks, Fischler, Shenker, Susskind '96, Ishibashi, Kawai, Kitazawa, Tsuchiya '96, ...

Matrix Model Compactifications (MMC) on non-commutative tori. Connes, Douglas, A. Schwarz '97

 $Constant \ background \ B-field \longleftrightarrow Non-commutative \ deformation$

$$\mathsf{B}_{ij} \stackrel{\mathsf{CDS}}{\longleftrightarrow} heta^{ij}$$

イロト 不得下 不良下 不良下

Matrix Models as non-perturbative definitions of string/M theory. Banks, Fischler, Shenker, Susskind '96, Ishibashi, Kawai, Kitazawa, Tsuchiya '96, ...

Matrix Model Compactifications (MMC) on non-commutative tori. Connes, Douglas, A. Schwarz '97

 $Constant \ background \ B-field \longleftrightarrow Non-commutative \ deformation$

$$\mathsf{B}_{ij} \hspace{0.1in} \overset{CDS}{\longleftrightarrow} \hspace{0.1in} heta^{ij}$$

What about fluxes?

- Geometric (related e.g. to nilmanifolds/twisted tori): f
- NSNS (non-constant B-fields): H
- "Non-geometric" (T-duality): Q, R

Q: How can they be traced in Matrix Compactifications?

イロト 不得下 イヨト イヨト

Main Results

- ✓ MMC on nilmanifolds in diverse dimensions. Analog of geometric flux.
- MMC with diverse algebraic structures.
 Interpretation as analogs of NSNS and non-geometric fluxes.
- ✓ (Generalized) T-duality operations connecting different flux situations appear as phase space transformations in the MM.
- Trading of properties between geometric and non-geometric fluxes under position-momentum space exchange.
 ~> relations between non-commutativity and generalized geometry.
- \checkmark Resolution of non-associativity among unitary operators \rightsquigarrow flux quantization.
- ✓ Effective actions for non-commutative gauge theories with fluxes.

Overview

- 2 Fluxes in MMC
- 3 T-duality, Non-associativity and Flux Quantization
- 4 Concluding Remarks

イロン イ団 と イヨン イヨン

Matrix Theory and Compactification

Matrix Theory: suggested as non-perturbative definition of M-theory. Banks, Fischler, Shenker, Susskind '96 Action:

$$\mathcal{S}_{BFSS} = \frac{1}{2g} \int dt \bigg[Tr \big(\dot{\mathcal{X}}_{a} \dot{\mathcal{X}}_{a} - \frac{1}{2} [\mathcal{X}_{a}, \mathcal{X}_{b}]^{2} \big) + \text{fermions} \bigg],$$

 $\mathcal{X}_{a}(t)$: 9 time-dependent $N \times N$ Hermitian matrices (large N).

EOM:

 $\ddot{\mathcal{X}}_a + [\mathcal{X}_b, [\mathcal{X}^b, \mathcal{X}_a]] = 0.$

Matrix Theory and Compactification

Matrix Theory: suggested as non-perturbative definition of M-theory. Banks, Fischler, Shenker, Susskind '96 Action:

$$S_{BFSS} = \frac{1}{2g} \int dt \bigg[Tr \big(\dot{\mathcal{X}}_a \dot{\mathcal{X}}_a - \frac{1}{2} [\mathcal{X}_a, \mathcal{X}_b]^2 \big) + \text{fermions} \bigg],$$

 $\mathcal{X}_{a}(t)$: 9 time-dependent $N \times N$ Hermitian matrices (large N).

EOM:

$$\ddot{\mathcal{X}}_a + [\mathcal{X}_b, [\mathcal{X}^b, \mathcal{X}_a]] = 0.$$

Compactification : Restriction of the action functional under certain conditions (same logic for any MM, e.g. type IIB models).

Toroidal T^d:

$$egin{array}{rcl} \mathcal{X}_i+R_i&=&U^i\mathcal{X}_i(U^i)^{-1},\quad i=1,...,d,\ \mathcal{X}_a&=&U^i\mathcal{X}_a(U^i)^{-1},\quad a
eq i,\quad a=1,\ldots,9, \end{array}$$

with U^i unitary and invertible.

Toroidal Compactification

Solutions: Connes, Douglas, Schwarz '97

$$\mathcal{X}_i = iR_i\hat{\mathcal{D}}_i, \quad \mathcal{X}_m = \mathcal{A}_m, (m = d + 1, \dots, 9), \quad U^i = e^{i\hat{x}^i},$$

with covariant derivatives $\hat{\mathcal{D}}_i = \hat{\partial}_i - i\mathcal{A}_i.$

Phase space of \hat{x} and \hat{p} with algebra:

$$egin{array}{rcl} [\hat{x}^i, \hat{x}^j] &=& i heta^{ij}, \ [\hat{x}^i, \hat{p}_j] &=& i\delta^i_j, \ [\hat{p}_i, \hat{p}_j] &=& 0. \end{array}$$

The U-algebra is: $U^{i}U^{j} = \lambda^{ij}U^{j}U^{i}$ with complex constants $\lambda^{ij} = e^{-i\theta^{ij}}$. This is a non-commutative torus in Connes' non-commutative geometry.

Substitution back into the action \rightsquigarrow NCSYM theory on a dual NC torus.

Interpretation: Deformation parameters θ are reciprocal to background field in SUGRA, $(\theta^{-1})_{ij} \propto \int dx^i dx^j B_{ij}$.

Twisted Toroidal Compactification

<u>Twisted Tori</u>: twisted fibrations of toroidal fibers over toroidal bases; the geometry of the fiber changes non-trivially as the base is traversed. Scherk, Schwarz '79; Kaloper, Myers '99; Kachru et.al. '02; Hull, Reid-Edwards '05; Grana et.al. '06

Described as:

- ✓ Homogeneous spaces constructed out of nilpotent Lie groups (nilmanifolds).
- \checkmark T-duals of square tori with *H* flux.

イロト 不得下 不良下 不良下

Twisted Toroidal Compactification

<u>Twisted Tori</u>: twisted fibrations of toroidal fibers over toroidal bases; the geometry of the fiber changes non-trivially as the base is traversed. Scherk, Schwarz '79; Kaloper, Myers '99; Kachru et.al. '02; Hull, Reid-Edwards '05; Grana et.al. '06

Described as:

- ✓ Homogeneous spaces constructed out of nilpotent Lie groups (nilmanifolds).
- \checkmark T-duals of square tori with *H* flux.

<u>MMC</u>: Same logic; restrict the action by imposing conditions corresponding to nilmanifolds.

Lowe, Nastase, Ramgoolam '03; A.C., Jonke '11-'12

Twisted \tilde{T}^3 :

$$\begin{array}{lll} U^{i}\mathcal{X}_{i}(U^{i})^{-1} &=& \mathcal{X}_{i}+1, \quad i=1,2,3, \\ U^{1}\mathcal{X}_{3}(U^{1})^{-1} &=& \mathcal{X}_{3}-N\mathcal{X}_{2}, \quad U^{2}\mathcal{X}_{3}(U^{2})^{-1}=\mathcal{X}_{3}+N\mathcal{X}_{1}, \\ U^{i}\mathcal{X}_{a}(U^{i})^{-1} &=& \mathcal{X}_{a}, \quad a\neq i, \quad a=1,\ldots,9, \quad (a,i)\neq \{(3,1),(3,2)\}. \end{array}$$

<ロ> (四) (四) (三) (三) (三) (三)

Solutions:

$$\mathcal{X}_i = iR_i\hat{\mathcal{D}}_i, \quad \mathcal{X}_m = \mathcal{A}_m, (m = 4, \dots, 9), \quad U^i = e^{i\hat{\chi}^i},$$

with covariant derivatives $\hat{\mathcal{D}}_i = \hat{\partial}_i - i\mathcal{A}_i + Nf_i^{\ jk}\mathcal{A}_j\hat{\partial}_k$, $f_3^{\ 12} = 1$.

Algebra of phase space:

$$\begin{array}{lll} \left[\hat{x}^{i},\hat{x}^{j}\right] &=& i\theta^{ij}+iNf^{ij}{}_{k}\hat{x}^{k},\\ \left[\hat{\rho}_{i},\hat{\rho}_{j}\right] &=& 0,\\ \left[\hat{\rho}_{i},\hat{x}^{j}\right] &=& -i\delta^{j}_{i}-iNf^{-jk}_{i}\hat{\rho}_{k}. \end{array}$$

The U-algebra is now given by: $U^{i}U^{j} = e^{-i\theta^{ij} - iNf^{ij}} k^{\hat{x}^{k}} U^{j} U^{i}$. This is a non-commutative twisted torus.

The effective action is a NC gauge theory on a dual NC twisted torus.

Interpretation: The non-constant deformation is the analog of a geometric flux.

Direct generalization for a large class of higher-D nilmanifolds.

More fluxes?

At hand: geometric flux f_{ij}^{k} (twisted torus).

T-dual to NSNS flux H_{ijk} : $H_{ijk} \xrightarrow{T_k} f_{ij}^k$.

Enlarged chain with unconventional fluxes:

$$H_{ijk} \stackrel{T_k}{\longrightarrow} f_{ij} \stackrel{k}{\longrightarrow} Q_i^{jk} \stackrel{T_i}{\longrightarrow} R^{ijk}.$$

Q: Matrix Model description?

<ロ> (四) (四) (三) (三) (三) (三)

More fluxes?

At hand: geometric flux f_{ij}^{k} (twisted torus).

T-dual to NSNS flux H_{ijk} : $H_{ijk} \xrightarrow{T_k} f_{ij}^k$.

Enlarged chain with unconventional fluxes:

$$H_{ijk} \stackrel{T_k}{\longrightarrow} f_{ij} \stackrel{k}{\longrightarrow} \frac{T_j}{Q_i} \stackrel{jk}{\longrightarrow} \frac{T_i}{R^{ijk}}.$$

Q: Matrix Model description?

Observe: Although full phase space operates, $e^{i\hat{\rho}_i}$ were previously ignored... Introduce: and:

The grading will guarantee correct Heisenberg relation.

Algebraic Building Blocks

The set-up reminds of the doubled formalism \rightsquigarrow Twisted Doubled Tori. Hull, Reid-Edwards '07, Dall'Agata, Prezas, Samtleben, Trigiante '07 Use TDT formalism to describe MMC, then project to appropriate subsector.

<u>H-block</u>: $(H^{123} = 1 \text{ and } c_i = 0 \text{ for every } i = 1, 2, 3.)$

Compactification Conditions:

Phase space algebra: c.f. Lüst '10

イロッ 不通 アイヨア イヨア ヨー ろんで

 $\begin{array}{rcl} U^{i} \mathcal{X}_{i}(U^{i})^{-1} &=& \mathcal{X}_{i} + 1, \\ \tilde{U}_{i} \tilde{\mathcal{X}}^{i}(\tilde{U}_{i})^{-1} &=& \tilde{\mathcal{X}}^{i} + 1, \\ U^{i} \tilde{\mathcal{X}}^{j}(U^{i})^{-1} &=& \tilde{\mathcal{X}}^{j} + H^{ijk} \mathcal{X}_{k}, \end{array} \qquad \begin{array}{ll} [\hat{x}^{i}, \hat{x}^{j}] &=& i H^{ijk} \hat{p}_{k}, \\ [\hat{p}_{i}, \hat{p}_{j}] &=& 0, \\ [\hat{p}_{i}, \hat{x}^{j}] &=& -i \delta^{j}_{i}. \end{array}$

The U-algebra is: $U^{i}U^{j} = e^{-H^{ijk}\hat{\partial}_{k}}U^{j}U^{i}$, i.e. $\theta^{ij} = H^{ijk}\hat{p}_{k}$.

The Connes-Douglas-Schwarz correspondence suggests a SUGRA B-field

$$B = x^1 dx^2 \wedge dx^3 + x^2 dx^3 \wedge dx^1 + x^3 dx^1 \wedge dx^2,$$

where x^i are standard toroidal coordinates.

Q-block: $(Q_{23}^1 = 1, \text{ while } c_1 = 0 \text{ and } c_2 = c_3 = 1.)$

Compactification Conditions:

$$\begin{array}{rcl} U^{i}\mathcal{X}_{i}(U^{i})^{-1} &=& \mathcal{X}_{i}+1,\\ U^{1}\mathcal{X}_{2}(U^{1})^{-1} &=& \mathcal{X}_{2}+\tilde{\mathcal{X}}^{3},\\ U^{1}\mathcal{X}_{3}(U^{1})^{-1} &=& \mathcal{X}_{3}-\tilde{\mathcal{X}}^{2}, \end{array}$$

Phase space algebra:

and

$$\begin{array}{rcl} \tilde{U}_{i}\tilde{\mathcal{X}}^{i}(\tilde{U}_{i})^{-1} & = & \tilde{\mathcal{X}}^{i}+1, \\ \tilde{U}_{2}\mathcal{X}_{3}(\tilde{U}_{2})^{-1} & = & \mathcal{X}_{3}+\mathcal{X}_{1}, \\ \tilde{U}_{3}\mathcal{X}_{2}(\tilde{U}_{3})^{-1} & = & \mathcal{X}_{2}-\mathcal{X}_{1}, \\ \tilde{U}_{2}\tilde{\mathcal{X}}^{1}(\tilde{U}_{2})^{-1} & = & \tilde{\mathcal{X}}^{1}-\tilde{\mathcal{X}}^{3}, \\ \tilde{U}_{3}\tilde{\mathcal{X}}^{1}(\tilde{U}_{3})^{-1} & = & \tilde{\mathcal{X}}^{1}+\tilde{\mathcal{X}}^{2}, \end{array}$$

イロン イロン イヨン イヨン 三日

The U-algebra is commutative. But the \tilde{U} one is not: $\tilde{U}_i \tilde{U}_j = e^{Q_i^k \hat{\partial}_k} \tilde{U}_j \tilde{U}_i$.

 $ilde{ heta}_{ij} = -Q_{ij}^{\ \ k} \hat{p}_k$, expected to account for non-geometric Q flux.

<u>**R-block</u>**: $(c_1 = 1 \text{ for all } i = 1, 2, 3.)$ </u>

Compactification Conditions:

Phase space algebra:

<ロ> (四) (四) (三) (三) (三) (三)

The Us commute again, unlike the \tilde{U}_{s} : $\tilde{U}_{i}\tilde{U}_{j} = e^{-iR_{ijk}\hat{x}^{k}}\tilde{U}_{j}\tilde{U}_{i}$.

 $\tilde{\theta}_{ij} = R_{ijk} \hat{x}_k$, expected to account for non-geometric R flux.

Block-to-block moves and T-duality

At hand: 4 types of solutions of the compactified Matrix Model.

Q: Which operations take each solution to the other?

 $\underline{H \rightarrow f}$:

At the level of the phase-space algebra,

$$egin{array}{rcl} \hat{x}^3 & o & - \hat{p}_3, \ \hat{p}_3 & o & \hat{x}^3. \end{array}$$

Grading correction,

 $(-1)_{f}^{\hat{c}_{i}} = diag(1, 1, 1, 1, 1, 1, -1).$

소리가 조潤가 소문가 소문가 나물

May be represented as a matrix $M_{H \to f}$ acting on $\begin{pmatrix} \hat{x}^i \\ \hat{p}_i \end{pmatrix}$.

Block-to-block moves and T-duality

Full Picture:

w

<ロ> (四) (四) (三) (三) (三)

Finding the correct subsector

Matrix theory does not really possess $\tilde{\mathcal{X}}^i$ as dynamical DoF. Q: Which is the correct subsector?

For f and H cases, easy: formulate everything just for X_i .

But: for Q and R cases, compactification on \mathcal{X}_i -sector is not well-defined. What is more, for the R case: $[\mathcal{X}_i, \mathcal{X}_j, \mathcal{X}_k] \neq 0!$ But Hermitian matrices cannot be non-associative!

イロト 不得 トイヨト イヨト

Finding the correct subsector

Matrix theory does not really possess $\tilde{\mathcal{X}}^i$ as dynamical DoF. Q: Which is the correct subsector?

For f and H cases, easy: formulate everything just for X_i .

But: for Q and R cases, compactification on \mathcal{X}_i -sector is not well-defined. What is more, for the R case: $[\mathcal{X}_i, \mathcal{X}_j, \mathcal{X}_k] \neq 0!$ But Hermitian matrices cannot be non-associative!

<u>Resolution</u>: For Q and R, the correct subsector is the $\tilde{\mathcal{X}}^i$ in the momentum rep.

 \rightsquigarrow There is a correspondence:

 $\theta^{ij}|_{f} \quad \text{or} \quad \theta^{ij}|_{H} \quad \text{in} \quad \hat{x}\text{-space} \quad \longleftrightarrow \quad \tilde{\theta}_{ij}|_{Q} \quad \text{or} \quad \tilde{\theta}_{ij}|_{R} \quad \text{in} \quad \hat{p}\text{-space} \; .$

Similar result in Generalized Complex Geometry approach... Andriot, Larfors, Lüst, Patalong '11

<u>Indication</u>: Just as $\theta^{ij} \sim (B_{ij})^{-1}$, also $\tilde{\theta}_{ij} \sim (\beta^{ij})^{-1}$, β : the bivector of GCG.

Non-Associativity and Flux Quantization

All encountered phase space algebras exhibit some non-associativity.

E.g. $[\hat{p}_i, \hat{x}^j, \hat{x}^k] \propto f_i^{jk}$ for the *f*-block, $[\hat{x}^i, \hat{x}^j, \hat{x}^k] \propto H^{ijk}$ for the *H*-block, etc.

The induced non-associativity of X_i is resolved as above.

Q: What about the algebraic elements U^i , which define the NC torus?

Non-Associativity and Flux Quantization

All encountered phase space algebras exhibit some non-associativity.

E.g. $[\hat{p}_i, \hat{x}^j, \hat{x}^k] \propto f_i^{jk}$ for the *f*-block, $[\hat{x}^i, \hat{x}^j, \hat{x}^k] \propto H^{ijk}$ for the *H*-block, etc.

The induced non-associativity of X_i is resolved as above.

Q: What about the algebraic elements U^i , which define the NC torus?

<u>H-case</u>: $U^i(U^jU^k) = e^{\frac{i}{2}H^{ijk}}(U^iU^j)U^k$.

 \rightsquigarrow 3-cocycle; typical in QM systems with fluxes. $_{\rm Jackiw}$ '85

Resolution: The flux has to be quantized,

 $H = 4\pi n, \quad n \in \mathbb{Z}.$

 \rightsquigarrow Flux Quantization.

Similar to DFT, where large gauge transformations associate even when coordinate maps do not. Hohm, Zwiebach '12

A. Chatzistavrakidis (BCTP Bonn)

Gauge Theories

Effective action for toroidal matrix compactification:

$$\mathcal{S} \propto \int dt \operatorname{Tr}(F_{ij}F^{ij} + \text{scalars} + \text{fermions}),$$

with $\text{Tr} \to \int d^3 x \text{ tr}$ and $F_{ij} = \partial_i A_j - \partial_j A_i + i A_i \star A_j - i A_j \star A_i$

Moyal-Weyl \star product: $f \star g = e^{\frac{i}{2} \frac{\partial}{\partial x^i} \hat{\theta}^{ij} \frac{\partial}{\partial y^j}} f(x)g(y)|_{y \to x}$.

Gauge Theories

Effective action for toroidal matrix compactification:

$$\mathcal{S} \propto \int dt \; \mathrm{Tr}(F_{ij}F^{ij} + \mathrm{scalars} + \mathrm{fermions}),$$

with $\operatorname{Tr} \to \int d^3 x \operatorname{tr}$ and $F_{ij} = \partial_i A_j - \partial_j A_i + i A_i \star A_j - i A_j \star A_i$ Moyal-Weyl \star product: $f \star g = e^{\frac{i}{2} \frac{\partial}{\partial x^i} \hat{\theta}^{ij} \frac{\partial}{\partial y^j}} f(x)g(y)|_{y \to x}$.

Effective actions with fluxes: additional terms are induced.

 \rightsquigarrow diverse non-commutative gauge theories and \star products.

e.g. for the nilmanifold:

$$f\star g = e^{-rac{i}{2}f^{ij}}k^{\lambda^k}rac{\partial}{\partial y^i}rac{\partial}{\partial z^j}f(y)g(z)|_{y,z\to x} \; .$$

イロト 不得 トイヨト イヨト 二日

Main messages

- ✓ Matrix Models: useful framework for unconventional string compactifications.
- Fluxes, dualities, non-geometry, non-commutativity.
- Relations to other frameworks (double field theory, generalized geometry, etc.)

Some prospects

- Analysis of the effective theories with fluxes. in progress, with L. Jonke
- Full study of possible vacua. Coexistence of all types of fluxes. in progress, with M. Schmitz
- Phenomenology of unconventional compactifications?
- Non-perturbative dualities?