Constraining the 2HDM and identifying benchmarks

2HDM Type II Yukawa

Corfu September 2012

Per Osland

Work with:

L Basso, A Lipniacka, F Mahmoudi, S Moretti, G M Pruna, M Purmohammadi

arXiv:1205.6569

Preamble

- Higgs particle found! SM?
- 2HDM excluded?
- not quite
- but parameter space severely constrained
- Look for charged Higgs!

$$\begin{split} & 2\text{HDM notation 1} \\ & V = \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) \\ & + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{1}{2} \left[\lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.} \right] \\ & - \frac{1}{2} \left\{ m_{11}^2 (\Phi_1^{\dagger} \Phi_1) + \left[m_{12}^2 (\Phi_1^{\dagger} \Phi_2) + \text{h.c.} \right] + m_{22}^2 (\Phi_2^{\dagger} \Phi_2) \right\} \end{split}$$

No FCNC: $\lambda_6=0; \quad \lambda_7=0$ Allow CPV: $\lambda_5, \quad m_{12}^2$ complex

2HDM notation 2

 $\Phi_i = \begin{pmatrix} \varphi_i^+ \\ \frac{1}{\sqrt{2}}(v_i + \eta_i + i\chi_i) \end{pmatrix}$ $\begin{pmatrix} H_1 \\ H_2 \\ H \end{pmatrix} = R \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_2 \end{pmatrix}$ $\eta_3 = -\sin\beta\chi_1 + \cos\beta\chi_2$ $R\mathcal{M}^2 R^{\rm T} = \mathcal{M}^2_{\rm diag} = {\rm diag}(M_1^2, M_2^2, M_3^2)$

$$\begin{array}{c} \begin{array}{c} \text{2HDM notation 3} \\ \text{2 vs 3} & 1 \text{ vs 3} & 1 \text{ vs 2} \\ R = R_3 R_2 R_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha_3 & \sin \alpha_3 \\ 0 & -\sin \alpha_3 & \cos \alpha_3 \end{pmatrix} \begin{pmatrix} \cos \alpha_2 & 0 & \sin \alpha_2 \\ 0 & 1 & 0 \\ -\sin \alpha_2 & 0 & \cos \alpha_2 \end{pmatrix} \begin{pmatrix} \cos \alpha_1 & \sin \alpha_1 & 0 \\ -\sin \alpha_1 & \cos \alpha_1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ = \begin{pmatrix} c_1 c_2 & s_1 c_2 & s_2 \\ -(c_1 s_2 s_3 + s_1 c_3) & c_1 c_3 - s_1 s_2 s_3 & c_2 s_3 \\ -c_1 s_2 c_3 + s_1 s_3 & -(c_1 s_3 + s_1 s_2 c_3) & c_2 c_3 \end{pmatrix} \text{ PDG convention} \end{array}$$

 $c_i = \cos \alpha_i, \ s_i = \sin \alpha_i$

CP-conserving limits:

 $\begin{array}{ll} H_1 \mbox{ odd:} & \alpha_2 \simeq \pm \pi/2, \ \alpha_1, \alpha_3 \mbox{ arbitrary,} \\ H_2 \mbox{ odd:} & \alpha_2 = 0, \ \alpha_3 = \pi/2, \ \alpha_1 \mbox{ arbitrary,} \\ H_3 \mbox{ odd:} & \alpha_2 = \alpha_3 = 0, \ \alpha_1 \mbox{ arbitrary.} \end{array}$

Yukawa couplings

$$H_{j}b\overline{b}: \qquad \frac{-ig m_{b}}{2 m_{W}} \frac{1}{\cos \beta} [R_{j1} - i\gamma_{5} \sin \beta R_{j3}],$$
$$H_{j}t\overline{t}: \qquad \frac{-ig m_{t}}{2 m_{W}} \frac{1}{\sin \beta} [R_{j2} - i\gamma_{5} \cos \beta R_{j3}].$$

$$H^{+}b\bar{t}: \qquad \frac{ig}{2\sqrt{2}m_{W}}V_{tb}[m_{b}(1+\gamma_{5})\tan\beta + m_{t}(1-\gamma_{5})\cot\beta],\\H^{-}t\bar{b}: \qquad \frac{ig}{2\sqrt{2}m_{W}}V_{tb}^{*}[m_{b}(1-\gamma_{5})\tan\beta + m_{t}(1+\gamma_{5})\cot\beta].$$

Gauge couplings $|\cos\beta R_{i1} + \sin\beta R_{i2}|, \quad \text{for } j = 1,$ $H_i Z Z$: **Off-shell**: $H_1 \rightarrow ZZ, WW$ **On-shell**: $H_{2,3} \rightarrow ZZ, WW$ $H_{j}H^{\pm}W^{\mp}: \qquad \frac{g}{2}[\mp i(\sin\beta R_{j1} - \cos\beta R_{j2}) + R_{j3}](p_{\mu}^{j} - p_{\mu}^{\pm}).$ Entering total widths: $H_{2,3} \rightarrow H_1Z$

Parameters

Input:

$$\tan \beta, \ (M_1, \ M_2), \ (M_{H^{\pm}}, \ \mu^2), \ (\alpha_1, \ \alpha_2, \ \alpha_3)$$

Reconstruct:

$$M_3^2 = \frac{M_1^2 R_{13} (R_{12} \tan \beta - R_{11}) + M_2^2 R_{23} (R_{22} \tan \beta - R_{21})}{R_{33} (R_{31} - R_{32} \tan \beta)}$$

Explicit expressions for

$$\lambda_1, \lambda_2, \lambda_3, \lambda_4, \operatorname{Re} \lambda_5, \operatorname{Im} \lambda_5$$

in terms of input

Branching ratios

Branching ratios

 H_2 (for example at 300 GeV) and H_3 must decay more slowly than SM Higgs (at same mass), in order for model not to be excluded by LHC data

Constraints-theory

- Positivity
 - Explicit conditions
- Unitarity
 - Explicit conditions
- Perturbativity
- Global minimum
 - Three coupled cubic equations

Constraints-experiment

- $\bullet \ b \to s \gamma$
- $\Gamma(Z \to b\bar{b})$
- $B \to \tau \nu(X), B \to D \tau \nu, D \to \tau \nu$
- $B_0 \leftrightarrow \bar{B}_0$
- $B_{d,s} \to \mu^+ \mu^-$
- EW constraints: S, T
- Electron EDM
- LHC: $H_1 \rightarrow \gamma \gamma$
- LHC: $H_{2,3} \rightarrow W^+W^-$

LHC constraints

$$1 \quad gg \to H_1 \to \gamma\gamma$$
$$R_{\gamma\gamma} = \frac{\Gamma(H_1 \to gg) \text{BR}(H_1 \to \gamma\gamma)}{\Gamma(H_{\text{SM}} \to gg) \text{BR}(H_{\text{SM}} \to \gamma\gamma)}$$

Triangle diagrams modified by couplings, also axial term $0.5 \le R_{\gamma\gamma} \le 2.0$

 $2 \quad gg \to H_{2,3} \to W^+W^-$

$$R_{ZZ} = \frac{\Gamma(H_j \to gg) \mathrm{BR}(H_j \to ZZ)}{\Gamma(H_{\mathrm{SM}} \to gg) \mathrm{BR}(H_{\mathrm{SM}} \to ZZ)}$$

bounded

Adopt LHC (ATLAS & CMS) 95% CL

Next:

• Combine all constraints:

Overview $0.5 \le R_{\gamma\gamma} \le 2.0$ M₂ =150 GeV M₂ =200 GeV 600 600 M_{H"} [GeV] M_H [GeV] 400 400 10 10 1 1 tan β tan β $M_2 = 500 \, \text{GeV}$ M₂ =400 GeV 600 600 M_H [GeV] M_{H"} [GeV] 400 400 10 10 1 1 tan β tan β

Overview $0.5 \le R_{\gamma\gamma} \le 2.0$ M₂ =150 GeV M₂ =200 GeV 600 600 M_H [GeV] M_H [GeV] Hermann et al 2012 400 400 10 10 1 1 tan β tan β M₂ =400 GeV M₂ = 500 GeV 600 600 M_H: [GeV] M_{H"} [GeV] 400 400 10 10 1 1 tan β tan β

$H_1 \to \gamma \gamma$

- $R_{\gamma\gamma} > 1?$
- $\bullet~$ In SM $W~{\rm and}~t~$ loop interfere destructively
- $H_j t \overline{t}$: $\frac{-ig m_t}{2 m_W} \frac{1}{\sin \beta} [R_{j2} i\gamma_5 \cos \beta R_{j3}].$
- Flip sign of *t*-loop?
- $R_{12} = s_1 c_2, \quad s_1 < 0? \quad c_2 < 0?$
- Also γ_5 term (additive)

Charged Higgs Benchmarks

	$lpha_1/\pi$	α_2/π	$lpha_3/\pi$	aneta	M_2	$M_{H^{\pm}}^{\min}, M_{H^{\pm}}^{\max}$
P_1	0.23	0.06	0.005	1	300	$300,\!325$
P_2	0.35	-0.014	0.48	1	300	$300,\!415$
P_3	0.35	-0.015	0.496	1	350	$300,\!450$
P_4	0.35	-0.056	0.43	1	400	$300,\!455$
P_5	0.33	-0.21	0.23	1	450	$300,\!470$
P_6	0.27	-0.26	0.25	1	500	$300,\!340$
P_7	0.39	-0.07	0.33	2	300	300,405
P_8	0.34	-0.03	0.11	2	400	$300,\!315$
P_9	0.47	-0.006	0.05	10	400	400,440
P_{10}	0.49	-0.002	0.06	10	600	600,700

Requirements:

- Not excluded by theoretical arguments
- Not excluded by experimental data
- Good production cross section
- Good BR for decay to $W + H_1$
- Moderate background

Branching ratios:

Branching ratios:

Dominant production mechanisms

Coupling may depend on details

irreducible background

small

Background

- $t\bar{t} \to b\bar{b}W^+W^-$
- cross section larger by factor 10³
- impose generic cuts, BG reduction by factor 40, signal reduction by 2-3

Generic cuts

1) **Kinematics:** standard detector cuts

$$p_{\ell}^{T} > 15 \text{ GeV}, \qquad |\eta_{\ell}| < 2.5,$$

 $p_{j}^{T} > 20 \text{ GeV}, \qquad |\eta_{j}| < 3,$
 $\Delta R_{jj}| > 0.5, \qquad |\Delta R_{\ell j}| > 0.5;$

2) light Higgs reconstruction:

 $\left| M(b\overline{b}) - 125 \text{ GeV} \right| < 20 \text{ GeV};$

3) hadronic W reconstruction $(W_h \rightarrow jj)$:

|M(jj) - 80 GeV| < 20 GeV;

Generic cuts

4) top veto: if $\Delta R(b_1, W_h) < \Delta R(b_2, W_h)$, then

 $M(b_1 j j) > 200 \text{ GeV}, \qquad M_T(b_2 \ell \nu) > 200 \text{ GeV},$ otherwise 1 \leftrightarrow 2; disfavor top, for each b-quark separately

5) same-hemisphere b quarks:

$$\frac{\mathbf{p}_{b_1}}{|\mathbf{p}_{b_1}|} \cdot \frac{\mathbf{p}_{b_2}}{|\mathbf{p}_{b_2}|} > 0 \,.$$

Additional anti-top cut

Idea: Since $M_{H^\pm} > m_t$

One of the W's should form high invariant mass with $b\bar{b}$ pair

Possible cuts

"squared cut": "single cut":

$$C_{squ} = \max \left(M(b\bar{b}jj), M_T(b\bar{b}\ell\nu) \right) > M_{lim}$$
$$C_{sng} = M_T(b\bar{b}\ell\nu) > M_{lim}.$$

Choose:

$$C_{\rm sng}$$

 $\dot{M}_{\rm lim} = 600 \,\,{\rm GeV}$

$$P_2: \tan \beta = 1, \quad M_2 = 300 \text{ GeV}, \quad \alpha_i = \{0.35, -0.014, 0.48\}$$

$$P_7: \tan \beta = 2, \quad M_2 = 300 \text{ GeV}, \quad \alpha_i = \{0.39, -0.07, 0.33\}$$

Possible cuts

"squared cut": "single cut":

$$C_{squ} = \max \left(M(b\bar{b}jj), M_T(b\bar{b}\ell\nu) \right) > M_{lim}$$
$$C_{sng} = M_T(b\bar{b}\ell\nu) > M_{lim}.$$

Choose: C_{sng} $\dot{M}_{lim} = 600 \,\,{ m GeV}$

Also:

peak cut:

 $|M - M_{H^{\pm}}| < 50 \text{ GeV}$

	$M_{H^{\pm}} =$	310 GeV	$M_{H^{\pm}} = 390 \text{ GeV}$		
	Events	S/\sqrt{B}	Events	S/\sqrt{B}	
$t\overline{t}$		1.9			
peak	11.9	_	9.9	_	
P_1	3.8	0.8	—	—	
peak	2.6	0.8	—	—	
P_2	4.7	1.0	8.8	1.8	
peak	3.3	1.0	7.3	2.3	
P_3	11.3	2.3	22.0	4.4	
peak	7.7	2.3	17.2	5.4	
P_4	10.0	2.0	20.3	4.1	
peak	7.8	2.3	16.0	5.1	
P_5	21.1	4.2	30.2	6.1	
peak	13.9	4.1	25.0	7.9	
P_6	14.0	2.8	—	_	
peak	9.4	2.8	_	—	
P_7	3.1	0.6	7.4	1.5	
peak	2.8	0.8	7.3	2.3	
P_8	1.2	0.2	—		
peak	1.2	0.4	_	—	

Conclusions

- 2HDM II parameter space is severely constrained by LHC data
- Parts of 2HDM II parameter space are still open
- SM would be excluded by charged Higgs discovery

• $pp \rightarrow \underbrace{jj}_{W} \underbrace{\ell^{\pm}\nu}_{W} \underbrace{b\bar{b}}_{H_{1}}$ channel allows detection in part of parameter space