Discrete gauge symmetries and Open strings
 Pascal Anastasopoulos

work in progress
with M. Cvetic, J. Halverson, R. Richter and P. Vaudrevange.

Corfu-20/09/2012

Plan of the talk

* Motivation
* Discrete gauge symmetries
* D-Branes and Standard Model
* Discrete gauge symmetries in D-brane Standard Models
* Some specific examples
* Conclusions

Introduction and motivation

Motivation

* Discrete symmetries are often invoked in order to forbid unwanted or dangerous couplings in particle physics model building.
* However, these symmetries are poorly motivated in a more fundamental level.
* Global discrete symmetries are expected to be violated in consistent theory of quantum gravity.
* Thus, discrete symmetries should have a gauge symmetry origin, and are called discrete gauge symmetries.
* Those discrete gauge symmetries are subject to discrete anomaly cancellation conditions, just as normal gauge symmetries are.
* The potential discrete gauge symmetries of the MSSM were classified. Ibanez Ross
* In this talk we will investigate the presence and the role of discrete gauge symmetries in D-brane realizations of the Standard Model.

Discrete gauge symmetries

Discrete gauge symmetries

* Consider the basic Lagrangian for a discrete symmetry:

$$
-\frac{1}{4 g^{2}} F^{2}+\left(\partial_{\mu} a-k A_{\mu}\right)^{2} \quad a \rightarrow a+1
$$

* This Lagrangian is invariant also under the gauge transformation:

$$
A_{\mu} \rightarrow A_{\mu}+\partial \lambda \quad a \rightarrow a+k \lambda
$$

* $\mathrm{A} Z_{k}$ discrete gauge symmetry basically combines the two above, allowing for

$$
\lambda=1 / k
$$

fractional $U(1)$ gauge transformations.

* Such symmetries can remove dangerous couplings from the effective field theory.

Discrete gauge symmetries in Standard Model

* Any family independent discrete gauge symmetry of the MSSM can be expressed as:

$$
g_{N}=R_{N}^{m} \times A_{N}^{n} \times L_{N}^{p}
$$

where $m, n, p=0,1, \ldots N-1$.

Dreiner Luhn Thormeier

* The MSSM particles are charged under these independent Z_{N} gauge symmetries:

	Q^{i}	U^{i}	D^{i}	L^{i}	E^{i}	N^{i}	H_{u}	H_{d}
R	0	-1	1	0	1	-1	1	-1
A	0	0	0	-1	1	1	0	0
L	0	0	-1	-1	0	1	0	0
$Q_{\text {discrete }}$	0	$-m$	$m-n$	$-n-p$	$m+p$	$n+p-m$	m	$-m+n$

* Given a discrete symmetry it is of utmost interest to investigate its phenomenological consequences on the various couplings.

Discrete gauge symmetries in Standard Model

* All possible family independent discrete gauge symmetries within the MSSM with:
- Cancellation of all mixed anomalies:

$$
\mathcal{A}_{S U(3) \times S U(3) \times Z N}, \quad \mathcal{A}_{S U(2) \times S U(2) \times Z N}, \quad \mathcal{A}_{Z N \times Z N \times Z N}, \quad \mathcal{A}_{G \times G \times Z N}
$$

- Allowed Yukawa couplings: $\quad Q_{L} H_{u} U, \quad Q_{L} H_{d} D, \quad L H_{d} E$
have been classified and belong to:

$$
\mathbf{Z}_{2}, \quad \mathbf{Z}_{3}, \quad \mathbf{Z}_{6}, \quad \mathbf{Z}_{9}, \quad \mathbf{Z}_{18}
$$

Dreiner Luhn Thormeier

* The \mathbf{Z}_{2} is the usual matter parity.
* The class of \mathbf{Z}_{6} solutions contains a proton hexality $L_{6}^{2} R_{6}^{5}$ that

$$
\text { allows: }\left\{\begin{array} { l }
{ \text { the } \mu \text { -term, } } \\
{ \text { the Weinberg operator. } }
\end{array} \text { forbids: } \left\{\begin{array}{l}
\mathrm{R} \text {-parity violating, } \\
\text { dangerous dim } 5 \text { proton decay ops. }
\end{array}\right.\right.
$$

Discrete gauge symmetries vs coupings

* Physical consequences of the discrete gauge symmetries:

	R_{2}	$R_{3} L_{3}$	R_{3}	L_{3}	$R_{3}^{2} L_{3}$	$R_{6}^{5} L_{6}^{2}$	R_{6}	$R_{6}^{3} L_{6}^{2}$	$R_{6} L_{6}^{2}$	all Z Z \& Z
18										
$H_{u} H_{d}$	\checkmark									
$H_{u} L$		\checkmark								
$L L \bar{E}$		\checkmark								
$L Q \bar{D}$		\checkmark								
$\bar{U} \bar{D} \bar{D}$				\checkmark						
$Q Q Q L$	\checkmark		\checkmark				\checkmark			
$\bar{U} \bar{U} \bar{D} \bar{E}$	\checkmark		\checkmark				\checkmark			
$Q Q Q H_{d}$				\checkmark						
$Q \bar{U} \bar{E} H_{d}$		\checkmark								
$L H_{u} L H_{u}$	\checkmark	\checkmark				\checkmark				

* The Yukawas couplings $Q_{L} H_{u} U, Q_{L} H_{d} D, L H_{d} E$ are allowed for each of the above.

D-branes and the Standard Model

D-branes and strings

* We focus on type IIA constructions with intersecting D6 branes:

1+6 Newman directions

* Strings with both ends on a stack of branes give rise to $U(\mathrm{~N})=S U(\mathrm{~N}) \times U(1)$ group.

D-branes and strings

* We focus on type IIA constructions with intersecting D6 branes:

* Strings with both ends on a stack of branes give rise to $U(\mathrm{~N})=S U(\mathrm{~N}) \times U(1)$ group.
* Strings stretched between different stacks transform as bifundamentals.

D-branes and strings

* We focus on type IIA constructions with intersecting D6 branes:

* Strings with both ends on a stack of branes give rise to $U(\mathrm{~N})=S U(\mathrm{~N}) \times U(1)$ group.
* Strings stretched between different stacks transform as bifundamentals.
* Strings stretched between a brane and its image transform as (anti)symmetric reps.

Local and Global models

* D-branes allow for a bottom-up building approach:

- Consider a local set of D-branes at some region of a CY_{3}.
- This set could eventually describe the Standard Model. Antoniadis Kiritsis Tomaras Aldazabal Ibanez Quevedo Uranga
- A hidden sector is typically necessary for the tadpole cancellation.
* We want to analyze in that bottom-up fashion, what kind of discrete gauge symmetries do appear in semi-realistic D-brane configurations.

A D-brane Standard Model

* Lets consider a specific D-brane Standard Model example:

*The hypercharge is given by the linear combination: $Y=-\frac{1}{3} U(1)_{a}-\frac{1}{2} U(1)_{b}+U(1)_{d}$
*We will focus on this semi-realistic configuration and study which discrete symmetries survive and their effect on the superpotential couplings.

Tadpole conditions

* Consistency and stability of D-brane models require the tadpoles conditions:

$$
\sum_{x} N_{x}\left(\pi_{x}+\pi_{x}^{\prime}\right)=4 \pi_{O}
$$

* It is easy to transform the formula from the cycle- to the representation-language by:

$$
\begin{array}{ll}
\#\left(\square_{a}\right)=\frac{1}{2}\left(\pi_{a} \circ \pi_{a}^{\prime}+\pi_{a} \circ \pi_{O 6}\right) & \#\left(\square_{a}, \square_{b}\right)=\pi_{a} \circ \pi_{b} \\
\#\left(\square_{a}\right)=\frac{1}{2}\left(\pi_{a} \circ \pi_{a}^{\prime}-\pi_{a} \circ \pi_{O 6}\right) & \#\left(\square_{a}, \square_{b}\right)=\pi_{a} \circ \pi_{b}^{\prime}
\end{array}
$$

which finally becomes for $U(N)$ branes:

$$
\sum_{x \neq a} N_{x}\left(\#\left(\square_{a}, \square_{x}\right)+\#\left(\square_{a}, \square_{x}\right)\right)+\left(N_{a}-4\right) \#\left(\square_{a}\right)+\left(N_{a}+4\right) \#\left(\square_{a}\right)=0
$$

For the $U(1)$ case:

$$
\sum_{x \neq a}\left(\#\left(\square_{a}, \bar{\square}_{x}\right)+\#\left(\square_{a}, \square_{x}\right)\right)+5 \#\left(\square_{a}\right)=0 \quad \bmod 3
$$

U(1) Masslessness conditions

* Each D-brane carries a $U(1)$ which typically appears to be anomalous.
* The linear combination $U(1)=\sum_{x} q_{x} U(1)_{x}$ remains massless (no coupling to axions) if:

$$
\frac{1}{2} \sum_{x} q_{x} N_{x}\left(\pi_{x}-\pi_{x}^{\prime}\right)=0
$$

* Using again the cycle- to representation-dictionary we get:

$$
\begin{aligned}
\frac{1}{2} \sum_{x \neq a} q_{x} N_{x} \#\left(\square_{a},\right. & \left.\square_{x}\right)-\frac{1}{2} \sum_{x \neq a} q_{x} N_{x} \#\left(\square_{a}, \square_{x}\right) \\
& -\frac{q_{a} N_{a}}{2\left(4-N_{a}\right)}\left(\sum_{x \neq a} N_{x}\left(\#\left(\square_{a}, \square_{x}\right)+\#\left(\square_{a}, \square_{x}\right)\right)+8 \#\left(\square_{a}\right)\right)=0
\end{aligned}
$$

* Here, we have used tadpole condition to substitute the confusing antisymmetric reps.
* The masslessness condition is a necessary condition for the hypercharge.

Discrete gauge symmetries in D-brane SM

Discrete symmetry conditions

* Abelian discrete gauge symmetries in D-brane compactifications are remnants of the anomalous $U(1)$ gauge symmetries living on D-branes.
* Those anomalous $U(1)^{\prime}$'s become massive via the Green-Schwarz mechanism and survive as global symmetries which are satisfied on the perturbative level.
* D-instanton effects can break those global symmetries inducing sometimes desired, but perturbatively forbidden, couplings (Majorana mass terms, Yukawa couplings etc).
* However, we have to ensure that other instantons do not induce dangerous couplings.
* Discrete gauge symmetries are an efficient way to guarantee it.
* Our aim is to do an analysis over semi-realistic D-brane Standard Model configurations by the effect of all allowed discrete gauge symmetries.

Discrete gauge symmetries in String theory

* Consider an abelian gauge field A_{μ} and some axions a_{m} which couple like:

$$
\sum_{m}\left(\partial_{\mu} a_{m}-\sum_{n} k_{n}\left(R_{n m}-R_{n^{c} m}\right) A_{\mu}\right)^{2} \quad a_{m} \rightarrow a_{m}+1
$$

* Gauge invariance requires:

$$
A_{\mu} \rightarrow A_{\mu}+\partial \lambda \quad a_{m} \rightarrow a_{m}+\sum_{n} k_{n}\left(R_{n m}-R_{n^{c} m}\right) \lambda
$$

* Combining again the above, we have a Z_{N} discrete gauge symmetry if:

$$
\sum_{n} k_{n}\left(R_{n m}-R_{n^{c} m}\right)=0 \quad \bmod N
$$

and using the homology classes of the branes it becomes:

$$
\frac{1}{2} \sum_{n} k_{n} N_{n}\left(\pi_{n}-\pi_{n}^{\prime}\right)=0 \quad \bmod N
$$

* Gauged discrete subgroups are preserved by any non-perturbative effect.

Discrete gauge symmetries

* Consider a discrete gauge symmetry $\mathbf{Z}_{N}=\sum_{x} k_{x} U(1)_{x}$
* This symmetry survives in the low energy effective action if:

$$
\frac{1}{2} \sum_{x} k_{x} N_{x}\left(\pi_{x}-\pi_{x}^{\prime}\right)=0 \quad \bmod N
$$

* This condition becomes:

$$
\frac{1}{2}\left(\sum_{x \neq a} k_{x} N_{x} \#\left(\square_{a}, \square_{x}\right)-\sum_{x \neq a} k_{x} N_{x} \#\left(\square_{a}, \square_{x}\right)-\#\left(\square_{a}\right)-\#\left(\square_{a}\right)\right)=0 \quad \bmod N
$$

* Using tadpole conditions, we can substitute again the antisymmetrics and we get

$$
\begin{aligned}
& \frac{1}{2} \sum_{x \neq a} k_{x} N_{x} \#\left(\square_{a}, \square_{x}\right)-\frac{1}{2} \sum_{x \neq a} k_{x} N_{x} \#\left(\square_{a}, \square_{x}\right) \\
& \quad-\frac{k_{a} N_{a}}{2\left(4-N_{a}\right)}\left(\sum_{x \neq a} N_{x}\left(\#\left(\square_{a}, \square_{x}\right)+\#\left(\square_{a}, \square_{x}\right)\right)+8 \#\left(\square_{a}\right)\right)=0 \bmod N
\end{aligned}
$$

An additional discrete symmetry condition

* The fact that discrete symmetries require $0 \bmod N$ instead of 0 brings troubles...
* One can compensate that by requiring an additional constraint:

$$
\sum_{a} k_{a} N_{a}\left(\#\left(\square_{a}\right)-\#\left(\square_{a}\right)\right)=0 \quad \bmod N
$$

arising from multiplying the homology class of the orientifold with the discrete symmetry constraint.

* After replacing again the antisymmetrics we get:

$$
\sum_{a} \frac{k_{a} N_{a}}{4-N_{a}}\left(\sum_{x \neq a} N_{x}\left(\#\left(\square_{a}, \square_{x}\right)+\#\left(\square_{a}, \square_{x}\right)\right)+2 N_{a}\left(\square_{a}\right)\right)=0 \bmod N
$$

* Combining the two conditions we can prove the absence of various mixed anomalies:

$$
S U(N) \times S U(N) \times \mathbf{Z}_{N} \quad G \times G \times \mathbf{Z}_{N}
$$

D-brane Standard Models

* Consider again the previous embedding:

$Q^{i}(\mathbf{3}, \mathbf{2})_{1 / 6}$	$U^{i}(\overline{\mathbf{3}}, 1)_{-2 / 3}$	$D^{i}(\overline{\mathbf{3}}, 1)_{1 / 3}$	$L^{i}(1, \mathbf{2})_{-1 / 2}$	$E^{i}(1,1)_{1}$	$N^{i}(1,1)_{0}$	$H_{u}(1, \mathbf{2})_{+1 / 2}$	$H_{d}(1, \mathbf{2})_{-1 / 2}$
$3(a, \bar{b})$	$3(\overline{\mathrm{a}}, \bar{d})$	$3(\overline{\mathrm{a}}, \bar{c})$	$3(b, \bar{c})$	$(c, d), 2 \overline{\mathrm{Z}}_{b}$	$3 \bar{\varpi}_{c}$	(b, d)	(\bar{b}, \bar{c})

*With the discrete charges: $Q_{\text {discrete }}=k_{a} Q_{a}+k_{b} Q_{b}+k_{c} Q_{c}+k_{d} Q_{d}$

* We want to find all $\left(k_{a}, k_{b}, k_{c}, k_{d}\right)$ that for various Z_{N} satisfy:

$$
\frac{1}{2} \sum_{x} k_{x} N_{x}\left(\pi_{x}-\pi_{x}^{\prime}\right)=0 \quad \bmod N
$$

* Each k take values from $0,1, \ldots 2 N$ (due to the $1 / 2$ overall factor).

Search for discrete symmetries

* Not all sets of $\left(k_{a}, k_{b}, k_{c}, k_{d}\right)$ are independent.

* To avoid overcounting, we have to remember that one solution gives others:
- by a Hypercharge shift: $\left(k_{a}, k_{b}, k_{c}, k_{d}\right)+m\left(q_{a}, q_{b}, q_{c}, q_{d}\right) \bmod N$
, there is an overall freedom so we fix the discrete charge of Q_{L} to zero by: $k_{a}=k_{b}$.
*Within independent vectors $\left(k_{a}, k_{b}, k_{c}, k_{d}\right)$ we check which of them satisfy:
, the discrete symmetry condition
- the Symmetric-Antisymmetric condition

Anomalies

- allow Yukawa terms.
* For all \mathbf{Z}_{N} with $N \in 2,3,4, \ldots 20$.

Results

* Discrete gauge symmetries $\left(k_{a}, k_{b}, k_{c}, k_{d}\right)$ found:

- The $\mathbf{Z}_{2}: \quad R_{2}=U(1)_{\mathrm{a}}+\mathrm{U}(1)_{b}+U(1)_{c}+U(1)_{d}$
- The $\mathbf{Z}_{3}: \quad L_{3} R_{3}=U(1)_{\mathrm{a}}+\mathrm{U}(1)_{b}+U(1)_{d}$
is the usual matter parity. is the baryon triality.
- The $Z_{6}: \quad L_{6}^{2} R_{6}^{5}=U(1)_{\mathrm{a}}+\mathrm{U}(1)_{b}+9 U(1)_{d}+13 U(1)_{d} \quad$ is the proton hexality.
* Therefore, the above discrete gauge symmetries ensure for:
- all desired Yukawa couplings,
- allowed μ-term, Weinberg operator,
- No bad terms (like R-violating, no proton decay operators).
* We have extended this analysis over all semi-realistic 4 stack D-brane models.

More results

* From the systematic search over all realistic 4 stack quivers (40) we find:
- Only in few realizations proton hexality realized (3/40).
- Baryon triality only rarely realized.
- On the other hand matter parity may be oftentimes realized (25/40).
- Other \mathbf{Z}_{3} discrete symmetries appear fairly often.
- No family dependence.
- $\mathrm{No} \mathbf{Z}_{9}$ and \mathbf{Z}_{18} realizations (so far).

Conclusions

* We have analyzed all four D-brane Standard Model configurations with interesting phenomenology (around 40 local configurations).
* A few of them (3) may exhibit the discrete Z_{6} symmetry proton hexality.
* Matter parity is fairly often realized (around 25 out of 40).
* Baryon triality rarely realized, but other \mathbf{Z}_{3} appear frequently.
* No family dependence, not in the quark sector which is somewhat expected and also desired, but also not in the lepton sector.
* Would be interesting to see whether the family independence holds true also for 5 stack realizations.
* Search in 5 stack quivers to make more substantial systematic comments that it would be interesting to see whether the patter on 4 stacks holds true also for 5 stacks.

