Constraining the 2HDM and identifying benchmarks

2HDM Type II Yukawa

Corfu
September 2012

Per Osland

Work with:
L Basso, A Lipniacka, F Mahmoudi, S Moretti, G M Pruna, M Purmohammadi arXiv:I205.6569

Preamble

- Higgs particle found! SM?
- 2HDM excluded?
- not quite
- but parameter space severely constrained
- Look for charged Higgs!

2HDM notation 1

$$
\begin{aligned}
V & =\frac{\lambda_{1}}{2}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{\lambda_{2}}{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right) \\
& +\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right)+\frac{1}{2}\left[\lambda_{5}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)^{2}+\text { h.c. }\right] \\
& -\frac{1}{2}\left\{m_{11}^{2}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)+\left[m_{12}^{2}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)+\text { h.c. }\right]+m_{22}^{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)\right\}
\end{aligned}
$$

No FCNC:

$$
\lambda_{6}=0 ; \quad \lambda_{7}=0
$$

Allow CPV: $\quad \lambda_{5}, \quad m_{12}^{2} \quad$ complex

2HDM notation 2

$$
\begin{gathered}
\Phi_{i}=\binom{\varphi_{i}^{+}}{\frac{1}{\sqrt{2}}\left(v_{i}+\eta_{i}+i \chi_{i}\right)} \\
\left(\begin{array}{c}
H_{1} \\
H_{2} \\
H_{3}
\end{array}\right)=R\left(\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right) \\
\eta_{3}=-\sin \beta \chi_{1}+\cos \beta \chi_{2} \\
R \mathcal{M}^{2} R^{\mathrm{T}}=\mathcal{M}_{\text {diag }}^{2}=\operatorname{diag}\left(M_{1}^{2}, M_{2}^{2}, M_{3}^{2}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \text { 2HDM notation } 3 \\
& 2 \text { vs } 3 \quad 1 \text { vs } 3 \\
& 1 \text { vs } 2 \\
& R=R_{3} R_{2} R_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha_{3} & \sin \alpha_{3} \\
0 & -\sin \alpha_{3} & \cos \alpha_{3}
\end{array}\right)\left(\begin{array}{ccc}
\cos \alpha_{2} & 0 & \sin \alpha_{2} \\
0 & 1 & 0 \\
-\sin \alpha_{2} & 0 & \cos \alpha_{2}
\end{array}\right)\left(\begin{array}{ccc}
\cos \alpha_{1} & \sin \alpha_{1} & 0 \\
-\sin \alpha_{1} & \cos \alpha_{1} & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ccc}
c_{1} c_{2} & s_{1} c_{2} & s_{2} \\
-\left(c_{1} s_{2} s_{3}+s_{1} c_{3}\right. & c_{1} c_{3}-s_{1} s_{2} s_{3} \\
-c_{1} s_{2} c_{3}+s_{1} s_{3} & -\left(c_{1} s_{3}+s_{1} s_{2} c_{3}\right) & c_{2} s_{3} c_{3}
\end{array}\right) \text { PDG convention } \\
& c_{i}=\cos \alpha_{i}, s_{i}=\sin \alpha_{i}
\end{aligned}
$$

CP-conserving limits:
H_{1} odd: $\quad \alpha_{2} \simeq \pm \pi / 2, \alpha_{1}, \alpha_{3}$ arbitrary,
H_{2} odd: $\quad \alpha_{2}=0, \alpha_{3}=\pi / 2, \alpha_{1}$ arbitrary,
H_{3} odd: $\quad \alpha_{2}=\alpha_{3}=0, \alpha_{1}$ arbitrary.

Yukawa couplings

$$
\begin{gathered}
H_{j} b \bar{b}: \quad \frac{-i g m_{b}}{2 m_{W}} \frac{1}{\cos \beta}\left[R_{j 1}-i \gamma_{5} \sin \beta R_{j 3}\right], \\
H_{j} t \bar{t}: \quad \frac{-i g m_{t}}{2 m_{W}} \frac{1}{\sin \beta}\left[R_{j 2}-i \gamma_{5} \cos \beta R_{j 3}\right] . \\
H^{+} b \bar{t}: \quad \frac{i g}{2 \sqrt{2} m_{W}} V_{t b}\left[m_{b}\left(1+\gamma_{5}\right) \tan \beta+m_{t}\left(1-\gamma_{5}\right) \cot \beta\right], \\
H^{-} t \bar{b}: \quad \frac{i g}{2 \sqrt{2} m_{W}} V_{t b}^{*}\left[m_{b}\left(1-\gamma_{5}\right) \tan \beta+m_{t}\left(1+\gamma_{5}\right) \cot \beta\right] .
\end{gathered}
$$

Gauge couplings

$H_{j} Z Z: \quad\left[\cos \beta R_{j 1}+\sin \beta R_{j 2}\right], \quad$ for $j=1$,
Off-shell:
$H_{1} \rightarrow Z Z, W W$
On-shell:
$H_{2,3} \rightarrow Z Z, W W$
$H_{j} H^{ \pm} W^{\mp}:$

$$
\frac{g}{2}\left[\mp i\left(\sin \beta R_{j 1}-\cos \beta R_{j 2}\right)+R_{j 3}\right]\left(p_{\mu}^{j}-p_{\mu}^{ \pm}\right) .
$$

Entering total widths: $H_{2,3} \rightarrow H_{1} Z$

Parameters

$$
\text { Input: } \mid \tan \beta,\left(M_{1}, M_{2}\right),\left(M_{H^{ \pm}}, \mu^{2}\right),\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)
$$

Reconstruct:

$$
M_{3}^{2}=\frac{M_{1}^{2} R_{13}\left(R_{12} \tan \beta-R_{11}\right)+M_{2}^{2} R_{23}\left(R_{22} \tan \beta-R_{21}\right)}{R_{33}\left(R_{31}-R_{32} \tan \beta\right)}
$$

Explicit expressions for

$$
\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \operatorname{Re} \lambda_{5}, \operatorname{Im} \lambda_{5}
$$

in terms of input

Branching ratios

random
2HDM: H_{1} branching ratios

Branching ratios

Decay rates

random

Decay rates

P4

Decay rates

random

Decay rates

P8

SM decay rate
stronger coupling to WW

H_{2} (for example at 300 GeV) and H_{3} must decay more slowly than SM Higgs (at same mass), in order for model not to be excluded by LHC data

Constraints-theory

- Positivity
- Explicit conditions
- Unitarity
- Explicit conditions
- Perturbativity
- Global minimum
- Three coupled cubic equations

Constraints-experiment

- $b \rightarrow s \gamma$
- $\Gamma(Z \rightarrow b \bar{b})$
- $B \rightarrow \tau \nu(X), B \rightarrow D \tau \nu, D \rightarrow \tau \nu$
- $B_{0} \leftrightarrow \bar{B}_{0}$
- $B_{d, s} \rightarrow \mu^{+} \mu^{-}$
- EW constraints: S, T
- Electron EDM
- LHC: $H_{1} \rightarrow \gamma \gamma$
- LHC: $H_{2,3} \rightarrow W^{+} W^{-}$

Parameters

Typically: step
fix
step
scan

Allowed regions (red)

Ignore LHC (apologies)

LHC constraints

$1 g g \rightarrow H_{1} \rightarrow \gamma \gamma$

$$
R_{\gamma \gamma}=\frac{\Gamma\left(H_{1} \rightarrow g g\right) \mathrm{BR}\left(H_{1} \rightarrow \gamma \gamma\right)}{\Gamma\left(H_{\mathrm{SM}} \rightarrow g g\right) \mathrm{BR}\left(H_{\mathrm{SM}} \rightarrow \gamma \gamma\right)}
$$

Triangle diagrams modified by couplings, also axial term

$$
0.5 \leq R_{\gamma \gamma} \leq 2.0
$$

$2 \mathrm{gg} \rightarrow \mathrm{H}_{2,3} \rightarrow W^{+} W^{-}$

$$
R_{Z Z}=\frac{\Gamma\left(H_{j} \rightarrow g g\right) \mathrm{BR}\left(H_{j} \rightarrow Z Z\right)}{\Gamma\left(H_{\mathrm{SM}} \rightarrow g g\right) \mathrm{BR}\left(H_{\mathrm{SM}} \rightarrow Z Z\right)} \quad \text { bounded }
$$

Adopt LHC (ATLAS \& CMS) 95\% CL

ATLAS CMS

Allowed regions

LHC constraints

Next:

- Combine all constraints:

Allowed regions high mass

Allowed regions high tanbeta

Allowed regions high tanbeta

Decoupling

$\mathrm{A}=\mathrm{H}_{2}, \mathrm{~A}=\mathrm{H}_{3}$
Decoupling 1: $\quad\left(\alpha_{1}, \alpha_{2}\right) \sim(\pm \pi / 2,0)$
Decoupling 2: $\quad\left(\alpha_{1}, \alpha_{2}\right) \sim(0, \pm \pi / 2)$
$\mathrm{A}=\mathrm{H}_{1}$ Excluded by LHC

Overview $\quad 0.5 \leq R_{\gamma \gamma} \leq 2.0$

Overview $\quad 0.5 \leq R_{\gamma \gamma} \leq 2.0$

H_{3} mass, M_{3}

$H_{1} \rightarrow \gamma \gamma$

- $R_{\gamma \gamma}>1$?
- In SM W and t loop interfere destructively
- $H_{j} t \bar{t}: \quad \frac{-i g m_{t}}{2 m_{W}} \frac{1}{\sin \beta}\left[R_{j 2}-i \gamma_{5} \cos \beta R_{j 3}\right]$.
- Flip sign of t-loop?
- $R_{12}=s_{1} c_{2}, \quad s_{1}<0 ? \quad c_{2}<0$?
- Also γ_{5} term (additive)

Tight:

$1.5 \leq R_{\gamma \gamma} \leq 2.0$

Blue region satisfies tight constraint

Charged Higgs Benchmarks

	α_{1} / π	α_{2} / π	α_{3} / π	$\tan \beta$	M_{2}	$M_{H^{ \pm}}^{\min }, M_{H^{ \pm}}^{\max }$
P_{1}	0.23	0.06	0.005	1	300	300,325
P_{2}	0.35	-0.014	0.48	1	300	300,415
P_{3}	0.35	-0.015	0.496	1	350	300,450
P_{4}	0.35	-0.056	0.43	1	400	300,455
P_{5}	0.33	-0.21	0.23	1	450	300,470
P_{6}	0.27	-0.26	0.25	1	500	300,340
P_{7}	0.39	-0.07	0.33	2	300	300,405
P_{8}	0.34	-0.03	0.11	2	400	300,315
P_{9}	0.47	-0.006	0.05	10	400	400,440
P_{10}	0.49	-0.002	0.06	10	600	600,700

Requirements:

- Not excluded by theoretical arguments
- Not excluded by experimental data
- Good production cross section
- Good BR for decay to $\mathrm{W}+\mathrm{H}_{1}$
- Moderate background

Proposed channel:

 $p p \rightarrow W^{ \pm} H^{\mp}(+X)$$$
\begin{aligned}
& \rightarrow W^{+} W^{-} H_{1} \\
& \rightarrow \underbrace{j j}_{W} \underbrace{\ell^{ \pm} \nu}_{W} \underbrace{b \bar{b}}_{H_{1}}
\end{aligned}
$$

Proposed channel:

$$
\begin{aligned}
p p & \rightarrow W^{ \pm} H^{\mp}(+X) \\
& \rightarrow W^{+} W^{-} H_{1} \\
& \rightarrow \underbrace{j j}_{W} \underbrace{\ell^{ \pm} \nu}_{W} \underbrace{b \bar{b}}_{H_{1}}
\end{aligned}
$$

$H_{j} H^{ \pm} W^{\mp}$ coupling squared:

$$
\sim\left(\sin \beta R_{j 1}-\cos \beta R_{j 2}\right)^{2}+R_{j 3}^{2}
$$

$H_{1} H^{ \pm} W^{\mp}:=\sin ^{2}\left(\beta-\alpha_{1}\right) \cos ^{2} \alpha_{2}+\sin ^{2} \alpha_{2}$

Proposed channel:
 $$
p p \rightarrow W^{ \pm} H^{\mp}(+X)
$$
 $$
\rightarrow W^{+} W^{-} H_{1}
$$
 $$
\rightarrow \underbrace{j j}_{W} \underbrace{\ell^{ \pm} \nu}_{W} \underbrace{b \bar{b}}_{H_{1}}
$$

$H_{j} H^{ \pm} W^{\mp}$ coupling squared:

$$
\sim\left(\sin \beta R_{j 1}-\cos \beta R_{j 2}\right)^{2}+R_{j 3}^{2}
$$

$H_{1} H^{ \pm} W^{\mp}:=\sin ^{2}\left(\beta-\alpha_{1}\right)+\sin ^{2} \alpha_{2} \cos ^{2}\left(\beta-\alpha_{1}\right)$

Branching ratios:

Branching ratios:

Dominant production mechanisms

Coupling may depend on details

(a)
irreducible background

Cross sections: legend next page

Cross sections:

Background

- $t \bar{t} \rightarrow b \bar{b} W^{+} W^{-}$
- cross section larger by factor 10^{3}
- impose generic cuts, BG reduction by factor 40 , signal reduction by 2-3

Generic cuts

1) Kinematics: standard detector cuts

$$
\begin{array}{rlrl}
p_{\ell}^{T} & >15 \mathrm{GeV}, & \left|\eta_{\ell}\right| & <2.5, \\
p_{j}^{T} & >20 \mathrm{GeV}, & \left|\eta_{j}\right|<3 \\
\left|\Delta R_{j j}\right| & >0.5, & \left|\Delta R_{\ell j}\right| & >0.5
\end{array}
$$

2) light Higgs reconstruction:

$$
|M(b \bar{b})-125 \mathrm{GeV}|<20 \mathrm{GeV}
$$

3) hadronic W reconstruction $\left(W_{h} \rightarrow j j\right)$:

$$
|M(j j)-80 \mathrm{GeV}|<20 \mathrm{GeV}
$$

Generic cuts

4) top veto: if $\Delta R\left(b_{1}, W_{h}\right)<\Delta R\left(b_{2}, W_{h}\right)$, then

$$
\begin{gathered}
M\left(b_{1} j j\right)>200 \mathrm{GeV}, \quad M_{T}\left(b_{2} \ell \nu\right)>200 \mathrm{GeV}, \\
\text { disfavor top, for each b-quark separately }
\end{gathered}
$$

otherwise $1 \leftrightarrow 2$;
5) same-hemisphere b quarks:

$$
\frac{\mathbf{p}_{b_{1}}}{\left|\mathbf{p}_{b_{1}}\right|} \cdot \frac{\mathbf{p}_{b_{2}}}{\left|\mathbf{p}_{b_{2}}\right|}>0
$$

Additional anti-top cut

Idea: Since $\quad M_{H^{ \pm}}>m_{t}$
One of the W's should form high invariant mass with $b \bar{b}$ pair

Possible cuts

"squared cut":
"single cut": $\mathrm{C}_{\mathrm{squ}}=\max \left(M(b \bar{b} j j), M_{T}(b \bar{b} \ell \nu)\right)>M_{\text {lim }}$ $\mathrm{C}_{\text {sng }}=M_{T}(b \bar{b} \ell \nu)>M_{\text {lim }}$.

Choose:
$\mathrm{C}_{\text {sng }}$
$M_{\text {lim }}=600 \mathrm{GeV}$
$P_{2}: \tan \beta=1, \quad M_{2}=300 \mathrm{GeV}, \quad \alpha_{i}=\{0.35,-0.014,0.48\}$

$$
P_{3}: \tan \beta=1, \quad M_{2}=350 \mathrm{GeV}, \quad \alpha_{i}=\{0.35,-0.015,0.496\}
$$

$$
P_{4}: \tan \beta=1, \quad M_{2}=400 \mathrm{GeV}, \quad \alpha_{i}=\{0.35,-0.056,0.43\}
$$

$$
P_{5}: \tan \beta=1, \quad M_{2}=450 \mathrm{GeV}, \quad \alpha_{i}=\{0.33,-0.21,0.23\}
$$

$$
P_{7}: \tan \beta=2, \quad M_{2}=300 \mathrm{GeV}, \quad \alpha_{i}=\{0.39,-0.07,0.33\}
$$

Possible cuts

"squared cut":
"single cut":

Choose:
$\mathrm{C}_{\text {sng }}$
$M_{\text {lim }}=600 \mathrm{GeV}$

Also:
peak cut:

$$
\left|M-M_{H^{ \pm}}\right|<50 \mathrm{GeV}
$$

	$M_{H^{ \pm}}=310 \mathrm{GeV}$		$M_{H^{ \pm}}=390 \mathrm{GeV}$	
	Events	S / \sqrt{B}	Events	S / \sqrt{B}
$t \bar{t}$	24.9			
peak	11.9	-	9.9	-
P_{1}	3.8	0.8	-	-
peak	2.6	0.8	-	-
P_{2}	4.7	1.0	8.8	1.8
peak	3.3	1.0	7.3	2.3
P_{3}	11.3	2.3	22.0	4.4
peak	7.7	2.3	17.2	5.4
P_{4}	10.0	2.0	20.3	4.1
peak	7.8	2.3	16.0	5.1
P_{5}	21.1	4.2	30.2	6.1
peak	13.9	4.1	25.0	7.9
P_{6}	14.0	2.8	-	-
peak	9.4	2.8	-	-
P_{7}	3.1	0.6	7.4	1.5
peak	2.8	0.8	7.3	2.3
P_{8}	1.2	0.2	-	-
peak	1.2	0.4	-	-

Conclusions

- 2HDM II parameter space is severely constrained by LHC data
- Parts of 2HDM II parameter space are still open
- SM would be excluded by charged Higgs discovery
- $p p \rightarrow \underbrace{j j}_{W_{f}} \underbrace{\ell_{H_{1}}}_{p^{ \pm} \nu}$ channel allows detection in part of parameter space

