Holographic duals of 2+Id QFT's with Minimal SUSY and Massive Fundamental Flavours

Niall T. Macpherson

Swansea University

JHEPO6(20I2)I36 [hep-th/I204.4222]

Talk Plan

- Review the holographic dual of $\mathcal{N}^{\rho}=I$ SYM-CS in $2+I$ d.
- Sketch of construction of dual of $\mathcal{N}=I$ SQCDCS with massive flavours in 2+I d and implications.
- Massless flavour, Canoura, Merlatti, Ramallo, leads to IR singularity.
- Generate type-IIA solution with interpolating G_{2} structure.
- NS5, D4, D2
- A dual to a cascading higgsing $\mathcal{N}=1$ quiver in $2+1 d$?

$\mathcal{N}^{\circ}=\mid \mathrm{SYM}$ in 2+| dimensions

$S U\left(N_{c}\right):$ Gauge fields + Gauginos:

$$
\mathcal{S}_{\mathrm{SYM}}=\int d^{3} x \operatorname{Tr}\left(-\frac{1}{4} F_{\mu \nu}^{2}-i \bar{\lambda} \gamma^{\mu} D_{\mu} \lambda\right)+\frac{k}{4 \pi} \int d^{3} x \operatorname{Tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A+\bar{\lambda} \lambda\right)
$$

Witten calculated the index on $\mathrm{R} \times \mathrm{T}^{2}$

$$
\begin{aligned}
& k \geq \frac{N_{c}}{2} \Rightarrow \text { SUSY Unbroken } \\
& k=\frac{N_{c}}{2} \Rightarrow \text { Single, Confining Vacuum }
\end{aligned}
$$

Holographic Dual: Maldacena, Nastase 200 I: D5 branes wrapping a 3 cycle

The Maldacena-Nastase Solution

D5 branes wrap the intersection of the S^{3} 's

The Maldacena-Nastase Solution

D5 branes wrapping a 3-cycle in a G_{2} Manifold.
$\mathrm{R}^{1,2} \times \mathrm{R} \times \mathrm{S}^{3} \times \mathrm{S}^{3}$ - fibrated:

$$
d s^{2}=e^{\phi / 2} N_{c}\left(\frac{d x_{1,2}^{2}}{N_{c}}+d r^{2}+\frac{e^{2 h}}{4}\left(\sigma^{i}\right)^{2}+\frac{1}{4}\left(\omega^{i}-A^{i}\right)^{2}\right)
$$

$\mathbf{S U (2)}$ left invariant I-forms: $d \sigma^{i}=-\frac{1}{2} \epsilon_{i j k} \sigma^{j} \wedge \sigma^{k} ; d \omega^{i}=-\frac{1}{2} \epsilon_{i j k} \omega^{j} \wedge \omega^{k}$ $\mathbf{S U (2)}$ Gauge field: $\quad A^{i}=\frac{1+w(r)}{2} \sigma^{i}$
RR 3-form: $F_{3}=N_{c}\left(-\frac{1}{4} \bigwedge_{i=1}^{3}\left(\omega^{i}-A^{i}\right)+\frac{1}{4} F^{i} \wedge\left(\omega^{i}-A^{i}\right)+H\right) ; \quad d F_{(3)}=0$

$$
\text { Let: } \rho=e^{2 h} \text { Then: } \begin{gathered}
w_{\mathrm{IR}}=1 ; \phi_{I R}=\phi_{0} \\
\rho \rightarrow 0
\end{gathered} \quad \begin{gathered}
w_{\mathrm{UV}} \sim \frac{1}{\rho} ; \phi_{I R} \sim \rho \\
\rho \rightarrow \infty
\end{gathered}
$$

The Maldacena-Nastase Solution

D5 branes wrap: $\Sigma=\left\{\sigma^{i} \mid \omega^{i}=\sigma^{i}\right\} \quad$ Canoura, Merlatti, Ramallo
Σ vanishes in the IR: $\left.\quad F_{(3)}\right|_{\Sigma}=0 \Rightarrow$ Non singular
S3's parameterised by σ^{i} and ω^{i} are non vanishing:
Flux quantisation: $-\frac{1}{2 \kappa_{10}^{2} T_{5}} \int_{\omega^{i}} F_{3}=N_{c}$

$$
\begin{gathered}
\text { Probe D5: } \Xi=\left(x, y, t, \sigma^{i}\right) \quad \text { Maldacena, Nastase } \\
-\frac{1}{16 \pi^{3}} \int_{\Xi} F_{3} \wedge \operatorname{tr}\left[\mathcal{A} \wedge d \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right]=-\frac{\tilde{k}}{4 \pi} \int_{\mathbb{R}^{1,2}} \operatorname{tr}\left[\mathcal{A} \wedge d \mathcal{A}+\frac{2}{3} \mathcal{A} \wedge \mathcal{A} \wedge \mathcal{A}\right] \\
\frac{1}{2 \kappa_{10}^{2} T_{5}} \int_{\sigma^{i}} F_{3}=N_{c} \Rightarrow \tilde{k}=N_{c}
\end{gathered}
$$

Need to integrate out KK states in IR: $\Rightarrow k=\tilde{k}-\frac{N_{c}}{2}=\frac{N_{c}}{2}$
IR Gauge theory $S U\left(N_{c}\right)_{\frac{N_{c}}{2}}$ in $2+$ I d

Adding Unquenched Massive flavours

$$
\text { Veneziano limit: } \quad N_{c} \rightarrow \infty ; N_{f} \rightarrow \infty ; \frac{N_{c}}{N_{f}} \sim 1
$$

Add smeared flavour D5 branes
\Longrightarrow Back react on geometry; $\mathcal{S}=\mathcal{S}_{\text {IIB }}+\mathcal{S}_{\text {branes }} ; d F_{(3)}=\Xi_{(4)}$
G_{2} structure \Longrightarrow Associative 3-form: $\Phi_{(3)}$
Calibration condition \Rightarrow SUSY cycle: $\quad X^{*} \Phi_{(3)}=\sqrt{-\hat{g}} d \xi^{3}$
$D B I+W Z$:

$$
\mathcal{S}_{\text {branes }}=-N_{f} \int e^{\phi / 2}\left[e^{3 / 4 \phi} V o l_{3} \wedge \Phi_{(3)}-C_{(6)}\right] \wedge \Xi_{(4)}
$$

$P(\rho)$

Massive flavours, branes that don't reach the IR:

$$
N_{f} \rightarrow P(\rho) N_{f}
$$

IR: Flavours integrated out

Adding Unquenched Massive Flavours

System gets modified: NTM

$$
\begin{gathered}
d s^{2}=e^{\phi / 2} N_{c}\left(\frac{d x_{1,2}^{2}}{N_{c}}+d r^{2}+\frac{e^{2 h}}{4}\left(\sigma^{i}\right)^{2}+\frac{e^{2 g}}{4}\left(\omega^{i}-A^{i}\right)^{2}\right) \\
F_{3}=N_{c}\left(-\frac{1}{4} \bigwedge_{i=1}^{3}\left(\omega^{i}-B^{i}\right)+\frac{1}{4}\left(F^{i}+F_{f}^{i}\left(P, P^{\prime}\right)\right) \wedge\left(\omega^{i}-B^{i}\right)+H+H_{f}(P)\right) \\
A^{i}=\frac{1}{2}(1+w) \sigma^{i} ; B^{i}=\frac{1}{2}(1+\gamma) \sigma^{i}
\end{gathered}
$$

2 types of UV consistent with IR:
-Linear Dilaton
-Constant Dilaton
Canoura, Merlatti, Ramallo

Fundamental Flavours

Gauged Flavours

New 6d Chern-Simons tem: $\tilde{k}=N_{c}+\frac{3 N_{f}}{2}(C-1) P$.

The Chern-Simons level

Linear Dilaton case:

$$
\begin{gathered}
\rho_{0} \sim M_{Q}^{2} \\
\rho_{2} \sim M_{K K}^{2} \\
P\left(\rho_{1}\right) \sim 1
\end{gathered}
$$

$\rho \gg \rho_{2} \quad$ 5+Id field theory:

$$
k=\tilde{k}=N_{c}+\frac{3 N_{f}}{2}(C-1)
$$

$$
\rho_{1}<\rho<\rho_{2}
$$

Integrate out KK modes, $2+I d$ field theory:

$$
k=\frac{N_{c}}{2}+\frac{3 N_{f}}{4}(C-1)
$$

$\rho_{0}<\rho<\rho_{1} \quad$ Interpolation region:
$k=k(\rho)$
$\rho<\rho_{0} \quad$ Flavours integrated out induces shift in k

$$
k=\frac{N_{c}}{2}
$$

On the field theory (linear Dilaton):

- $N_{c}<2 N_{f} \quad$ Theory develops a Landau pole in the UV

$$
N_{c} \geq 2 N_{f} \quad \text { Theory is asymptotically free. cf: } 3+\text { Id SQCD }
$$

- Wilson Loops: Probe string suspended from UV

Rectangular Loop - quark, anti-quark potential:

Large $L \Rightarrow$ IR:
$E=e^{\phi_{0}} L+O\left(e^{-\sqrt{\frac{7}{24 F_{0}^{3}}} N_{c} L}\right) \Rightarrow<W_{\mathcal{C}}>\propto e^{-e^{\phi_{0}} \operatorname{Area}(\mathcal{C})} \Longrightarrow$ Confinement.

Rotated Type IIA Solution:

G_{2} structure, Asymptotically constant Dilaton solution

Type-IIA with NS5, D2, D4 branes, modified Dilaton and interpolating G_{2} structure.

Result after further rescaling of coords:
$d s_{\mathrm{str}}^{2}=N_{c}\left(H^{-1 / 2} s^{-1} d x_{1,2}^{2}+H^{1 / 2}\left(d r^{2}+\frac{e^{2 h}}{4}\left(\sigma^{i}\right)^{2}+\frac{e^{2 g}}{4}\left(\omega^{i}-A^{i}\right)^{2}\right) ; \quad s=\left.e^{2 g}\right|_{\mathrm{IR}}\right.$ $H=1-\tanh \beta e^{2\left(\phi-\phi_{\infty}\right)}$, New Dilaton couples to D2 branes: $e^{2 \hat{\phi}}=\frac{s H^{1 / 2}}{\tanh \beta} e^{2\left(\phi_{\infty}-\phi\right)}$

Source for NS5 branes: $d H_{(3)}=\Xi_{(4)} ; \quad d F_{(4)}=0$

Well behaved UV requires modified profile:
G_{2} Analogue of BB of KS with addition scale

Rotated Type IIA Solution:

Rescale: $\rho \rightarrow \rho s$

$$
d s_{\mathrm{str}}^{2}=\underbrace{U^{2} d x_{1,2}^{2}+\frac{d U^{2}}{U}}_{\mathrm{AdS}_{4} \quad X}+\underbrace{\frac{\left(\sigma^{i}\right)^{2}}{12}+\frac{1}{9}\left(w^{i}-A^{i}\right)^{2}}_{\text {Tip of } \mathrm{G}_{2} \text { cone }}+O\left(\frac{1}{s U^{2}}\right)
$$

Additional limit: $\quad s \rightarrow \infty \Rightarrow \mathrm{G}_{2}$ analogue of KS with additional scale

Compare with interpolating $\mathrm{SU}(3)$ structure Conifold backgrounds

$$
C=-\frac{1}{4 \pi^{2}} \int_{\Sigma} C_{(3)} \sim N_{c} U \quad \text { cf: Running } \mathrm{B}_{(2)} \text { in } \mathrm{KS}
$$

Suggests dual is a cascading, higgsing quiver

$$
\begin{array}{ccc}
S U\left(\tilde{N}_{c}\right) \times S U\left(N_{c}+\tilde{N}_{c}+\frac{N_{f}}{2}\right) \quad \text { for } \quad \tilde{N}_{c} \sim c N_{c} \\
& \downarrow \text { Cascade } & \\
S U\left(N_{c}\right) &
\end{array}
$$

Summary

- Dual of 2+I d SCQD-CS with Massive flavours
- Non singular IR
- $N_{c} \geq 2 N_{f}$: Confinement and asymptotic freedom
- $N_{c}<2 N_{f}$: Landau pole in the UV
- More can be learnt about field theory
- Generated new type IIA solutions
- Speculate that its dual to a cascading higgsing quiver
- More work on this is underway

Rotation Details

Solution generating technique: Gaillard, Martelli
Type IIA: $\quad H_{(3)} \quad \Rightarrow \quad$ Type IIA: $\quad F_{(4)} ; H_{(3)}$

$$
d s_{\mathrm{str}}^{2}=d x_{1,2}^{2}+d s_{7}^{2} \quad d s_{s t r}^{2}=e^{2 \Delta+2 \phi / 3}\left(d x_{1,2}^{2}+d s_{7}^{2}\right)
$$

SUSY Conditions of complicated system:

