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Introduction and motivation




Motivation

* Discrete symmetries are often invoked in order to forbid unwanted or dangerous
couplings in particle physics model building.

* However, these symmetries are poorly motivated in a more fundamental level.

* Global discrete symmetries are expected to be violated in consistent theory of quantum
gravity.

* Thus, discrete symmetries should have a gauge symmetry origin, and are called
discrete gauge symmetries.

* Those discrete gauge symmetries are subject to discrete anomaly cancellation
conditions, just as normal gauge symmetries are.

* The potential discrete gauge symmetries of the MSSM were classified. Ibanez Ross
Dreiner Luhn Thormeier

* In this talk we will investigate the presence and the role of discrete gauge symmetries in
D-brane realizations of the Standard Model.



Discrete gauge symmetries




Discrete gauge symmetries

KX

Consider the basic Lagrangian for a discrete symmetry:

1 2
—@F2+(8Ma—kz4u) a—a+1

This Lagrangian is invariant also under the gauge transformation:
Ay = Ay + 0) a— a-+ kX
A Z discrete gauge symmetry basically combines the two above, allowing for
A=1/k
fractional U(1) gauge transformations.

Such symmetries can remove dangerous couplings from the effective field theory:.

Ibanez Ross



Discrete gauge symmetries in Standard Model

*  Any family independent discrete gauge symmetry of the MSSM can be expressed as:

2 m n p

where m,n,p=0,1,... N — 1.

Dreiner Luhn Thormeier

* The MSSM particles are charged under these independent Zy gauge symmetries:

Qi Ui Di I Ei Ni H, H,

R 0 -1 1 0 1 =1 1 =]

A 0 0 0 -1 1 1 0 0

L 0 0 - = 0 1 0 0
Qiscrete 0 -m m-n -n-p | m+p |n+p-m| m -m-n

* Given a discrete symmetry it is of utmost interest to investigate its phenomenological
consequences on the various couplings.



Discrete gauge symmetries in Standard Model

* All possible family independent discrete gauge symmetries within the MSSM with:

» Cancellation of all mixed anomalies:

ASU(B) X SU(3) x ZN , ﬂSU@) x SU(2) x ZN , Azn x 75 x Zn p Aa x G x zn

+ Allowed Yukawa couplings:

have been classified and belong to:

+ The Z» is the

L, &,

usual matter parity.

QL Hu, U, QL Ha D , L Hqi E

i, &s,

VAT

Dreiner Luhn Thormeier

+ The class of Zs solutions contains a proton hexality Lz R3 that

allows: <

[ the u-term,

| the Weinberg operator.

forbids: <

[ R-parity violating,

_ dangerous dim 5 proton decay ops.



Discrete gauge symmetries vs coupings

* Physical consequences of the discrete gauge symmetries:
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The Yukawas couplings QLH,U, QrHqD, LH4E are allowed for each of the above.

Dreiner Luhn Thormeier



D-branes and the Standard Model




D-branes and strings

*  We focus on type IIA constructions with intersecting D6 branes:

/ U(N) = SUN)xU(1)

1+6 Newman
directions

a stack of N Dg-branes

De-branes
embedded in { £
MxT?XT?xT? PR
My
)i X4 X6 X8
3 D;'ichle ; An open string attached on a stack of N Dg¢-branes
directions

N

* Strings with both ends on a stack of branes give rise to U(N) = SU(N)xU(1) group.



D-branes and strings

*  We focus on type IIA constructions with intersecting D6 branes:

SUN)xU()  SUM)xU(I)

/ (N, +1; ]\_4,—])
/ X7

X4 X6

N M

* Strings with both ends on a stack of branes give rise to U(N) = SU(N)xU(1) group.

* Strings stretched between different stacks transform as bifundamentals.

X9

X8

An open string stretched between branes.



D-branes and strings

*  We focus on type IIA constructions with intersecting D6 branes:

/( n,12) or ( N, +2)

A X5 (TA X7 X9

SUN)xU(1)

X4 X6 X8
An open string stretched between branes.

N N’
* Strings with both ends on a stack of branes give rise to U(N) = SU(N)xU(1) group.
* Strings stretched between different stacks transform as bifundamentals.

* Strings stretched between a brane and its image transform as (anti)symmetric reps.



l.ocal and Global models

* D-branes allow for a bottom-up building approach:

» Consider a local set of D-branes at some region of a CYs.

+ This set could eventually describe the Standard Model. Antoniadis Kiritsis Tomaras
Aldazabal Ibanez Quevedo Uranga

» A hidden sector is typically necessary for the tadpole cancellation.

* We want to analyze in that bottom-up fashion, what kind of discrete gauge symmetries
do appear in semi-realistic D-brane configurations.



A D-brane Standard Model

* Lets consider a specific D-brane Standard Model example:
Q3,216 | Ut (3,1)—2/3 D (3,1)1/3 Li(1,2)-12 | Ei(1,1)n Ni(1,1)0o | Hu(1,2)+12 | Ha(1,2)-12
3(a,b) | 3@d) | 3@?2) | 3(b7) |(cd)2He 3Mc | (bd) | (b

23 g SU(2)xU(1) Cvetic Halverson Richter

A

SU(3)xU(1)

U(1)
a d

+ The hypercharge is given by the linear combination: Y = —%U (1)g — %U (1) +U(1)4

* We will focus on this semi-realistic configuration and study which discrete symmetries
survive and their effect on the superpotential couplings.



Tladpole conditions

* Consistency and stability of D-brane models require the tadpoles conditions:
Z N, (my + 7)) = 4mo

* It is easy to transform the formula from the cycle- to the representation-language by:

1 s
#( a):§(77ao7Téz+WaO7TO6) #( as b):WaOWb
1
#( 1) = - (7 0 T, — Tq © TOE) #(Oa, ) = Tg 0 T,

which finally becomes for U(IN) branes:

S Ne (#(0a, Oa) + #(0e, D)) + (Vo — 9% Ha) + (Vo + 9)%( [a) = 0
rFa

For the U(1) case:

0 mod 3

Y (#(Oa, Do) + #(0ay Oa)) + 5#( [Ta)
r#£a




U(T) Masslessness conditions

* Each D-brane carries a U(1) which typically appears to be anomalous.

* The linear combination U(1) = Z ¢:U (1), remains massless (no coupling to axions) if:

3 3 6 No#t(as 0a) — 5 3 0o Neh(Clas )
rF#a oy
_2(ZCL—N]C<[) (Z Nx (#(Da, _$)+#(Da7 x))"‘S#( a)) =0
. r#a

* Here, we have used tadpole condition to substitute the confusing antisymmetric reps.

* The masslessness condition is a necessary condition for the hypercharge.



Discrete gauge symmetries in D-brane SM




Discrete symmetry conditions

* Abelian discrete gauge symmetries in D-brane compactifications are remnants of the
anomalous U(1) gauge symmetries living on D-branes.

* Those anomalous U(1)’'s become massive via the Green-Schwarz mechanism and
survive as global symmetries which are satisfied on the perturbative level.

* D-instanton effects can break those global symmetries inducing sometimes desired, but
perturbatively forbidden, couplings (Majorana mass terms, Yukawa couplings etc).

* However, we have to ensure that other instantons do not induce dangerous couplings.
* Discrete gauge symmetries are an efficient way to guarantee it.

#* Qur aim is to do an analysis over semi-realistic D-brane Standard Model configurations
by the effect of all allowed discrete gauge symmetries.



Discrete gauge symmetries in String theory

* Consider an abelian gauge field A, and some axions a,, which couple like:

2
Z <8Mam — Z kn(Rpm — Rncm)AM> Gy — Gy + 1

* Gauge invariance requires:
A, — A, + ) m = m + Y kn(Rom — Ruem)A
* Combining again the above, we have a Zy discrete gauge symmetry if:
Y kn(Rpm — Rpe) =0 mod N
and using the homolog; classes of the branes it becomes:
1 Z knNy(m, — 7 )=0 mod N
2 n

* Gauged discrete subgroups are preserved by any non-perturbative effect.

Berasaluce-Gonzalez Ibanez Soler Uranga



Discrete gauge symmetries

* Consider a discrete gauge symmetry Zy = Z koU(1)y

* This symmetry survives in the low energy effective action if:

+ This condition becomes:

- (Z ki Ny

rFa

as

rZ£a

as :c) _#(

a)_#(

a)) =0 mod N

+ Using tadpole conditions, we can substitute again the antisymmetrics and we get

%; ke Ny

as

rFa

> N, (#(

ko, (
24-N,) | &

)~ 2 3 ke No# (0, O)

z) + #(Ua,

2)) + 8#(

a)) =0 mod N




An additional discrete symmetry condition

* The fact that discrete symmetries require 0 mod N instead of 0 brings troubles...

* One can compensate that by requiring an additional constraint:

ZkaNa(#( a)_#([ a)):O modN

arising from multiplying the homology class of the orientifold with the discrete
symmetry constraint.

* After replacing again the antisymmetrics we get:

Z4ki]\]f\c; (Z NZI? (#( a» ix)+#( a9 Dx))+2Na( a)) :O modN

rF£a

* Combining the two conditions we can prove the absence of various mixed anomalies:

SU(N) x SU(N) x Zy GXxGXZy



D-brane Standard Models

<

Consider again the previous embedding;:

Qdiscrete

Q@326 | U3, 1)-25| D@, | Li(1,2)-12 | E(1,1)1 | Ni(1,1)0 |Hu(1,2)+12 | Ha(1,2)-112
3(a,b) | 3(a,d) | 3(a ¢ | 3(b,3c) |(c,d),2Hs| 3T (b,d) | (b, 7)
With the discrete charges: Quiscrete = kaQa + kv Qb + kcQc + kaQu
koK ‘ ka-ka ‘ Jeke ‘ bk |k+k 20l -2k ‘ kb ka ‘ Sk

We want to find all (k., ki, ke, ka) that for various Zy satisfy:

1
- ka]\fm(ﬂx —m)=0 mod N

Each k take values from 0, 1, ... 2N (due to the 1/2 overall factor).



Search for discrete symmetries

+ Not all sets of (kq, kb, k¢, kq) are independent.
* To avoid overcounting , we have to remember that one solution gives others:

» by a Hypercharge shift: (k,, ky, ke, kq) + m(qa, @, Ge, ga) mod N

+ there is an overall freedom so we fix the discrete charge of Q)1 to zero by: k. = k.
*  Within independent vectors (k,, ky, k., k) we check which of them satisfy:

+ the discrete symmetry condition :

»  Anomalies

+ the Symmetric-Antisymmetric condition )
+allow Yukawa terms.

+ Forall Zywith N € 2,3,4,...20.



Results

T
* Discrete gauge symmetries (k,, kp, k., kq) found: ,{/___ ‘___)
» TheZ>: Rz = U(1).+U(1)p+U1)c+U(1)g is the usual matter parity.
» The Zs: LsRs = U(1).+U(1)p+U(1)4 is the baryon triality.

+ TheZs: LgRs = U(1)a+U(1),+9U(1)a +13U(1)a is the proton hexality.
* Therefore, the above discrete gauge symmetries ensure for:

+all desired Yukawa couplings,

+allowed p-term, Weinberg operator,

» No bad terms (like R-violating, no proton decay operators).

* We have extended this analysis over all semi-realistic 4 stack D-brane models.



More results

* From the systematic search over all realistic 4 stack quivers (40) we find:
* Only in few realizations proton hexality realized (3/40).
» Baryon triality only rarely realized.
* On the other hand matter parity may be oftentimes realized (25/40).
+ Other Zs discrete symmetries appear fairly often.
» No family dependence.

+ No Z¢ and Z1s realizations (so far).



Conclusions

* We have analyzed all four D-brane Standard Model configurations with interesting
phenomenology (around 40 local configurations).

* A few of them (3) may exhibit the discrete Zs symmetry proton hexality.
*  Matter parity is fairly often realized (around 25 out of 40).
* Baryon triality rarely realized, but other Z3 appear frequently.

* No family dependence, not in the quark sector which is somewhat expected and also
desired, but also not in the lepton sector.

* Would be interesting to see whether the family independence holds true also for 5
stack realizations.

* Search in 5 stack quivers to make more substantial systematic comments that it would
be interesting to see whether the patter on 4 stacks holds true also for 5 stacks.



