

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

Discrete gauge symmetries and Open strings Pascal Anastasopoulos

work in progress with M. Cvetic, J. Halverson, R. Richter and P. Vaudrevange.

Corfu - 20/09/2012

Plan of the talk

- Motivation
- Discrete gauge symmetries
- D-Branes and Standard Model
- * Discrete gauge symmetries in D-brane Standard Models
- Some specific examples
- Conclusions

Introduction and motivation

Motivation

- Discrete symmetries are often invoked in order to forbid unwanted or dangerous couplings in particle physics model building.
- * However, these symmetries are poorly motivated in a more fundamental level.
- Global discrete symmetries are expected to be violated in consistent theory of quantum gravity.
- * Thus, discrete symmetries should have a gauge symmetry origin, and are called discrete gauge symmetries.
- * Those discrete gauge symmetries are subject to discrete anomaly cancellation conditions, just as normal gauge symmetries are.
- The potential discrete gauge symmetries of the MSSM were classified. Ibanez Ross
 Dreiner Luhn Thormeier
- In this talk we will investigate the presence and the role of discrete gauge symmetries in D-brane realizations of the Standard Model.

Discrete gauge symmetries

Discrete gauge symmetries

* Consider the basic Lagrangian for a **discrete symmetry**:

$$-\frac{1}{4g^2}F^2 + (\partial_\mu a - kA_\mu)^2 \qquad \qquad a \to a+1$$

* This Lagrangian is invariant also under the gauge transformation:

$$A_{\mu} \to A_{\mu} + \partial \lambda$$
 $a \to a + k\lambda$

* A **Z**_k discrete gauge symmetry basically combines the two above, allowing for

 $\lambda = 1/k$

fractional *U*(1) gauge transformations.

Such symmetries can remove dangerous couplings from the effective field theory.
 Ibanez Ross

Discrete gauge symmetries in Standard Model

* Any family independent discrete gauge symmetry of the MSSM can be expressed as:

 $g_N = R_N^m \times A_N^n \times L_N^p$

where m, n, p = 0, 1, ..., N - 1.

Dreiner Luhn Thormeier

* The MSSM particles are charged under these independent Z_N gauge symmetries:

	O;	TT		τ;	T.	NT;	TT	TT
	Q^{\prime}	U^{I}	D^{i}	L^{I}	E^{I}	IN^{I}	H_{u}	H_d
R	0	-1	1	0	1	-1	1	-1
A	0	0	0	-1	1	1	0	0
L	0	0	-1	-1	0	1	0	0
$Q_{discrete}$	0	-m	m-n	-n-p	m+p	n+p-m	m	-m+n

 Given a discrete symmetry it is of utmost interest to investigate its phenomenological consequences on the various couplings.

Discrete gauge symmetries in Standard Model

- * All possible family independent discrete gauge symmetries within the MSSM with:
 - Cancellation of all mixed anomalies:

 $\mathcal{A}_{SU(3) \times SU(3) \times ZN}$, $\mathcal{A}_{SU(2) \times SU(2) \times ZN}$, $\mathcal{A}_{ZN \times ZN \times ZN}$, $\mathcal{A}_{G \times G \times ZN}$

• Allowed Yukawa couplings: $Q_L H_u U$, $Q_L H_d D$, $L H_d E$

have been **classified** and belong to:

 Z_2 , Z_3 , Z_6 , Z_9 , Z_{18}

Dreiner Luhn Thormeier

- The Z₂ is the usual matter parity.
- * The class of \mathbb{Z}_6 solutions contains a proton hexality $L_6^2 R_6^5$ that

allows: $\begin{cases} \text{the } \mu \text{-term,} \\ \text{the Weinberg operator.} \end{cases} \text{ forbids:} \begin{cases} \text{R-parity violating,} \\ \text{dangerous dim 5 proton decay ops.} \end{cases}$

Discrete gauge symmetries vs coupings

* Physical consequences of the discrete gauge symmetries:

	R_2	R_3L_3	R_3	L_3	$R_3^2L_3$	$R_6^5 L_6^2$	R_6	$R_6^3 L_6^2$	$R_6 L_6^2$	all $Z_9 \& Z_{18}$
$H_u H_d$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1	\checkmark	
H_uL		\checkmark								
$LLar{E}$		\checkmark								
$LQ\bar{D}$		\checkmark								
$ar{U}ar{D}ar{D}$				\checkmark						
QQQL	\checkmark		\checkmark				\checkmark			
$ar{U}ar{U}ar{D}ar{E}$	\checkmark		\checkmark				\checkmark			
$QQQH_d$				\checkmark					14.5	
$Qar{U}ar{E}H_d$		\checkmark								
$LH_{\mathrm{u}}LH_{\mathrm{u}}$	\checkmark	\checkmark				\checkmark				

* The Yukawas couplings $Q_L H_u U$, $Q_L H_d D$, $L H_d E$ are allowed for each of the above.

Dreiner Luhn Thormeier

D-branes and the Standard Model

D-branes and strings

* We focus on type IIA constructions with intersecting D6 branes:

* Strings with both ends on a stack of branes give rise to $U(N) = SU(N) \times U(1)$ group.

D-branes and strings

* We focus on type IIA constructions with intersecting D6 branes:

- * Strings with both ends on a stack of branes give rise to $U(N) = SU(N) \times U(1)$ group.
- * Strings stretched between different stacks transform as bifundamentals.

D-branes and strings

* We focus on type IIA constructions with intersecting D6 branes:

- * Strings with both ends on a stack of branes give rise to $U(N) = SU(N) \times U(1)$ group.
- * Strings stretched between different stacks transform as bifundamentals.
- * Strings stretched between a brane and its image transform as (anti)symmetric reps.

Local and Global models

D-branes allow for a bottom-up building approach:

- Consider a local set of D-branes at some region of a CY₃.
- This set could eventually describe the Standard Model. Antoniadis Kiritsis Tomaras Aldazabal Ibanez Quevedo Uranga

Hidden Secto

- A hidden sector is typically necessary for the tadpole cancellation.
- We want to analyze in that bottom-up fashion, what kind of discrete gauge symmetries do appear in semi-realistic D-brane configurations.

A D-brane Standard Model

* Lets consider a specific **D-brane Standard Model** example:

- * The hypercharge is given by the linear combination: $Y = -\frac{1}{3}U(1)_a \frac{1}{2}U(1)_b + U(1)_d$
- * We will focus on this semi-realistic configuration and study which discrete symmetries survive and their effect on the superpotential couplings.

Tadpole conditions

* Consistency and stability of D-brane models require the tadpoles conditions:

$$\sum_{x} N_x(\pi_x + \pi'_x) = 4\pi_O$$

* It is easy to transform the formula from the cycle- to the representation-language by:

$$#(\square_a) = \frac{1}{2} (\pi_a \circ \pi'_a + \pi_a \circ \pi_{O6}) \qquad \qquad #(\square_a, \square_b) = \pi_a \circ \pi_b$$
$$#(\square_a) = \frac{1}{2} (\pi_a \circ \pi'_a - \pi_a \circ \pi_{O6}) \qquad \qquad #(\square_a, \square_b) = \pi_a \circ \pi'_b$$

which finally becomes for U(N) branes:

 $\sum_{x \neq a} N_x \left(\#(\Box_a, \overline{\Box}_x) + \#(\Box_a, \Box_x) \right) + (N_a - 4) \#(\Box_a) + (N_a + 4) \#(\Box_a) = 0$

For the U(1) case:

 $\sum_{x \neq a} \left(\#(\Box_a, \overline{\Box}_x) + \#(\Box_a, \Box_x) \right) + 5 \#(\Box_a) = 0 \mod 3$

U(1) Masslessness conditions

- * Each D-brane carries a U(1) which typically appears to be anomalous.
- * The linear combination $U(1) = \sum_{x} q_x U(1)_x$ remains massless (no coupling to axions) if: $\frac{1}{2} \sum_{x} q_x N_x (\pi_x - \pi'_x) = 0$
- * Using again the cycle- to representation-dictionary we get:

$$\frac{1}{2} \sum_{x \neq a} q_x N_x \#(\Box_a, \Box_x) - \frac{1}{2} \sum_{x \neq a} q_x N_x \#(\Box_a, \Box_x) - \frac{q_a N_a}{2(4 - N_a)} \left(\sum_{x \neq a} N_x \left(\#(\Box_a, \Box_x) + \#(\Box_a, \Box_x) \right) + 8 \#(\Box_a) \right) = 0$$

- Here, we have used tadpole condition to substitute the confusing antisymmetric reps.
- * The masslessness condition is a necessary condition for the hypercharge.

Discrete gauge symmetries in D-brane SM

Discrete symmetry conditions

- * Abelian discrete gauge symmetries in D-brane compactifications are remnants of the anomalous *U*(1) gauge symmetries living on D-branes.
- * Those anomalous *U*(1)'s become massive via the Green-Schwarz mechanism and survive as global symmetries which are satisfied on the perturbative level.
- * D-instanton effects can break those global symmetries inducing sometimes desired, but perturbatively forbidden, couplings (Majorana mass terms, Yukawa couplings etc).
- * However, we have to ensure that other instantons do not induce dangerous couplings.
- * Discrete gauge symmetries are an efficient way to guarantee it.
- * Our aim is to do an analysis over semi-realistic D-brane Standard Model configurations by the effect of all allowed discrete gauge symmetries.

Discrete gauge symmetries in String theory

* Consider an abelian gauge field A_{μ} and some axions a_m which couple like:

$$\sum_{m} \left(\partial_{\mu} a_m - \sum_{n} k_n (R_{nm} - R_{n^c m}) A_{\mu} \right)^2 \qquad \qquad a_m \to a_m + 1$$

Gauge invariance requires:

$$A_{\mu} \to A_{\mu} + \partial \lambda$$
 $a_m \to a_m + \sum_n k_n (R_{nm} - R_{n^c m}) \lambda$

* Combining again the above, we have a **Z**_N **discrete gauge symmetry** if:

$$\sum_{n} k_n (R_{nm} - R_{n^c m}) = 0 \mod N$$

and using the homology classes of the branes it becomes:

$$\frac{1}{2}\sum_{n}k_{n}N_{n}(\pi_{n}-\pi_{n}')=0 \mod N$$

* Gauged discrete subgroups are **preserved** by any non-perturbative effect.

Berasaluce-Gonzalez Ibanez Soler Uranga

Discrete gauge symmetries

- * Consider a discrete gauge symmetry $\mathbf{Z}_N = \sum k_x U(1)_x$
- * This symmetry survives in the low energy effective action if:

$$\frac{1}{2}\sum_{x}k_{x}N_{x}(\pi_{x}-\pi_{x}')=0 \mod N$$

This condition becomes:

$$\frac{1}{2}\left(\sum_{x\neq a}k_x N_x \#(\Box_a, \overline{\Box}_x) - \sum_{x\neq a}k_x N_x \#(\Box_a, \Box_x) - \#(\Box_a) - \#(\Box_a)\right) = 0 \mod N$$

* Using tadpole conditions, we can substitute again the antisymmetrics and we get

$$\frac{1}{2}\sum_{x\neq a}k_x N_x \#(\Box_a, \overline{\Box}_x) - \frac{1}{2}\sum_{x\neq a}k_x N_x \#(\Box_a, \Box_x) - \frac{k_a N_a}{2(4-N_a)} \left(\sum_{x\neq a}N_x \left(\#(\Box_a, \overline{\Box}_x) + \#(\Box_a, \Box_x)\right) + 8\#(\Box_a)\right) = 0 \mod N$$

An additional discrete symmetry condition

- * The fact that discrete symmetries require 0 mod *N* instead of 0 brings troubles...
- * One can compensate that by requiring an additional constraint:

$$\sum_{a} k_a N_a \left(\#(\square_a) - \#(\square_a) \right) = 0 \mod N$$

arising from multiplying the homology class of the orientifold with the discrete symmetry constraint.

* After replacing again the antisymmetrics we get:

$$\sum_{a} \frac{k_a N_a}{4 - N_a} \left(\sum_{x \neq a} N_x \left(\#(\square_a, \square_x) + \#(\square_a, \square_x) \right) + 2N_a(\square_a) \right) = 0 \mod N$$

* Combining the two conditions we can prove the absence of various mixed anomalies:

 $SU(N) \times SU(N) \times \mathbf{Z}_N$ $G \times G \times \mathbf{Z}_N$

D-brane Standard Models

Consider again the previous embedding:

* With the discrete charges: $Q_{discrete} = k_a Q_a + k_b Q_b + k_c Q_c + k_d Q_d$

 Q_{discrete} k_{a} - k_{b} $-k_{\text{a}}$ - k_{d} $-k_{\text{a}}$ - k_{c} k_{c} - k_{c} k_{c} + k_{d} , $2k_{b}$ $-2k_{c}$ k_{b} + k_{d} $-k_{b}$ - k_{c}

* We want to find all (k_a, k_b, k_c, k_d) that for various Z_N satisfy:

 $\frac{1}{2}\sum_{x}k_{x}N_{x}(\pi_{x}-\pi_{x}')=0 \mod N$

* Each k take values from 0, 1, ... 2N (due to the 1/2 overall factor).

Search for discrete symmetries

- * Not all sets of (k_a, k_b, k_c, k_d) are independent.
- * To avoid overcounting , we have to remember that one solution gives others:
 - by a Hypercharge shift: $(k_a, k_b, k_c, k_d) + m(q_a, q_b, q_c, q_d) \mod N$
 - there is an overall freedom so we fix the discrete charge of Q_L to zero by: $k_a = k_b$.
- Within independent vectors (k_a, k_b, k_c, k_d) we check which of them satisfy:
 - the discrete symmetry condition

Anomalies

- the Symmetric-Antisymmetric condition
- allow Yukawa terms.
- * For all Z_N with $N \in 2, 3, 4, ..., 20$.

Results

- * Discrete gauge symmetries (k_a, k_b, k_c, k_d) found:
 - The Z₂: $R_2 = U(1)_a + U(1)_b + U(1)_c + U(1)_d$

is the usual matter parity.

• The Z₃: $L_3R_3 = U(1)_a + U(1)_b + U(1)_d$

is the baryon triality.

- The Z₆: $L_6^2 R_6^5 = U(1)_a + U(1)_b + 9U(1)_d + 13U(1)_d$ is the proton hexality.
- * Therefore, the above discrete gauge symmetries ensure for:
 - all desired Yukawa couplings,
 - allowed *µ*-term, Weinberg operator,
 - No bad terms (like R-violating, no proton decay operators).
- * We have extended this analysis over all semi-realistic 4 stack D-brane models.

More results

- * From the systematic search over all realistic 4 stack quivers (40) we find:
 - Only in few realizations proton hexality realized (3/40).
 - Baryon triality only rarely realized.
 - On the other hand matter parity may be oftentimes realized (25/40).
 - Other **Z**₃ discrete symmetries appear fairly often.
 - No family dependence.
 - No \mathbb{Z}_9 and \mathbb{Z}_{18} realizations (so far).

Conclusions

- * We have analyzed all four D-brane Standard Model configurations with interesting phenomenology (around 40 local configurations).
- * A few of them (3) may exhibit the discrete Z_6 symmetry proton hexality.
- * Matter parity is fairly often realized (around 25 out of 40).
- * Baryon triality rarely realized, but other **Z**₃ appear frequently.
- * No family dependence, not in the quark sector which is somewhat expected and also desired, but also not in the lepton sector.
- Would be interesting to see whether the family independence holds true also for 5 stack realizations.
- Search in 5 stack quivers to make more substantial systematic comments that it would be interesting to see whether the patter on 4 stacks holds true also for 5 stacks.