Can we really measure fnl from the galaxy power spectrum?

Nina Roth, Cristiano Porciani

MNRAS Letters 2012, 425, 81-85

TR33 - Summer Institute Corfu 2012

Argelander-Institut für Astronomie

Rheinische Friedrich-Wilhelms-Universität Bonn

What is Primordial non-Gaussianity?

- "Primordial"
 - Refers to initial density/potential perturbations
 - Different from NG introduced by non-linear structure formation at late times
- Describes a wide class of effects with different physical origin
 - Signal determined by specific model of Inflation
 - Standard slow-roll: deviations undetectable
- Leads to non-zero n-point correlation functions for n>2 (or equivalently: Bispectrum, Trispectrum, ...)

→ A detection would imply new physics!

Different types

Bispectrum "templates" defined by triangle configurations which maximize the signal in the 3-point function

Most common: local type

$$\Phi(\mathbf{x}) = \phi(\mathbf{x}) + f_{\mathrm{NL}}^{\mathrm{loc}} \phi^2(\mathbf{x}) + g_{\mathrm{NL}}^{\mathrm{loc}} \phi^3(\mathbf{x})$$

 $B_{\Phi}^{\text{loc}}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = 2f_{\text{NL}}^{\text{loc}} \left[P_{\phi}(k_1) P_{\phi}(k_2) + (\text{cyc.}) \right]$

- Many signals are maximal for local model
- Other types have to be approximated or calculated numerically

Folded $k_1 \approx k_2 \approx k_3/2$

Effects on large-scale structure

Halo mass function

Matter power spectrum

Scale-dependent bias

(e.g. Dalal et al. 2008; Smith, Ferraro & LoVerde 2012)

$$\beta_g = \kappa_3 \left[-0.7 + 1.4(\nu - 1)^2 + 0.6(\nu - 1)^3 \right] - \frac{d\kappa_3}{d\log\sigma^{-1}} \left(\frac{\nu - \nu^{-1}}{2} \right)$$

Scale-dependent bias

A detection of fnl > 0? (Xia et al. 2011)

 Analysis of angular power spectra of radio sources (NVSS), SDSS QSOs, MegaZ-LRGs (SDSS II) & crosscorrelation with CMB temperature map

- No indication for non-local type of PNG
- No indication for (local) gnl ≠ 0
- ◆ Some indication of local-type PNG with fnl \approx 40 ± 20

Critical assumption: The underlying model has either fnl \neq 0 or gnl \neq 0.

Simulations

- WMAP 5 cosmology, comoving 1.2 Gpc/h box
- {fnl, gnl} = {50, \pm 5e5} (within current limits from CMB), 4 realizations each
- Mass range: $10^{13} 10^{15} M_{\odot}/h$ (at redshift 0)
- "Current sample": z = {0.5, 1, 1.5} and b₁ = 1.8 2.9
- "Future sample": z = {0, 0.5, 1, 1.5, 2} and b₁ = 1.8 5.9

$$\frac{P_{\rm hm}(k)}{P_{\rm m}(k)} = b_1(f_{\rm NL}, g_{\rm NL}) + \frac{\beta_f f_{\rm NL} + \beta_g g_{\rm NL}}{\alpha(k)}.$$

1) Calculate P_{hm} and P_{mm} (average over realizations)

2) Get b(k) from ratio

3) Find best fnl, gnl (likelihood) after marginalization over b₁

Degeneracy

One-parameter model (fnl)

Simulation: fnl = 50, gnl = +5e5 Model: **gnl = +5e5, fnl fitted**, "future sample" Simulation: fnl = 50, gnl = +5e5 Model: **gnl = 0, fnl fitted**, both samples

Redshift dependence?

Simulation: fnl = 50, gnl = -5e5 Model: **gnl = 0, fnl fitted**, both samples

One-parameter model (gnl)

Simulation: fnl = 50, gnl = +5e5 Model: **fnl = 0, gnl fitted**, both samples

Simulation with gnl = -5e5

Model selection

Bayes factor (computed from the likelihood)

$$B_{ab} = \frac{P(D|M_a)}{P(D|M_b)} = \frac{\int \mathcal{L}_a(D|M_a, \theta_a) \,\pi_a(\theta_a) \,\mathrm{d}\theta_a}{\int \mathcal{L}_b(D|M_b, \theta_b) \,\pi_b(\theta_b) \,\mathrm{d}\theta_b}$$

- Also works for nested models (i.e. fixing one parameter)
- Jeffreys scale (Jeffreys 1961)
 - B_{ab} < 1 favors model 'b'</p>
 - B_{ab} > 30 gives "very strong" evidence to model 'a'

 \rightarrow We find that the 2-parameter model is always favored with $B_{ab} > 30$.

Summary

- Scale-dependent bias effects from fnl and gnl are degenerate
 - Just adding mass/redshift bins does not help
 - Higher-order statistics can break degeneracy
- Purely quadratic model (gnl = 0)
 - Leads to fnl = fnl(z), which depends on the sign of gnl
 - "Best fit" estimates differ significantly from input value
- Purely cubic model (fnl = 0)
 - Effects can cancel out when actual signs are opposite
 - "Best fit" estimates differ significantly from input value
- Model selection techniques
 - Can distinguish between different models
 - Should be applied to observations