Fluxes and Warping for Gauge Couplings in F-Theory

Based on: T.W. Grimm, D. Klevers, M. P.: arXiv:1202.0285[hep-th]

Maximilian Poretschkin

Bethe Center for Theoretical Physics Bonn University

September 222012

Aim of this talk

Type IIB perspective:

Gauge coupling function of D7 brane stack given as:

$$
\begin{aligned}
S= & \operatorname{Re} f \int F \wedge * F+\operatorname{Im} f \int F \wedge F \\
f= & \text { complexified volume of four-cycle } \\
& + \text { flux corrections }
\end{aligned}
$$

F-theory perspective:

Sevenbranes get part of geometry.

Extract gauge coupling function from geometry!

Strong coupling problems of effective actions

Type II orientifold compactifications

- are well understood
- are important for phenomenology as well as for conceptual reasons
- however assume a small string coupling constant (inconsistent, if D7 branes are present.)

Questions:

- Do the weak coupling results change for strong coupling?
- Is it possible to enter the strongly coupled regime?

F-theory as door opener to strong coupling regime

- F-theory geometrizes SL(2,Z)-symmetry of type IIB

Vafa '96

- F-theory provides access to strongly coupled type IIB vacua

Elliptically fibred Calabi-Yau fourfold Y_{4}

Examples for strong coupling phenomena

- O-Planes are bound states of (p, q)-sevenbranes
- only $\operatorname{SU}(\mathrm{N})$ on sevenbranes realized at strong coupling
\Rightarrow Need for effective action of F-theory compactification on Y_{4}

Effective action of F-theory

F-theory has no

- low-energy effective action
- microscopic description

M-theory on Y_{4}
$\stackrel{\downarrow^{S^{1}}}{ }$ IIA on $B_{3} \times S_{R}^{1} \xrightarrow{\text { T-dual }}$ IIB on $B_{3} \times S_{1 / R}^{1} \xrightarrow{v \rightarrow 0}$ IIB on B_{3}

Reminder on the Type IIB perspective

- $\mathrm{U}(\mathrm{N})$ gauge theory on the D7-branes
- gauge coupling function given as:

Jockers, Louis '04

$$
\begin{aligned}
f & =f^{\mathrm{cl}}+f^{\text {flux }} \\
f^{\mathrm{cl}} & =\int_{S} J \wedge J+i \int_{S} C_{4} \\
f^{\text {flux }} & =i \tau \int_{S} \mathcal{F} \wedge \mathcal{F} .
\end{aligned}
$$

Leading gauge coupling function from F-theory

Reduce the kinetic term of 11d supergravity

$$
S_{k i n}=\int_{\mathcal{M}_{3} \times Y_{4}} G_{4} \wedge * G_{4}
$$

Kaluza-Klein ansatz for G_{4}
 divisors

$\int_{\mathcal{M}_{3}} F^{i} \wedge * F^{j} \int_{Y_{4}} w_{i} \wedge * w_{j} \longrightarrow$ Real part of f^{cl}
Grimm '10; Grimm, Kerstan, Palti, Weigand '11

$$
\int_{\mathcal{M}_{3}} F^{i} \wedge * F^{\alpha} \int_{Y_{4}} w_{i} \wedge * w_{\alpha} \longrightarrow \text { Imaginary part of } f^{\mathrm{cl}}
$$

G_{4}-flux in M-theory

Background solution for M-theory compactification

$$
\begin{gathered}
d s_{11}^{2}=e^{-A} \eta_{\mu \nu} d x^{\mu} d x^{\nu}+e^{-A / 2} g_{a \bar{b}} d y^{a} d \bar{y}^{\bar{b}} \\
\Delta e^{3 A / 2}=*_{Y_{4}}\left(\mathcal{G}_{4} \wedge \mathcal{G}_{4}+X_{8}\right)
\end{gathered}
$$

Becker, Becker '96; Haack, Louis '01

The presence of \mathcal{G}_{4}-flux

- back-reacts onto the geometry via $e^{3 A / 2} \longrightarrow \operatorname{Re} f^{\text {flux }}$
- modifies the Kaluza-Klein ansatz $\longrightarrow \operatorname{Im} f^{\text {flux }}$

Need a local model of the geometry \Rightarrow Periodic Taub-NUT space

Taub-Nut space

S_{t}^{1}-fibration over \mathbb{R}^{3}
$d s^{2}=\frac{1}{V}(d t+U)^{2}+V\left(d x^{2}+d y^{2}+d z^{2}\right)$

$$
\begin{aligned}
V_{I} & =\frac{1}{\left|\vec{r}-\overrightarrow{r_{I}}\right|}, & d V_{I} & =*_{3} d U_{I} \\
V & =1+\sum V_{I}, & U & =\sum U_{I}
\end{aligned}
$$

Dictionary: Geometry - Type II

M-theory	\longrightarrow	IIA	\longrightarrow	IIB
KK-monopole	\longrightarrow	D 6	\longrightarrow	D 7
Connection U	\longrightarrow	C_{1}	\longrightarrow	C_{0}
Radius of S_{t}^{1}	\longrightarrow	$\mathrm{~g}_{s}^{I \mathrm{~A}}$	\longrightarrow	$\mathrm{~g}_{s}^{I \mathrm{~B}}$

Periodic Taub-NUT space

S_{t}^{1}-fibration over $\mathbb{R}_{x, y}^{2} \times S_{z}^{1}$

$$
\begin{gathered}
d s^{2}=\frac{1}{V}(d t+U)^{2}+V\left(d x^{2}+d y^{2}+d z^{2}\right) \\
V=1+\sum V_{I}, \quad U=\sum U_{I} \\
V_{I}=-\frac{r_{\mathrm{A}}}{2 \pi r_{\mathrm{B}}}\left(\log \left(\frac{\hat{\rho}}{\Lambda}\right)-2 \sum_{\ell>0} K_{0}(2 \pi \hat{\rho} \ell) \cos \left(2 \pi \ell\left(\hat{z}-\hat{z}_{I}\right)\right)\right) \\
U_{I}=-\frac{r_{\mathrm{A}}}{4 \pi}\left(1+2\left(\hat{z}-\hat{z}_{I}\right)+4 \hat{\rho} \sum_{\ell>0} K_{1}(2 \pi \hat{\rho} \ell) \sin \left(2 \pi \ell\left(\hat{z}-\hat{z}_{I}\right)\right)\right) d \varphi
\end{gathered}
$$

$r_{A}: t$-radius at infinity, $r_{B}: z$-radius, r_{A} / r_{B} : string coupling $g_{s}^{I I B}$.

(Leading) torus fibration

Far away from the singularity the geometry describes a torus fibration with modulus

$$
\tau(u)=\tau_{0}+\frac{k}{2 \pi i} \log \left(\frac{u}{\Lambda}\right), \quad \tau_{0}=C_{0}+\frac{i}{g_{s}}
$$

Vafa '96; Eyras, Lozano '99; Denef '08

Near the singularity, the logarithmic singularity is smoothed out (i.e. there are corrections to the axiodilaton)

Exceptional divisors

This space is a local model of a resolved A_{N}-singularity. Blow-up divisors and their Poincaré duals can be explicitly constructed

$$
\begin{aligned}
& \Omega_{I}^{\infty}= d \eta_{I}=\frac{1}{r_{\mathrm{A}}} d\left(\frac{V_{I}}{V}(d t+U)-U_{I}\right) \\
& \int_{T N_{k}^{\infty}} \Omega_{I}^{\infty} \wedge \Omega_{J}^{\infty}=-\delta_{I J}, \quad *_{4} \Omega_{I}^{\infty}=-\Omega_{I}^{\infty}
\end{aligned}
$$

Ruback '86; Ooguri, Vafa '96; Grimm, Klevers, MP '12
\mathcal{G}_{4}-flux descends to \mathcal{F}_{2}-flux in IIB via the reduction ansatz

$$
\begin{gathered}
\mathcal{G}_{4}=\mathcal{F}^{i} \wedge \Omega_{i}, \\
\int_{Y_{4}} \mathcal{G}_{4} \wedge * \mathcal{G}_{4} \rightarrow \int_{S} \mathcal{F}^{i} \wedge \mathcal{F}^{j} \int_{T N} \underbrace{\omega_{i} \wedge \omega_{j}}_{\substack{g_{s} \rightarrow 0}(u)},
\end{gathered}
$$

i.e. flux localization on the brane for small coupling

Corrections to the real part

Use the geometry to explicitly solve the warp-factor equation

$$
e^{3 A / 2}=1-\frac{n^{I}}{2 r_{\mathrm{A}}^{2} \mathcal{V}_{S_{\mathrm{b}}}}\left(\frac{V_{I}^{2}}{V}-V_{I}\right), \quad n^{I}=\int_{S} \mathcal{F}^{I} \wedge \mathcal{F}^{I}
$$

Remark: Dependence on the z-coordinate is crucial!

$$
\int_{\mathcal{M}_{3}} F^{i} \wedge * F^{j} \int_{Y_{4}} \omega_{i} \wedge \omega_{j} \longrightarrow \int_{\mathcal{M}_{3}} F^{i} \wedge * F^{j} \int_{Y_{4}} e^{3 A / 2} \omega_{i} \wedge \omega_{j}
$$

In the weak coupling limes one obtains:

$$
\operatorname{Re} f_{I J}^{\text {flux }}=\frac{1}{8} g_{s}^{-1} \delta_{I J}[n_{I I B}^{I}+\underbrace{\left.\sum_{K \neq I}\left(n_{I I B}^{I}+n_{I I B}^{K}\right) V_{K}\right|_{\hat{Z}_{I}}}_{\propto g_{s}}],
$$

Corrections to the imaginary part

Modify Kaluza-Klein ansatz

$$
C_{3}=A^{\mathcal{A}} \wedge \omega_{\mathcal{A}}+\beta\left(M^{\Sigma}\right), \quad G_{4}=F^{\mathcal{A}} \wedge \omega_{\mathcal{A}}+d M^{\Sigma} \wedge \beta_{\Sigma}+\mathcal{G}_{4}
$$

C_{3} now also has moduli $\left(M^{\Sigma}\right)$ dependent three-forms

$$
\beta\left(M^{\Sigma}\right)=\mathcal{F}^{I} \wedge \eta_{I}
$$

This yields a coupling

$$
d_{I C_{0} K}=-\frac{1}{4} \int_{\hat{Y}_{4}} \Omega_{I}^{\infty} \wedge \frac{\partial \beta}{\partial C_{0}} \wedge \frac{\partial \beta}{\partial \hat{z}^{K}}
$$

This yields correction

$$
\operatorname{Im} f_{I J}^{\mathrm{flux}}=-\frac{1}{8} C_{0}[\delta_{I J}(n_{I I B}^{I}+\underbrace{\left.\left.2 \sum_{K \neq I} n_{I I B}^{I} V_{K}\right|_{\hat{Z}_{I}}\right)+\left.2 n_{I I B}^{I} V_{J}\right|_{\hat{Z}_{I}}\left(\delta_{I J}-1\right)}_{\alpha g_{s}}]
$$

Conclusions and Outlook

- We found an explicit description of local D7-brane geometry
- We obtained the flux corrections to the gauge coupling function as well as new (loop) corrections in F-theory
- Explicit example for corrections obtained by backreaction onto geometry
- This backreaction is genuine F-theoretic, i.e. no lift of IIB warp factor.
- Possible to calculate other corrections, e.g. curvature corrections

