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Motivations

In recent years we observed an intensive search for more realistic realizations
of the Gauge/Gravity duality.

• The holographic approach to condensed matter :

◮ Vast class of strongly coupled systems
◮ Systems can be fine tuned

• Motivation from a theoretical point of view :

Construct holographic techniques for non-AdS space-times
e.g. Flat, Kerr, deSitter, ...

◮ Lifshitz and Schrödinger spaces might be easier to deal with.

Review papers : [Hartnoll, 2009] [McGreevy, 2009] [Sachdev, 2011]



• Typically : Condensed matter systems near a quantum critical point.

◮ Effective description in terms of a scale invariant theory
◮ Strong coupling
◮ Physics extracted via the concept of universality

• Many such systems actually exhibit anisotropic scaling (z 6= 1) at the QCP

Dz : t → λzt, xi → λxi

• These have either Lifshitz or Schrödinger symmetries.

The Lifshitz algebra :

[Dz, H ] = zH , [Mij , Pk] = δikPj − δjkPi ,

[Dz, Pi] = Pi , [Mij ,Mkl] = δikMjl − δilMjk − δjkMil + δjlMik .

• The Lifshitz symmetry group forms a subgroup of the full conformal group.



The Lifshitz space-time

A geometric realization of the Lifshitz algebra is achieved by

ds2 = −dt2

r2z
+

1

r2

(

dr2 + d~x2
)

.

• Boundary at r = 0, bulk at r = ∞.

• For z ≥ 1 timelike/null geodesics reach infinity in finite proper time/affine
parameter. Tidal forces (in a parallel propagated frame) go like (z − 1)r2z ,
hence the space is singular in the bulk for z > 1.

• Focus on the dynamical critical exponent z = 2 in the near boundary region.

Lifshitz holography initiated by [Kachru, Liu, Mulligan, 2008].



Summary

We can obtain a 4D z = 2 Lifshitz space-time by reduction of a 5D z = 0
Schrödinger space-time [Balasubramanian, Narayan, 2010], [Donos, Gauntlett, 2010] :

ds2 =
1

r2

(

dr2 + 2dudt+ d~x2
)

+ du2

= −dt2

r4
+

1

r2

(

dr2 + d~x2
)

+

(

du+
dt

r2

)2

• In 5D the Schz=0 space supported by φ = cte and χ ∝ u is a solution of
[Cassani, Faedo, 2011], [Chemissany, Hartong, 2011]

S =

∫

d5x
√−g

(

R + 12− 1

2
∂µφ∂

µφ− 1

2
e2φ∂µχ∂

µχ

)

• String theory origin :

◮ Freund-Rubin compactification of IIB supergravity over S5.
◮ Schz=0 × S5 corresponds to the near horizon geometry of a stack of

D3-branes deformed by an axion wave.
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The general strategy :

1 Perform holographic renormalization for AdS gravity with Axion-Dilaton

2 Restrict the full set of 5D asymptotically locally AdS solutions to those
satisfying the reduction ansatz and the z = 0 Schrödinger asymptotics
(we keep AlSchz=0 ⊂ AlAdS)

3 Perform a Scherk-Schwarz reduction

4 In 4D we read off

◮ The Fefferman-Graham expansions for asymptotically locally
z = 2 Lifshitz space-times and the associated matter fields

◮ The counterterms & anomalies



HR for AdS gravity coupled to an Axion-Dilaton

We consider Sren = Sbulk + SGH + Sct with

Sbulk =

∫

d5x
√

−ĝ

(

R̂ + 12− 1

2
(∂φ̂)2 − 1

2
e2φ̂ (∂χ̂)2

)

An AlAdS solution in Fefferman-Graham coordinate is given by

ĝµ̂ν̂dx
µ̂dxν̂ = dr2

r2
+ ĥ

âb̂
dxâdxb̂ with an expansion [Papadimitriou, 2011]

ĥ
âb̂

= r−2ĥ(0)âb̂ + ĥ(2)âb̂ + r2 log rĥ(4,1)âb̂ + r2ĥ(4)âb̂ +O(r4 log r) ,

φ̂ = φ̂(0) + r2φ̂(2) + r4 log rφ̂(4,1) + r4φ̂(4) +O(r6 log r) ,

χ̂ = χ̂(0) + r2χ̂(2) + r4 log rχ̂(4,1) + r4χ̂(4) +O(r6 log r) .

The coefficients {ĥ(0)âb̂, ĥ(4)âb̂, φ̂(0), φ̂(4), χ̂(0), χ̂(4)} contain the data from which

all other coefficients are determined together with the trace ĥâ
(4)â and divergence

∇â
(0)ĥ(4)âb̂.
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d4x

√

−ĥ
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Q̂+ Â log r
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8Â = Q̂âb̂Q̂
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− 1

3
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1
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1
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∂âφ̂∂b̂φ̂− 1

2
e2φ̂∂âχ̂∂b̂χ̂ .

◮ The action is SL(2,R) invariant

◮ 〈T
âb̂
〉 = − 2

√

−ĥ(0)

δSon-shell
ren

δĥâb̂
(0)

= t̂
âb̂

◮ ĥâb̂
(0)t̂âb̂ = Â(0) = lim

r→0
r−4Â



The Scherk-Schwarz reduction

We want to perform a Scheck-Schwarz reduction on a circle u ∼ u+ 2πL. We
split the coordinates xµ̂ → (xµ, u) and take the ansatz (k 6= 0)

dŝ2 = ds2 + e2Φ (du+Aµdx
µ)2

φ̂ = φ

χ̂ = χ+ ku

The 4D theory :

Sbulk =

∫

d4x
√−g eΦ

(

R− 1

4
e2ΦF 2 − 1

2
(∂φ)2 − k2

2
e2φB2 − V

)

,

B = A− dχ

k
, F = dB , V =

k2

2
e−2Φ+2φ − 12 .

◮ is not in Einstein frame (ds2E = eΦds2), but the radial gauge is preserved.

◮ admits a z = 2 Lifshitz solution (reduction of 5D z = 0 Schrödinger).



The boundary conditions

The z = 2 Lifshitz solution seen from a 4D perspective :

ds2 = −e−2Φ dt2

r4
+

1

r2

(

dx2 + dy2
)

+
dr2

r2
,

B = −e−2Φ dt

r2
, φ = cst , Φ = φ+ ln

(

k

2

)

.

The z = 2 Lifshitz solution seen from a 5D perspective :

φ̂(0) = cst , χ̂(0) = ku + cst ,

t̂
âb̂

= 0 , φ̂(4) = 0 , χ̂(4) = 0 ,

ĥ(0)âb̂ = conformally flat and admits

a hypersurface orthogonal
null Killing vector ∂u ,



The boundary conditions

The z = 2 Lifshitz solution seen from a 4D perspective :

ds2 = −e−2Φ dt2

r4
+

1

r2

(

dx2 + dy2
)

+
dr2

r2
,

B = −e−2Φ dt

r2
, φ = cst , Φ = φ+ ln

(

k

2

)

.

Contrast with z = 2 AlLif seen from a 5D perspective :

φ̂(0) = cst , χ̂(0) = ku + cst+χ(0)(x
a) ,

t̂
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ĥ(0)âb̂ = conformally flat and admits

a hypersurface orthogonal
null Killing vector ∂u ,



The boundary conditions

The z = 2 Lifshitz solution seen from a 4D perspective :

ds2 = −e−2Φ dt2

r4
+

1

r2

(

dx2 + dy2
)

+
dr2

r2
,

B = −e−2Φ dt

r2
, φ = cst , Φ = φ+ ln

(

k

2

)

.

Contrast with z = 2 AlLif seen from a 5D perspective :

φ̂(0) = cst , χ̂(0) = ku + cst+χ(0)(x
a) ,

t̂
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• In 5D : Same conditions have been observed on the AdS boundary metric
to produce a Schz=2 space in FG coordinate [Hartong, Rollier, 2012]

• In 4D : Exact agreement with z = 2 AlLif as defined in [Ross, 2011]



• ∂u must be a Killing vector of the 5D metric

• For the pure z = 2 Lifshitz solution φ = cte and Φ− φ = ln

(

k

2

)

.

We have in general

e2Φ = ĥuu =
1

r2
ĥ(0)uu + ĥ(2)uu + . . . , ĥ(2)uu = − R̂(0)uu

2
+

k2e2φ̂(0)

4
.

In order to maintain the 4D asymptotics

Φ ∼ O(r0) and Φ− φ|r=0 = Φ(0) − φ(0) = ln

(

k

2

)

.

we must require ĥ(0)uu = R̂(0)uu = 0.

◮ ∂u is a boundary HSO null Killing vector (Raychauduhuri equation).

• We additionally need Φ(0) = cte in order to not violate the z = 2 Lifshitz
asymptotics by going to a radial gauge in an Einstein frame.

◮ Φ(0) = cte ⇒ φ̂(0) = cte



Scherk-Schwarz reduction and results

First we make ∂u a manifest HSO null Killing vector of the AlAdS boundary metric

ĥ(0)âb̂dx
âdxb̂ = 2H(0)dudt+Π(0)ij

(

dxi +H(0)N
i
(0)dt

)(

dxj +H(0)N
j

(0)dt
)

Then we reduce according to

dŝ2 =
dr2

r2
+ ĥ

âb̂
dxâdxb̂ =

dr2

r2
+ habdx

adxb + e2Φ (du +Aadx
a)

2
,

φ̂ = φ , χ̂ = χ+ ku .

We read off the 4D Fefferman-Graham expansion for z = 2 AlLif

htt = −
H2

(0)e
−2Φ(0)

r4
+

log rh(2,1)tt

r2
+

h(2)tt

r2
+O((log r)2) ,

hti =
h(0)ti

r2
+ log rh(2,1)ti + h(2)ti +O(r2(log r)2) ,

hij =
Π(0)ij

r2
+ h(2)ij + r2 log rh(4,1)ij + r2h(4)ij +O(r4(log r)2) ,
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dxâdxb̂ =

dr2

r2
+ habdx

adxb + e2Φ (du +Aadx
a)

2
,

φ̂ = φ , χ̂ = χ+ ku .

We read off the 4D Fefferman-Graham expansion for z = 2 AlLif

Br = rB(0)r +O(r3 log r) ,

Bt =
1

r2
H(0)e

−2Φ(0) +O(log r)

Bi = r2 log rB(2,1)i + r2B(2)i +O(r4(log r)2) ,

Φ = Φ(0) + r2 log rΦ(2,1) + r2Φ(2) +O(r4(log r)2) ,



• The 5D data can be mapped to 4D data from which we can express all other
4D coefficients.

{ĥ(0)âb̂, t̂âb̂, φ̂(0), φ̂(4), χ̂(0), χ̂(4)}
↓

{H(0), h(0)it,Π(0)ij ,Φ(0), h(2)tt,Φ(2), B(2)i, B(4)t, h(6)tt, h(4)ti, h(4)ij , φ(4), B(2)r}

• The constraints on the trace and divergence of t̂
âb̂

translate in 4D constraints
among {Φ(2), B(2)i, B(4)t, h(6)tt, h(4)ti, h(4)ij}.

By reduction we automatically obtain the relevant counterterms

Sct =

∫

d3x
√
−heΦ

[

−3− 1

4

(

R(h) −
1

4
e2ΦF 2 − 1

2
(∂φ)2 − k2

2
e2φB2

−k2

2
e2φ−2Φ

)

+ log r
(

A(0) +A(2) +A(4)
)

]

,

where A(n) is nth order in derivatives.



• In 5D the conformal anomaly is induced by diffeomorphisms (PBH) acting on

the boundary metric as a conformal rescaling ĥ(0)âb̂ → Ω2ĥ(0)âb̂.

From a 4D point of view, these are the anisotropic conformal rescalings of
[Horava, Melby-Thompson, 2009]

h(0)tt → Ω4h(0)tt , h(0)ti → Ω2h(0)ti , Π(0)ij → Ω2Π(0)ij .

• For AlLifz=2 the associated anomaly is (with χ(0) = cte)
∫

d3x
√
−heΦ

(

A(0) +A(2) +A(4)
)

∣

∣

∣

∣

on-shell

=

∫

dtd2xH(0)

√

Π(0)

[

C1

(

4K(0)ijK
ij

(0) − 2K2
(0)

)

+ C2

(

R(0) +Di
(0)∂i ln(H(0))

)2
]

◮ Invariance under anisotropic rescalings

The central charges defined in [Baggio, de Boer, Holsheimer, 2011] are

C1 =
l2Lif

64πG4
= 6C2

K(0)ij =
e
Φ(0)

2H(0)

(∂tΠ(0)ij−D(0)ih(0)tj−D(0)jh(0)ti)

l
2
Lif = l

2
AdSe

Φ(0)



Remarks and extensions

The massive vector models with / without the scalars :

• Using asymptotically constant scalars we can compare our results with the
ones obtained by [Ross, 2011], [Mann, McNees, 2011], [Griffin, Horava, Melby-Thompson,

2011], [Baggio, de Boer, Holsheimer, 2011].

◮ Agreement for the local counterterms and C1 but C2 6= 0 is new.

• On-shell the AlLifz=2 anomaly forms an action of the Horava-Lifshitz type for
z = 2 conformal gravity in 2 + 1 dimensions with nonzero potential.



Some future directions :

• Compute the Lifshitz one-point functions

• Compare the Lifshitz boundary stress tensor in this setting to [Ross, Saremi, 2009]

• Better understand the dual point of view : some DLCQ of N = 4 SYM
leading to a Lifshitz Chern-Simons gauge theory.
[Balasubramanian, McGreevy, 2011]
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