Georgios Orfanidis

Motivation

Introduction

Coset Space Geometry

Reduction to the 4D theory

Gauge group and it's reps in 4D

Wilson Flux

Breakings of SU(3)³ to SM gauge group

Conclusions

Coset Space Dimensional Reduction (CSDR) over $SU(3)/U(1) \times U(1)$ (Review)

Georgios Orfanidis Physics Department National Technical University Athens, Greece

work in collaboration with N. Irges (NTUA) and G. Zoupanos (NTUA)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Georgios Orfanidis

- Motivation
- Introduction
- Coset Space Geometry
- Reduction to the 4D theory
- Gauge group and it's reps in 4D
- Wilson Flux
- Breakings of SU(3)³ to SM gauge group
- Conclusions

1 Motivation

- 2 Introduction
- 3 Coset Space Geometry
- **4** Reduction to the 4*D* theory
- **5** Gauge group and it's reps in 4D
- 6 Wilson Flux
- **7** Breakings of $SU(3)^3$ to SM gauge group
- 8 Conclusions

Table of contents

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Georgios Orfanidis

Motivation

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Motivation

Introduction

Coset Space Geometry

Reduction to the 4D theory

Gauge group and it's reps in 4D

Wilson Flux

Breakings of SU(3)³ to SM gauge group

Conclusions

• Use of higher dimensional unified theories

• 4 dimensional effective theory

- Unify gauge and Higgs sectors
- Unify fermion interactions with gauge and Higgs fields

$SU(3) \swarrow U(1) \times U(1)$

Georgios Orfanidis

Motivation

Introduction

Coset Spac Geometry

Reduction to the 4D theory

Gauge group and it's reps in 4D

Wilson Flux

Breakings of SU(3)³ to SM gauge group

Conclusions

$\mathcal{N}=1,~$ SYM of gauge group ${\it G}$ theory in 10D manifold \mathcal{M}

$$S = \int dx^{n} \sqrt{-g} \left(\frac{i}{2} \bar{\psi} \Gamma_{M} D^{M} \psi - \frac{1}{2} Tr \{ F_{MN} F^{MN} \} \right)$$

Introduction

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• $\mathcal{M} = \mathcal{M}_A \times B$ • $B = S \swarrow R$ Coset Space • S, R Lie Groups and R is a subgroup of S • $M, N = 0, \dots, 9 / \mu, \nu = 0, \dots, 3 / a, b = 1, \dots, 6$ • 4D coords x^{μ} • 6D coords $y^a = x^{3+a}$ • $g^{MN} = \begin{pmatrix} \eta^{\mu\nu} & 0 \\ 0 & -g^{ab} \end{pmatrix}$ • $\eta^{\mu\nu} = diag\{1, -1, -1, -1\}$ • g^{ab} is the metric of the coset space

Georgios Orfanidis

Motivation

Introduction

Coset Space Geometry

Reduction to the 4D theory

Gauge group and it's reps in 4D

Wilson Flux

Breakings of *SU*(3)³ to *SM* gauge group

Conclusions

•
$$\Gamma^{M}$$
 : { Γ^{M}, Γ^{N} } = 2 $g^{MN}I_{32}$

• $\mathcal{N}=1$ in 10D

- ψ Weyl Majorana spinor \Rightarrow 8 d.o.f.
- A_M has 8 d.o.f.

•
$$D^{M} = \partial^{M} - igA^{M} - \theta^{M}$$
,
 $F^{MN} = \partial^{M}A^{N} - \partial^{N}A^{M} + g[A^{M}, A^{N}]$

- θ^M is the spin connection
- Fields: non trivial dependence from y^a , but we impose the condition that a symmetry transformation by an element of the isometry group *S* of *B* is compensated by a gauge transformation.
 - \mathcal{L} is independent of y^a just because is gauge invariant

$\mathsf{CSDR} \Longrightarrow \mathcal{L}_{4D}$

Georgios Orfanidis

Motivation

Introduction

Coset Space Geometry

Reduction to the 4D theory

Gauge group and it's reps in 4D

Wilson Flux

Breakings of *SU*(3)³ to *SM* gauge group

Conclusions

Coset Space Geometry

- Coset Space: B = S / R
 - *S* isometry group
 - R isotropy group
- Generators of R : Q_i
- Generators of S : Q_i , Q_a
- The commutation relations are:

$$[Q_i, Q_j] = f_{ij}^k Q_k$$
$$[Q_i, Q_a] = f_{ia}^b Q_b + f_{ia}^j Q_j$$
$$[Q_a, Q_b] = f_{ab}^i Q_i + f_{ab}^c Q_c$$

- 0 because *S*, *R* reductive groups, since *R* is compact
- 0 in the case that the coset space is symmetric

The general element of the group S can be written as

$$s = exp\{\omega^{\alpha}\delta^{a}_{\alpha}Q_{a} + \omega^{i}Q_{i}\}$$

= $exp\{y^{\alpha}\delta^{a}_{\alpha}Q_{a}\}exp\{\phi^{i}Q_{i}\}$
= $L(y)r$

Where r is the element of the group R.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Georgios Orfanidis

Motivation

Introduction

Coset Space Geometry

Reduction to the 4D theory

Gauge group and it's reps in 4D

Wilson Flux

Breakings of *SU*(3)³ to *SM* gauge group

Conclusions

Coset Space Geometry

• Coset Space: $B = S \neq R$

- S isometry group
- *R* isotropy group
- Generators of R : Q_i
- Generators of S : Q_i , Q_a
- The commutation relations are:

$$\begin{bmatrix} Q_i, Q_j \end{bmatrix} = f_{ij}^k Q_k$$

$$\begin{bmatrix} Q_i, Q_a \end{bmatrix} = f_{ia}^b Q_b + \boxed{f_{ia}^j Q_j}$$

$$\begin{bmatrix} Q_a, Q_b \end{bmatrix} = f_{ab}^i Q_i + \boxed{f_{ab}^c Q_c}$$

• 0 because *S*, *R* reductive groups, since *R* is compact

• 0 in the case that the coset space is symmetric

The general element of the group S can be written as

$$s = exp\{\omega^{\alpha}\delta^{a}_{\alpha}Q_{a} + \omega^{i}Q_{i}\}$$

= $exp\{y^{\alpha}\delta^{a}_{\alpha}Q_{a}\}exp\{\phi^{i}Q_{i}\}$
= $L(y)r$

Where r is the element of the group R.

Georgios Orfanidis

Motivation

Introduction

Coset Space Geometry

Reduction to the 4D theory

Gauge group and it's reps in 4D

Wilson Flux

Breakings of *SU*(3)³ to *SM* gauge group

Conclusions

The Mauren-Cartan (MC) 1-form

$$e(y) = L^{-1}(y)dL(y)$$

= $e^{A}_{\alpha}Q_{A}dy^{\alpha}$
= $e^{a}Q_{a} + e^{i}Q_{i}$

- e^a : coframe
- e^i : R-connection

 e^i can be expanded in the coset vielbeins as:

$$e^i = e^i_a(y)e^a$$
 .

Georgios Orfanidis

Motivation

Introduction

Coset Space Geometry

Reduction to the 4D theory

Gauge group and it's reps in 4D

Wilson Flux

Breakings of SU(3)³ to SM gauge group

Conclusions

Reduction to the 4D theory The Action in 10D theory of gauge group $G = E_8$ is given $S = \int dx^4 dy^6 \sqrt{-g} \left(\frac{i}{2} \bar{\psi} \Gamma_M D^M \psi - \frac{1}{2} Tr\{F_{MN} F^{MN}\} \right)$

Imply the Symmetric condition

$$\begin{aligned} A_{\mu}(x,y) &= g(s)A_{\mu}(x,s^{-1}y)g^{-1}(s) \\ A_{\alpha}(x,y) &= g(s)J_{\alpha}^{\beta}A_{\beta}(x,s^{-1}y)g^{-1}(s) + g(s)\partial_{\alpha}g^{-1}(s) \\ \psi(x,y) &= f(s)\Omega(y,s)\psi(x,s^{-1}y)f^{-1}(s) \end{aligned}$$

- \hookrightarrow g(s) : gauge transformation for the gauge fields (adj G)
- \hookrightarrow f(s) : gauge transformation for the fermion fields (rep F of G)

It connects transformation of \mathcal{S}/\mathcal{R} coordinates and gauge transformation

Coordinate transformation is compensated by a gauge transformation

Georgios Orfanidis

Motivation

Introduction

Coset Space Geometry

Reduction to the 4D theory

Gauge group and it's reps in 4D

Wilson Flux

Breakings of SU(3)³ to SM gauge group

Conclusions

The 4D Lagrangian will have the form

$$\mathcal{L}_{eff} = \frac{i}{2} \bar{\psi} \Gamma_{\mu} D^{\mu} \psi - \frac{i}{2} \bar{\psi} \Gamma_{a} D^{a} \psi$$
$$- \frac{1}{2} Tr \{ F_{\mu\nu} F^{\mu\nu} \} + \frac{1}{2} (D_{\mu} \phi_{a}) (D^{\mu} \phi^{a}) - V(\phi)$$

$$V(\phi) = \frac{1}{2} g^{ac} g^{bd} Tr\{F_{ab}F_{cd}\}$$
$$F_{ab} = f^{C}_{ab} \phi_{C} - [\phi_{a}, \phi_{b}]$$

f structure constants of S

•
$$D_{\mu} = \partial_{\mu} - A_{\mu}$$

•
$$D_a = \partial_a - \theta_a - \phi_a$$

•
$$\theta_a = \frac{1}{2} \theta_{abc} \Sigma^{bc}$$

Still $V(\phi)$ only formal since ϕ_a must satisfy

$$f_{ai}^D\phi_D - [\phi_a, \phi_i] = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Georgios Orfanidis

Motivation

Introduction

Coset Space Geometry

Reduction to the 4D theory

Gauge group and it's reps in 4D

Wilson Flux

Breakings of SU(3)³ to SM gauge group

Conclusions

Gauge group and it's reps in 4D

Gauge bosons in 4D

The gauge group H in 4D is the centralizer of R in G

$$G \supset R_G \times H \hookrightarrow H = C_G(R)$$

Then the gauge group is H.

$$E_8 \supset U(1) imes U(1) imes E_6$$

In the case when $R (= U(1) \times U(1))$ is Abelian group then the centralizer of $G (= E_8)$ is

 $H = C_{E_8}(U(1) \times U(1)) = E_6 \times U(1) \times U(1)$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Georgios Orfanidis

Motivation

Introduction

Coset Space Geometry

Reduction to the 4D theory

Gauge group and it's reps in 4D

Wilson Flux

Breakings of SU(3)³ to SN gauge group

Conclusions

$G \supset R_G \times H$ The $adj\mathbf{G}$ decomposes under $R_G \times H$ as: $adj\mathbf{G} = (adj\mathbf{R}, 1) + (1, adj\mathbf{H}) + \sum (r_i, h_i)$

 $S \supset R$

The *adj***S** decomposes under *R* as:

Scalar fields in 4D

$$\mathit{adj} \mathbf{S} = \mathit{adj} \mathbf{R} + \sum s_i$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\forall s_i : s_i = r_j \implies h_j$ is a representation of the scalar fields

Georgios Orfanidis

Motivation

Introduction

Coset Space Geometry

Reduction to the 4D theory

Gauge group and it's reps in 4D

Wilson Flux

Breakings of SU(3)³ to SM gauge group

Conclusions

For
$$G=E_8$$
 and $R=U(1) imes U(1)$
 $E_8 \supset U(1) imes U(1) imes E_6$

The **248** = $adj\mathbf{E_8}$ decomposes under $U(1) \times U(1) \times E_6$

$$248 = 1_{(0,0)} + 1_{(0,0)} + 78_{(0,0)} + 1_{(3,\frac{1}{2})} + 1_{(-3,\frac{1}{2})} + 1_{(0,-1)} + 27_{(3,\frac{1}{2})} + 27_{(-3,\frac{1}{2})} + 27_{(0,-1)} + 1_{(-3,-\frac{1}{2})} + 1_{(3,-\frac{1}{2})} + 1_{(0,1)} + \overline{27}_{(-3,-\frac{1}{2})} + \overline{27}_{(3,-\frac{1}{2})} + \overline{27}_{(0,1)}$$

S = SU(3) and $SU(3) \supset U(1) \times U(1)$. The adjSU(3) = 8 decomposes under $U(1) \times U(1)$

 $\mathbf{8} = \underbrace{(0,0) + (0,0)}_{adjU(1) + adjU(1)}$ $+ (3, \frac{1}{2}) + (-3, \frac{1}{2}) + (0, -1)$ $+ (-3, -\frac{1}{2}) + (3, -\frac{1}{2}) + (0, 1)$ $= 1 + (-3, -\frac{1}{2}) + (3, -\frac{1}{2}) + (0, 1)$ $= 1 + (-3, -\frac{1}{2}) + (-3, -\frac{1}{2}) + (0, 1)$

Georgios Orfanidis

Motivation

Introduction

Coset Space Geometry

Reduction to the 4D theory

Gauge group and it's reps in 4D

Wilson Flux

Breakings of SU(3)³ to SM gauge group

Conclusions

For
$$G=E_8$$
 and $R=U(1) imes U(1)$
 $E_8 \supset U(1) imes U(1) imes E_6$

The **248** = $adj\mathbf{E_8}$ decomposes under $U(1) \times U(1) \times E_6$

$$248 = 1_{(0,0)} + 1_{(0,0)} + 78_{(0,0)}$$

$$+1_{(3,\frac{1}{2})} + 1_{(-3,\frac{1}{2})} + 1_{(0,-1)}$$

$$+27_{(3,\frac{1}{2})} + 27_{(-3,\frac{1}{2})} + 27_{(0,-1)}$$

$$+1_{(-3,-\frac{1}{2})} + 1_{(3,-\frac{1}{2})} + 1_{(0,1)}$$

$$+\overline{27}_{(-3,-\frac{1}{2})} + \overline{27}_{(3,-\frac{1}{2})} + \overline{27}_{(0,1)}$$

S = SU(3) and $SU(3) \supset U(1) \times U(1)$. The adjSU(3) = 8 decomposes under $U(1) \times U(1)$

Georgios Orfanidis

Motivation

Introduction

Coset Space Geometry

Reduction to the 4D theory

Gauge group and it's reps in 4D

Wilson Flux

Breakings of *SU*(3)³ to *SM* gauge group

Conclusions

For
$$G=E_8$$
 and $R=U(1) imes U(1)$
 $E_8 \supset U(1) imes U(1) imes E_6$

The **248** = $adj\mathbf{E}_8$ decomposes under $U(1) \times U(1) \times E_6$

S = SU(3) and $SU(3) \supset U(1) \times U(1)$. The adjSU(3) = 8 decomposes under $U(1) \times U(1)$

Georgios Orfanidis

Motivation

Introduction

Coset Space Geometry

Reduction to the 4D theory

Gauge group and it's reps in 4D

Wilson Flux

Breakings of *SU*(3)³ to *SN* gauge group

Conclusions

Scalar Potential in 4D

$$\begin{split} \mathsf{V}(\alpha^{i},\alpha,\beta^{i},\beta,\gamma^{i},\gamma) &= \mathrm{const.} + \left(\frac{4R_{1}^{2}}{R_{2}^{2}R_{3}^{2}} - \frac{8}{R_{1}^{2}}\right)\alpha^{i}\alpha_{i} + \left(\frac{4R_{1}^{2}}{R_{2}^{2}R_{3}^{2}} - \frac{8}{R_{1}^{2}}\right)\overline{\alpha}\alpha} \\ &+ \left(\frac{4R_{2}^{2}}{R_{1}^{2}R_{3}^{2}} - \frac{8}{R_{2}^{2}}\right)\beta^{i}\beta_{i} + \left(\frac{4R_{2}^{2}}{R_{1}^{2}R_{3}^{2}} - \frac{8}{R_{2}^{2}}\right)\overline{\beta}\beta} \\ &+ \left(\frac{4R_{3}^{2}}{R_{1}^{2}R_{3}^{2}} - \frac{8}{R_{2}^{2}}\right)\beta^{i}\beta_{i} + \left(\frac{4R_{2}^{2}}{R_{1}^{2}R_{3}^{2}} - \frac{8}{R_{2}^{2}}\right)\overline{\beta}\beta} \\ &+ \left(\frac{4R_{3}^{2}}{R_{1}^{2}R_{2}^{2}} - \frac{8}{R_{3}^{2}}\right)\gamma^{i}\gamma_{i} + \left(\frac{4R_{3}^{2}}{R_{1}^{2}R_{3}^{2}} - \frac{8}{R_{3}^{2}}\right)\overline{\gamma}\gamma \\ &+ \left[\sqrt{280}\left(\frac{R_{1}}{R_{2}R_{3}} + \frac{R_{2}}{R_{1}R_{3}} + \frac{R_{3}}{R_{2}R_{1}}\right)d_{ijk}\alpha^{i}\beta^{j}\gamma^{k} \\ &+ \sqrt{280}\left(\frac{R_{1}}{R_{2}R_{3}} + \frac{R_{2}}{R_{1}R_{3}} + \frac{R_{3}}{R_{2}R_{1}}\right)\alpha\beta\gamma + h.c\right] \\ &+ \frac{1}{6}\left(\alpha^{i}(3\delta_{i}^{j})\alpha_{j} + \overline{\alpha}(3)\alpha + \beta^{i}(-3\delta_{i}^{j})\beta_{j} + \overline{\beta}(-3)\beta\right)^{2} \\ &+ \frac{10}{6}\left(\alpha^{i}(\frac{1}{2}\delta_{i}^{j})\alpha_{j} + \overline{\alpha}(\frac{1}{2})\alpha + \beta^{i}(\frac{1}{2}\delta_{i}^{j})\beta_{j} + \overline{\beta}(\frac{1}{2})\beta + \gamma^{i}(-1\delta_{i}^{j})\gamma_{j} + \overline{\gamma}(-1)\gamma\right)^{2} \\ &+ 40\alpha^{i}\beta^{j}d_{ijk}d^{klm}\alpha_{l}\beta_{m} + 40\beta^{i}\gamma^{i}d_{ijk}d^{klm}\beta_{l}\gamma_{m} + 40\alpha^{i}\gamma^{j}d_{ijk}d^{klm}\alpha_{l}\gamma_{m} \\ &+ 40(\overline{\alpha\overline{\beta}})(\alpha\beta) + 40(\overline{\beta\overline{\gamma}})(\beta\gamma) + 40(\overline{\gamma\overline{\alpha}})(\gamma\alpha) \end{split}$$

Georgios Orfanidis

Motivation

Introduction

Coset Space Geometry

Reduction to the 4D theory

Gauge group and it's reps in 4D

Wilson Flux

Breakings of *SU*(3)³ to *SN* gauge group

Conclusions

Scalar Potential in 4D

Soft Breaking Terms

$$\begin{split} \mathsf{V}(\alpha^{i},\alpha,\beta^{i},\beta,\gamma^{i},\gamma) &= \textit{const.} & + \left(\frac{4R_{1}^{2}}{R_{2}^{2}R_{3}^{2}} - \frac{8}{R_{1}^{2}}\right)\alpha^{i}\alpha_{i} + \left(\frac{4R_{1}^{2}}{R_{2}^{2}R_{3}^{2}} - \frac{8}{R_{1}^{2}}\right)\overline{\alpha}\alpha}{\mu^{2}(\alpha^{i},\alpha^{i}$$

Georgios Orfanidis

Motivation

Introduction

Coset Space Geometry

Reduction to the 4D theory

Gauge group and it's reps in 4D

Wilson Flux

Breakings of SU(3)³ to SM gauge group

Conclusions

Scalar Potential in 4D

D-Terms

$$\begin{split} \mathcal{V}(\alpha^{i},\alpha,\beta^{i},\beta,\gamma^{i},\gamma) &= \text{const.} + \left(\frac{4R_{1}^{2}}{R_{2}^{2}R_{3}^{2}} - \frac{8}{R_{1}^{2}}\right)\alpha^{i}\alpha_{i} + \left(\frac{4R_{1}^{2}}{R_{2}^{2}R_{3}^{2}} - \frac{8}{R_{1}^{2}}\right)\overline{\alpha}\alpha_{i} \\ &+ \left(\frac{4R_{2}^{2}}{R_{1}^{2}R_{3}^{2}} - \frac{8}{R_{2}^{2}}\right)\beta^{i}\beta_{i} + \left(\frac{4R_{2}^{2}}{R_{1}^{2}R_{3}^{2}} - \frac{8}{R_{2}^{2}}\right)\overline{\beta}\beta_{i} \\ &+ \left(\frac{4R_{2}^{2}}{R_{1}^{2}R_{3}^{2}} - \frac{8}{R_{2}^{2}}\right)\beta^{i}\beta_{i} + \left(\frac{4R_{2}^{2}}{R_{1}^{2}R_{3}^{2}} - \frac{8}{R_{2}^{2}}\right)\overline{\beta}\beta_{i} \\ &+ \left(\frac{4R_{3}^{2}}{R_{1}^{2}R_{2}^{2}} - \frac{8}{R_{3}^{2}}\right)\gamma^{i}\gamma_{i} + \left(\frac{4R_{3}^{2}}{R_{1}^{2}R_{2}^{2}} - \frac{8}{R_{3}^{2}}\right)\overline{\gamma}\gamma_{i} \\ &+ \left(\sqrt{280}\left(\frac{R_{1}}{R_{2}R_{3}} + \frac{R_{2}}{R_{1}R_{3}} + \frac{R_{3}}{R_{2}R_{1}}\right)d_{ijk}\alpha^{i}\beta^{j}\gamma_{i}^{k} \\ &+ \sqrt{280}\left(\frac{R_{1}}{R_{2}R_{3}} + \frac{R_{2}}{R_{1}R_{3}} + \frac{R_{3}}{R_{2}R_{1}}\right)\alpha\beta\gamma + h.c\right] \\ &+ \frac{1}{6}\left(\alpha^{i}(G^{\alpha})_{i}^{j}\alpha_{j} + \beta^{i}(G^{\alpha})_{i}^{j}\beta_{j} + \gamma^{i}(G^{\alpha})_{i}^{j}\gamma_{j}\right)^{2} \\ &+ \frac{10}{6}\left(\alpha^{i}(3\delta_{i}^{j})\alpha_{j} + \overline{\alpha}(3)\alpha + \beta^{i}(-3\delta_{i}^{j})\beta_{j} + \overline{\beta}(-3)\beta\right)^{2} \\ &+ 40\alpha^{i}\beta^{j}d_{ijk}d^{klm}\alpha_{l}\beta_{m} + 40\beta^{i}\gamma^{j}d_{ijk}d^{klm}\beta_{l}\gamma_{m} + 40\alpha^{i}\gamma^{j}d_{ijk}d^{klm}\alpha_{l}\gamma_{m} \\ &+ 40(\overline{\alpha}\overline{\beta})(\alpha\beta) + 40(\overline{\beta}\overline{\gamma})(\beta\gamma) + 40(\overline{\gamma}\overline{\alpha})(\gamma\alpha) \end{split}$$

Georgios Orfanidis

Motivation

Introduction

Coset Space Geometry

Reduction to the 4D theory

Gauge group and it's reps in 4D

Wilson Flux

Breakings of *SU*(3)³ to *SN* gauge group

Conclusions

Scalar Potential in 4D

F-Terms

$$\begin{split} \mathbb{V}(\alpha^{i},\alpha,\beta^{i},\beta,\gamma^{i},\gamma) &= \text{const.} + \left(\frac{4R_{1}^{2}}{R_{2}^{2}R_{3}^{2}} - \frac{8}{R_{1}^{2}}\right)\alpha^{i}\alpha_{i} + \left(\frac{4R_{1}^{2}}{R_{2}^{2}R_{3}^{2}} - \frac{8}{R_{1}^{2}}\right)\overline{\alpha}\alpha} \\ &+ \left(\frac{4R_{2}^{2}}{R_{1}^{2}R_{3}^{2}} - \frac{8}{R_{2}^{2}}\right)\beta^{i}\beta_{i} + \left(\frac{4R_{1}^{2}}{R_{2}^{2}R_{3}^{2}} - \frac{8}{R_{2}^{2}}\right)\overline{\beta}\beta} \\ &+ \left(\frac{4R_{3}^{2}}{R_{1}^{2}R_{3}^{2}} - \frac{8}{R_{2}^{2}}\right)\beta^{i}\beta_{i} + \left(\frac{4R_{2}^{2}}{R_{1}^{2}R_{3}^{2}} - \frac{8}{R_{2}^{2}}\right)\overline{\beta}\beta} \\ &+ \left(\frac{4R_{3}^{2}}{R_{1}^{2}R_{2}^{2}} - \frac{8}{R_{3}^{2}}\right)\gamma^{i}\gamma_{i} + \left(\frac{4R_{3}^{2}}{R_{1}^{2}R_{2}^{2}} - \frac{8}{R_{2}^{2}}\right)\overline{\gamma}\gamma} \\ &+ \left(\sqrt{280}\left(\frac{R_{1}}{R_{2}R_{3}} + \frac{R_{2}}{R_{1}R_{3}} + \frac{R_{3}}{R_{2}R_{1}}\right)d_{ijk}\alpha^{i}\beta^{j}\gamma^{k}} \\ &+ \sqrt{280}\left(\frac{R_{1}}{R_{2}R_{3}} + \frac{R_{2}}{R_{1}R_{3}} + \frac{R_{3}}{R_{2}R_{1}}\right)\alpha\beta\gamma + h.c\right] \\ &+ \frac{1}{6}\left(\alpha^{i}(G^{\alpha})_{i}^{j}\alpha_{j} + \beta^{i}(G^{\alpha})_{i}^{j}\beta_{j} + \gamma^{i}(G^{\alpha})_{i}^{j}\gamma_{j}\right)^{2} \\ &+ \frac{10}{6}\left(\alpha^{i}(3\delta_{i}^{j})\alpha_{j} + \overline{\alpha}(3)\alpha + \beta^{i}(-3\delta_{i}^{j})\beta_{j} + \overline{\beta}(-3)\beta\right)^{2} \\ &+ \frac{40}{6}\left(\alpha^{i}(\frac{1}{2}\delta_{i}^{j})\alpha_{j} + \overline{\alpha}(\frac{1}{2})\alpha + \beta^{i}(\frac{1}{2}\delta_{i}^{j})\beta_{j} + \overline{\beta}(\frac{1}{2})\beta + \gamma^{i}(-1\delta_{i}^{j})\gamma_{j} + \overline{\gamma}(-1)\gamma\right)^{2} \\ &+ 40\alpha^{i}\beta^{j}d_{ijk}d^{klm}\alpha_{l}\beta_{m} + 40\beta^{i}\gamma^{j}d_{ijk}d^{klm}\beta_{l}\gamma_{m} + 40\alpha^{i}\gamma^{j}d_{ijk}d^{klm}\alpha_{l}\gamma_{m} \\ &+ 40(\overline{\alpha}\overline{\beta})(\alpha\beta) + 40(\overline{\beta}\overline{\gamma})(\beta\gamma) + 40(\overline{\gamma}\overline{\alpha})(\gamma\alpha) \\ \end{array}$$

Georgios Orfanidis

Motivation

Introduction

Coset Space Geometry

Reduction to the 4D theory

Gauge group and it's reps in 4D

Wilson Flux

Breakings of *SU*(3)³ to *SM* gauge group

Conclusions

Fermion fields in 4D

The spinor representation of G decomposes under $R \times H$

 $F=\sum(t_i,h_i)$

and the spinor representation of SO(d) decomposes under R

 $\sigma_d = \sum \sigma_i$

 $\forall \sigma_j : \sigma_j = t_i \implies h_i \text{ is a}$ representation of 4D theory The spinor in $\mathbf{D} - Dimensions$ can be decomposed

$$SO(1, D - 1) \supset SO(1, 3) \times SO(d)$$

= $SU(2)_L \times SU(2)_R \times SO(d)$

d = D - 4 if d odd

$$\sigma_D = (2, 1, \sigma_d) + (1, 2, \sigma_d)$$

and if d even

$$\sigma_D = (2, 1, \sigma_d) + (1, 2, \bar{\sigma}_d) + (2, 1, \bar{\sigma}_d) + (1, 2, \sigma_d)$$

In even dimensions we can impose the Weyl condition $(\Gamma^*\Psi=\pm\Psi)$ and that leads

(with "+")

$$\sigma_{D_W} = (2, 1, \sigma_d) + (1, 2, \bar{\sigma}_d)$$

(or with " - " then
$$\sigma_{D_W} = (2, 1, \bar{\sigma}_d) + (1, 2, \sigma_d))$$

If $D = 4n + 2$ dimensions, the spinor is further re-
ducible, we can impose also Majorana condition
 $(\Psi^c = \Psi)$

Georgios Orfanidis

Motivation

Introduction

Coset Space Geometry

Reduction to the 4D theory

Gauge group and it's reps in 4D

Wilson Flux

Breakings of SU(3)³ to SN gauge group

Conclusions

- In case we have Dirac fermions in higher dimensions then it is imposible to get chiral fermions in 4*D*. For odd dimensional theories there is no hope to obtain **chiral** fermions by that method.
- When *F* is a vector like representation and we are in even dimensions then we can impose the **Weyl condition** and get a **chiral** theory but with 2 identical copies.
- In the case F is a vector like representation, D = 4n + 2, then we can appl also Majorana condition and we get chiral theory.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 \Rightarrow In 10*D* with Weyl-Majorana condition we can obtain chiral theory with CSDR.

Georgios Orfanidis

Motivation

Introduction

Coset Space Geometry

Reduction to the 4D theory

Gauge group and it's reps in 4D

Wilson Flux

Breakings of SU(3)³ to SM gauge group

Conclusions

For
$$G=E_8$$
 and $R=U(1) imes U(1)$

1

$$\mathsf{E}_8 \supset \mathit{U}(1) imes \mathit{U}(1) imes \mathit{E}_6$$

F vector like $248 = adj E_8$ decomposes under $U(1) \times U(1) \times E_6$ The 4 representation of SO(6)decomposes under $U(1) \times U(1)$ 4 = (0,0) Gauginos $+1_{(3,\frac{1}{2})} + 1_{(-3,\frac{1}{2})} + 1_{(0,-1)}$ $+27_{(3,\frac{1}{2})} + 27_{(-3,\frac{1}{2})} + 27_{(0,-1)}$ $+1_{(-3,-\frac{1}{2})} + 1_{(3,-\frac{1}{2})} + 1_{(0,1)}$ $+\overline{27}_{(-3,-\frac{1}{2})} + \overline{27}_{(3,-\frac{1}{2})} + \overline{27}_{(0,1)}$

Thus applying the CSDR rules we find that the surviving fields in four dimensions are three $\mathcal{N} = 1$ vector multiplets V^{α} , $V_{(1)}$, $V_{(2)}$, (where α is an E_6 , 78 index and the other two refer to the two U(1)'s) containing the gauge fields of $E_6 \times U(1) \times U(1)$. The matter content consists of three $\mathcal{N} = 1$ chiral multiplets (A^i , B^i , C^i) with *i* an E_6 , 27 index and three $\mathcal{N} = 1$ chiral multiplets (A, B, C) which are E_6 singlets and carry only $U(1) \times U(1)$ charges.

Georgios Orfanidis

- Motivation
- Introduction
- Coset Space Geometry
- Reduction to the 4D theory
- Gauge group and it's reps in 4D
- Wilson Flux

Breakings of SU(3)³ to SN gauge group

Conclusions

Yukawa Terms and Gauginos masses in 4D

$$\mathcal{L}_{\mathbf{Y}} = \frac{i}{2}\overline{\psi}\Gamma^{a}D_{a}\psi = \frac{i}{2}\overline{\psi}\Gamma^{a}\nabla_{a}\psi + \overline{\psi}V\psi$$

- Γ^{a} are the Γ -matrices $\rightarrow \{\Gamma^{a}, \Gamma^{b}\} = -2g^{ab}I_{32}$ • $g^{ab} = diag\{\frac{1}{R_{1}^{2}}, \frac{1}{R_{1}^{2}}, \frac{1}{R_{2}^{2}}, \frac{1}{R_{2}^{2}}, \frac{1}{R_{3}^{2}}, \frac{1}{R_{3}^{2}}\}$ • $\nabla_{a} = -\partial_{a} + \frac{1}{2}f_{ibc}e_{\Gamma}^{c}e_{a}^{\Gamma}\sigma^{bc} + \phi_{a}$ • $\partial_{a}\psi = 0, e_{\Gamma}^{i} = 0, \text{ at } y = 0$ $\rightarrow \text{ Yukawa terms}$ • $V = \frac{i}{A}\Gamma^{a}G_{abc}\sigma^{bc}$
 - Depends on torsion *τ*, which is free parameter.
 → Gaugino masses

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Georgios Orfanidis

Motivation

Introduction

Coset Space Geometry

Reduction to the 4D theory

Gauge group and it's reps in 4D

Wilson Flux

Breakings of SU(3)³ to SM gauge group

Conclusions

Wilson Flux

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

$$\begin{split} F^{S/R} &= \mathbb{Z}_3 \subseteq W \\ A_{\mu} &= \gamma_3 A_{\mu} \gamma_3^{-1} \\ \text{where } \gamma_3 &= \text{diag}(\mathbf{1}_9, \omega \mathbf{1}_9, \ \omega^2 \mathbf{1}_9), \ \omega &= e^{2i\pi/3} \\ \vec{\alpha} &= \omega \gamma_3 \vec{\alpha}, \ \vec{\beta} &= \omega^2 \gamma_3 \vec{\beta}, \ \vec{\gamma} &= \omega^3 \gamma_3 \vec{\gamma} \\ \alpha &= \omega \alpha, \quad \beta &= \omega^2 \beta, \quad \gamma &= \omega^3 \gamma \\ \text{After the } \mathbb{Z}_3 \text{ projection the gauge group reduces to} \\ A_{\mu}^A, \qquad A \in SU(3)_c \times SU(3)_L \times SU(3)_R \\ \alpha_3 \sim (\bar{3}, 1, 3)_{(3, 1/2)}, \ \beta_2 \sim (3, \bar{3}, 1)_{(-3, 1/2)}, \ \gamma_1 \sim (1, 3, \bar{3})_{(0, -1)} \\ \text{Among the singlets, only } \gamma_{(0, -1)} \text{ survives.} \end{split}$$

Georgios Orfanidis

Motivation

Introduction

Coset Space Geometry

Reduction to the 4D theory

Gauge group and it's reps in 4D

Wilson Flux

Breakings of SU(3)³ to SN gauge group

Conclusions

$$(\bar{3},1,3) \longrightarrow (q^c)^{\alpha}_p \quad (3,\bar{3},1) \longrightarrow Q^a_{\alpha} \quad (1,3,\bar{3}) \longrightarrow L^p_a$$

$$q^{c} = \begin{pmatrix} d_{R} & u_{R} & D_{R} \end{pmatrix}, \ Q = \begin{pmatrix} d_{L} \\ u_{L} \\ D_{L} \end{pmatrix},$$
$$L = \begin{pmatrix} H_{d}^{0} & H_{u}^{+} & v_{L} \\ H_{d}^{-} & H_{u}^{0} & e_{L} \\ v_{R} & e_{R} & S \end{pmatrix}$$

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

æ

Georgios Orfanidis

- Motivation
- Introduction
- Coset Space Geometry
- Reduction to the 4D theory
- Gauge group and it's reps in 4D
- Wilson Flux

Breakings of $SU(3)^3$ to SM gauge group

Conclusions

Breakings of *SU*(3)³ to *SM* gauge group

$$L_0^{(1)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & V_S \end{pmatrix}, \qquad L_0^{(2)} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ V_R & 0 & 0 \end{pmatrix}$$

 $SU(3)_c \times SU(3)_L \times SU(3)_R \times U(1)_A \times U(1)_B$ $\longrightarrow SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)$ $\longrightarrow SU(3)_c \times SU(2)_L \times U(1)$

$$L_0^{MSSM} = \begin{pmatrix} \upsilon_d & 0 & 0 \\ 0 & \upsilon_u & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\longrightarrow SU(3)_c \times U(1)_{em}$$

Georgios Orfanidis

Motivation

Introduction

Coset Space Geometry

Reduction to the 4D theory

Gauge group and it's reps in 4D

Wilson Flux

Breakings of $SU(3)^3$ to SM gauge group

Conclusions

General remark about neutrino mass in a $SU(3)^3$

If we just assume that the vevs in the theory have big scale difference $V_S \gg V_R \gg v_u$ then it leads to neutrino mass

$$m_{\nu}=\frac{y^2}{5g^2}\frac{\upsilon_u^2}{V_R^2}M$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- y is the unified Yukawa coupling
- g is the unified gauge coupling
- *M* is the gaugino Mass

Georgios Orfanidis

Conclusions

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

- Motivation
- Introduction
- Coset Space Geometry
- Reduction to the 4D theory
- Gauge group and it's reps in 4D
- Wilson Flux

Breakings of *SU*(3)³ to *SM* gauge group

Conclusions

- Elegant way to reduce from extra dimensions to a 4D theory.
- Chiral theory is achieved.
- $\mathcal{N}=1$ softly broken theory.
- Get *SM* particle content.

Georgios Orfanidis

Motivation

Introduction

Coset Space Geometry

Reduction to the 4D theory

Gauge group and it's reps in 4D

Wilson Flux

Breakings of SU(3)³ to SM gauge group

Conclusions

Thank you!

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

æ