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Motivation 

 Duality symmetry plays important role in many theor. models of physical interest 

 N=8 supergravity is invariant under 𝑬𝟕(𝟕)  (Cremmer & Julia ‘79) 

 

 

 

 

 
 

 

 

 

 N=8 supergravity is perturbatively finite at 3 and 4 loops (Bern et. al.) 

 Assumption: SUSY + 𝑬𝟕(𝟕) may be in charge of the absence of divergences (Kallosh)   

 𝑬𝟕(𝟕)-invariant counterterms can appear at 7 loops  𝜕2𝑘𝐹4, 𝜕2𝑘𝑅4 
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Motivation 
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 higher-order deformations 𝜕2𝑘𝐹4 in the effective action will lead to a non-linear 
deformation of the twisted self-duality condition 

 

 

 

 

 

 Questions to answer: 

 how, exactly, possible higher-order terms may deform the effective action 
and duality relation between ‘electric’ and ‘magnetic’ fields, while keeping 
duality symmetry? 

 check  whether this deformation is compatible with supersymmetry 
 

- in this talk we shall mainly concern with the first problem 

- brief comments on supersymmetry in conclusion 
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∆(F) - duality-invariant counterterm 



Two ways of dealing with duality-symmetric theories 
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I. Lagrangian depends only on ‘electric’ fields L(F) and is not duality-invariant 
 

 Duality symmetry manifests itself only on-shell: 

 

 
 

 

 

 

 The variation of L(F) under duality transform should satisfy  a condition               
(Gaillard-Zumino ’81, ’97;  Gibbons-Rasheed ‘95) 

 

 
 

II. Lagrangian depends on both ‘electric’ and ‘magnetic’ fields             

      It is manifestly duality invariant. Duality condition follows from e.o.m. 

      Subtleties with space-time covariance 

)(
)(

2
~

FF
F

FL
G 





in the linear  case 

)2(         ),,( ansformduality trlinear  - NSpMMGF j
ij

j
iii  FFF 

)
~

(
4
1 GFL   0

~~
       GGFF

).( iL F



Duality-invariant actions 
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 Space-time invariance is not manifest  

    (Zwanziger ‘71, Deser & Teitelboim ‘76, Henneaux & Teitelboim ‘87, ….)  

 

Example:  duality-symmetric Maxwell action for )2,1(    idAiiF
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Space-time covariant and duality-invariant action 
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 Space-time covariance can be restored by introducing an auxiliary scalar field a(x) 
(Pasti, D.S. & Tonin ‘95) 
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Non-linear generalization 
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Non-linear Lagrangian & local a(x)-symmetry 
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2nd  local symmetry in the linear case: 
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 v =0  on shell 

𝐴𝑖 equation of motion: 
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2nd  local symmetry in non-linear case: 
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Consistency condition on non-linear deformation L(F) 
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The condition on L ensures the auxiliary nature of the scalar a(x) 

upon gauge fixing  a(x)  it ensures non-manifest space-time invariance 

Known examples: 

• Born-Infeld-like form of the M5-brane action 

    (Perry & Schwarz ‘96; Pasti, D.S. and Tonin ‘97) 

• Born-Infeld-like form of the duality-symmetric D3-brane action 

    (Berman ‘97; Nurmagambetov ‘98) 

• New Born-Infeld-like deformations (Kuzenko et. al, Bossard & Nicolai; Kallosh et. al ‘11) 



a(x)-independence of twisted self-duality condition 
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should not depend on v(x)~da(x) 
independently of gauge fixing 
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This establishes on-shell relation between manifestly duality-symmetric  and  
Gaillard-Zumino approach to the construction of  non-linear self-dual theories  

Main issues:  Whether counterterms of N=8,4 sugra can provide the form of ∆(F) ? 

                            If yes, whether this deformation is consistent with supersymmetry ? 



Supersymmetry issue 
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 Counterterms 𝜕2𝑘𝐹4 that can appear at 7 loops in N=8 sugra are 

supersymmetric and 𝑬𝟕(𝟕)- invariant on the mass-shell, i.e. 

 

 

 
 

 When included into the effective action, I0(F) deforms duality condition 
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whose form is determined by GZ- Gibbons-Rasheed  condition  
or space-time invariance of the deformed action 

Supersymmetry of                             should be  checked ),,( 
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Standard N=8 superspace methods are not applicable. Use component formalism 



Supersymmetry of duality-symmetric actions 
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 Example:  duality-symmetric N=1 Maxwell action 
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Susy transformations (Schwarz  & Sen ’93, Pasti, D.S. & Tonin ‘95) 
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Non-linear duality, supersymmetry and UV 
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Examples: 
 

 N=1,2,3,4,  D=4 Born-Infeld theories (D3-branes) (known since ’95) 

 Abelian N=(2,0) D=6 self-dual theory on the worldvolume of the M5-brane (‘96) 

 BI models (including higher-order derivatives) coupled to N=1,2 D=4 sugra 

     (Kuzenko and McCarthy ‘02, Kuzenko ’12, Kallosh et. all ’12…) 
 

In most of the known examples non-linear deformation of duality is related 
to a partial spontaneous breaking of supersymmetry 
 

Issues: 

 Whether non-linear deformations are possible for vector fields inside 
supergravity multiplets, in particular, in N=4,8 supergravities?  

     (for N=2 sugra, Kallosh et.all 08.2012) 

 Whether this interplay between dualities and supersymmetry may shed 
light on the UV behavior of N=4,8 supergravities? 


