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Introduction
In these lectures we want to discuss the (Conformal) Field Theories
that appear on the worldvolumes of multiple M-branes.

We will mainly consider M2-branes since M5-branes remain very
mysterious. The worldvolume theories are certain highly
supersymmetric Chern-Simons-Matter Theories (BLG and ABJM).
Such theories play a similar role to Yang-Mills theories on D-branes
but there are curious differences such as:

• Matter fields are not in the adjoint representation, but yet a
related to the gauge fields by susy.

• Susy is determined by the gauge group and matter
representation.
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References

Much of the lectures follow the reviews:

• Bagger, Lambert, Mukhi and Papageorgakis [arxiv:1203.3546];

• Lambert [arxiv:1203.4244]

which (hopefully) contain detail references. I will therefore not give
references in these slides and hope that no one takes offence.

Furthermore the lectures are aimed at being pedagogical rather
than historical.
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PLAN
Roughly 3 lectures of 60 mins.

1 M2-branes and Chern-Simons-Matter Theories.
• BLG and ABJM
• 3-algebras

2 Physical Analysis
• Vacuum Moduli Space
• AdS4 × CP3

• Novel Higgs reduction to D2-branes
• Monopole (’t Hooft) operators and hidden symmetries

3 M5-branes and the (2,0) CFT
• A (2,0) system
• 5D SYM
• DLCQ
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Conventions

Indices: m,n... = 0, 1, 2, ...10 µ, ν, ... = 0, 1, 2

I , J ... = 3, 4, ..., 10 A,B = 1, 2, 3, 4.

Metric: η = diag(−1, 1, ..., 1)

Spinors:

Γm 32x32 real, C = Γ0; Ψ real, Ψ̄ = ΨT C , Γ012Ψ = −Ψ

γµ 2x2 real, C = γ0; ψA complex, ψ̄A = ψ†AC
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M2-branes and Chern-Simons-Matter Theories
Consider an M2-brane along x0, x1, x2:

SO(1, 10)→ SO(1, 2)× SO(8) and 32→ 16 susys

Susys that are preserved by the M2-branes: Γ012ε = ε .

Worldvolume fermions are Goldstino modes Γ012Ψ = −Ψ.

World volume scalars are Goldstone modes X I .

Free theory Supersymmetry:

δX I = i ε̄ΓI Ψ

δΨ = ∂µX I ΓµΓI ε .
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To describe multiple M2-branes we let the fields take values in a
vector space with basis Ta:

X I → X I
a Ta Ψ→ ΨaTa

A natural guess for susy is:

δX I
d = i ε̄ΓI Ψd

δΨd = ∂µX I
d ΓµΓI ε− 1

3!X
I
a XJ

b XK
c f abc

dΓIJK ε .

f abc
d are just some sort of ’structure’ constants.
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Next we must check that this supersymmetry algebra closes:

[δ1, δ2] X I
d = −2i ε̄2Γµε1∂µX I

d − (2i ε̄2ΓJK ε1XJ
a XK

b f abc
d)X I

c .

The first term is simply a translation by vµ = −2i ε̄2Γµε1.

The second term must be interpreted as a new gauge symmetry

δX I
d = Λ̃c

dX I
c , Λ̃c

d = −2i ε̄2ΓJK ε1XJ
a XK

b f abc
d .

So we have a gauge theory!
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Next we must introduce a gauge field for this gauge symmetry.
Following the standard procedure we define

DµX I
d = ∂µX I

d − Ãµ
c

dX I
c ,

and similarly for Ψd . This is gauge covariant provided that

δÃµ
c

d = ∂µΛ̃c
d + Ãµ

c
eΛ̃e

d − Λ̃c
eÃµ

e
d

under a gauge transformation. We can also compute the field
strength from [Dµ,Dν ] X I

b = F̃µνa
bX I

a and find

F̃µνa
b = ∂νÃµ

a
b − ∂µÃν

a
b − Ãµ

a
cÃν

c
b + Ãν

a
cÃµ

c
b .
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In summary we find

δX I
a = i ε̄ΓI Ψa

δΨa = DµX I
a ΓµΓI ε− 1

6X I
b XJ

c XK
d f bcd

aΓIJK ε

δÃµ
b

a = i ε̄ΓµΓI X I
c Ψd f cdb

a .

Lagrangian

L = −1
2DµXaI DµX I

a + i
2Ψ̄aΓµDµΨa+ i

4Ψ̄bΓIJ X I
c XJ

d Ψaf abcd−V +LCS ,

Potential
V = 1

12X I
a XJ

b XK
c X I

e XJ
f XK

g f abcd f efg
d

“twisted” Chern-Simons term

LCS = 1
2ε

µνλ
(

f abcdAµab∂νAλcd + 2
3 f cda

gf efgbAµabAνcdAλef

)
9 / 68



The ’structure constants’ must satisfy the Fundamental identity:

f abc
gf efg

d = f efa
gf gbc

d + f agc
d f efb

g + f abg
d f efc

g

and we required an inner-product on the vector space with

hdef abc
e = f abcd = f [abcd]

Thus we have constructed the BLG theory with 16
supersymmetries, an SO(8) R-symmetry and conformal invariance.
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But for a positive definite choice of hab there is just one
finite-dimensional solution:

f abcd = 2π
k εabcd a, b, c, d = 1, 2, 3, 4

Gauge algebra generated by Λ̃c
d = Λabf abc

d is
so(4) = su(2)⊕ su(2)

Fields X I
a , Ψa are in the 4 = 2 + 2 = bifundamental.

LCS = k
8πε

µνλtr
(

Ã+
µ ∂νÃ+

λ + 2
3Ã+

µ Ã+
ν Ã+

λ − Ã−µ ∂νÃ−λ −
2
3Ã−µ Ã−ν Ã−λ

)
where Ã±µ a

b are the (anti)-self-dual parts of Ãµ
a

b.

A standard result tells us that k ∈ Z - no continuous parameter.
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Thats great! Its the only example of a maximally supersymmetric
non-gravitational lagrangian that is not Yang-Mills.

But rather limited as it turns out to only describe 2 M2’s (see
later). To do better we need to generalize:

• consider less supersymmetry: 12 supercharges

• SO(8) is reduced to SU (4)×U (1)

Play a similar game
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X I
a written as 4 complex scalar fields ZA

a in 4 of SU (4) with U (1)
charge 1

• (ZA
a )† = Z̄a

A in 4̄ of SU (4) with U (1) charge -1

Ψa written as 4 complex fermions ψAa in 4 with U (1) charge 1

• (ψAa)† = ψAa in 4 of SU (4) with U (1) charge -1

The 16 components of ε are reduced to εAB = −εBA in 6 of
SU (4) with U (1) charge 0.

• (εAB)∗ = εAB = 1
2εABCDε

CD
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Supersymmetry:

δZA
d = i ε̄ABψBd

δψBd = γµDµZA
d εAB + f ab

cdZC
a ZA

b Z̄ c
C εAB + f ab

cdZC
a ZD

b Z̄ c
BεCD

δÃµ
c

d = −i ε̄ABγµZA
a ψ

Bbf ca
bd + i ε̄ABγµZ̄ b

AψBaf ca
bd

Lagrangian

L = −DµZ̄a
ADµZA

a − iψ̄AaγµDµψAa −V + LCS

−if ab
cd ψ̄

AdψAa ZB
b Z̄ c

B + 2if ab
cd ψ̄

AdψBa ZB
b Z̄ c

A

+ i
2εABCDf ab

cd ψ̄
AdψBc ZC

a ZD
b −

i
2ε

ABCDf cd
ab ψ̄AcψBd Z̄a

C Z̄ b
D .
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The potential is

V = 2
3 ΥCD

Bd ῩBd
CD

ΥCD
Bd = f ab

cd ZC
a ZD

b Z̄ c
B −

1
2δ

C
B f ab

cd ZE
a ZD

b Z̄ c
E + 1

2δ
D
B f ab

cd ZE
a ZC

b Z̄ c
E

The ‘twisted’ Chern-Simons term LCS is given by

LCS = 1
2ε

µνλ
(

f ab
cd Aµ

c
b ∂νAλ

d
a + 2

3 f ac
dgf ge

fb Aµ
b

a Aν
d

c Aλ
f

e

)

And the ‘structure constants’ satisfy

f ef
gbf cb

ad + f fe
abf cb

gd + f ∗ga
fbf ce

bd + f ∗ag
ebf cf

bd = 0

(f ab
cd)∗ = f cd

ab

f ab
cd = −f ba

cd
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The structure constants define a triple product:

[Ta,T b; Tc] = f ab
cdTd

An finite class of solutions are given by m × n complex matrices:

[A,B; C ] = 2π
k (AC †B − BC †A)

Gauge group generated by δZA
d = Λc

bf ab
cdZA

a is

δZA = MZA − ZAN

where M ,N are m ×m and n × n matrices respectively.

There are other examples which have gauge group Sp(n)×O(2).
And also examples with less susy (10,8,...) with other choices of
gauge groups and matter representations.
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Gauge group is U (m)×U (n) with matter in the bi-fundamental.

• m = n gives SU (n)× SU (n) theories

• Add by hand U (1) gauge fields to get U (n)×U (n) ABJM

• m 6= n gives the ABJ theories

In the special case of SU (2)× SU (2) we recover the BLG theory
in complex notation.

In these lectures we will restrict attention to these BLG, ABJM
and ABJ theories.
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Let us look more closely at this triple product: vector space V
generated by Ta admits a triple product - a 3-algebra:

[·, ·; ·] : V ⊗ V ⊗ V̄ → V

Key idea is that the analog of adjoint map

ϕU ,V̄ (X) = [X ,U ; V̄ ] ϕU ,V̄ (X̄) = −[X̄ , V̄ ; U ]

is a derivation

ϕU ,V̄ ([X ,Y ; Z̄ ]) = [ϕU ,V̄ (X),Y ; Z̄ ]+[X , ϕU ,V̄ (Y ); Z̄ ]+[X ,Y ;ϕU ,V̄ (Z̄ )] ,

And this is the fundamental identity that we encountered.
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The fundamental identity tells us that the action of ϕ on V is that
of a lie-algebra G generated by ϕU ,V̄ for all U ,V ∈ V

• i.e. V is representation of G.

• thus a 3-algebra defines a lie-algebra (e.g. u(m)⊕ u(n)) along
with a preferred representation (e.g. the bi-fundamental)

In fact the reverse is also true: Given a Lie-algebra and a
representation (along with invariant inner-products) one can always
construct a triple product satisfying the fundamental identity (via
the so-called Faulkner map).
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Thus one need not think of a 3-algebra and just think of the gauge
group and matter representation. However susy fixes the symmetry
properties of the triple product

• and so which gauge algebras and representations arise
• leads to these rather esoteric choices (and indefinite
inner-products on the lie-algebra)

Thus the amount of susy is determined by the gauge algebra and
matter representations

• Whereas in super-Yang-Mills the gauge algebra is arbitrary
and all fields are in the adjoint (for more than 8 susys)

• possible because in Chern-Simons theories there are no
propagating gauge fields 20 / 68



Physical Analysis
The first thing to look at is the vacuum moduli space. This tells us
the space of all the zero-energy configurations of the M2-branes.

Consider ABJM:

[ZA,ZB; Z̄C ] = 0←→ ZAZ̄C ZB = ZBZ̄C ZA

Generically this implies that all the ZA commute (c.f. D-branes):

ZA = diag(zA
1 , ..., zA

n )

To see that this is all requires one to evaluate the mass formula for
small fluctuations which one finds is non-zero (generically: there
are special points where extra massless modes arise but are
expected to be lifted by non-perturbative effects).

We must identify fields that differ by gauge transformations:

ZA → gLZAg−1
R

21 / 68



We could set gL = gR so that this is an adjoint action, as with
D-branes. Thus allows us to put ZA in diagonal form (as we have
already done) and in addition acts as

zA
i ↔ zA

j for any i 6= j

e.g. for i, j = 1, 2 these are generated by

gL = gR =



0 i
i 0

1
. . .

1


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These generate the action of the symmetric group Sn on zA
i .

Unlike D-branes we also have continuous gauge transformations:

zA
i → eiθi zA

i

These arise from taking

gL = g−1
R = diag(eiθ1/2, ..., eiθn/2)

To see the effect of this on the vacuum moduli space we must
examine the Lagrangian for the moduli zA

i , including the gauge
fields:
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L = −1
2
∑

i
DµzA

i Dµz̄Ai+
k

4πε
µνλ

∑
i

AL
µi∂νAL

λi−
k

4πε
µνλ

∑
i

AR
µi∂νAR

λi

where AL
µ = diag(AL

µ1, ...,AL
µn), AR = diag(AR

µ1, ...,AR
µn) and

DµzA
i = ∂µzA

i − i(AL
µi −AR

µi)zA
i .

Note that zA
i only couples to Bµi = AL

µi −AR
µi and not to

Qµi = AL
µi + AR

µi :

L = −1
2
∑

i
DµzA

i Dµz̄Ai + k
4πε

µνλ
∑

i
Bµi∂νQλi

with DµzA
i = ∂µzA

i − iBµizA
i .
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It’s helpful to dualize Qµi :

L = −1
2
∑

i
DµzA

i Dµz̄Ai + k
8πε

µνλ
∑

i
BµiHνλi −

1
8πε

µνλσi∂µHνλi

∼= −1
2
∑

i
DµzA

i Dµz̄Ai + k
8πε

µνλ
∑

i
BµiHνλi + 1

8πε
µνλ∂µσiHνλi

where Hνλi = ∂νQλi − ∂λQνi .

Integrating out Hνλi tells us Bµi = −k−1∂µσi and everything is
pure gauge:

L = −1
2
∑

i
∂µwA

i ∂
µw̄Ai

where wA
i = eiσi/kzA

i is gauge invariant.
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But σi is periodic:∫
L(σi + 2π)−

∫
L(σi) = −1

4
∑

i

∫
εµνλ∂µHνλi

= −1
2
∑

i

∫
dH

= −1
2
∑

i

∫
dFL + dFR

∈ 2πZ

because of the Dirac quantization rule∫
dF ∈ 2πZ

and the fact that Bi = −k−1dσi implies dBi = FL
i − FR

i = 0
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This means that (recall wA
i = eiσi/kzA

i )

wA
i
∼= e2πi/kwA

i

Thus there is an extra orbifold action in spacetime

R8 → C4/Zk

and the vacuum moduli space is

M = Symn
(
C4/Zk

)
Corresponding to n M2-branes in an C4/Zk transverse space.

And indeed this orbifold preserves 12 supersymmeties.
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What about ABJ with gauge group U (n)×U (m), n 6= m?

Write m = n + l

• Vacuum moduli space is still Symn (C4/Zk
)

• describes n M2’s in C4/Zk

• Party is broken.

Interpreted as l ’fractional’ M2-branes stuck at the fixed point.

• Corresponds to including l-units of discrete torsion in the
background four-form (H 4(C4/Zk ,Z) = Zk).

• requires that l ≤ k
• Conjecture: U (n)×U (n + l) ABJ has no vacuum for l > k
• Conjecture: U (n)×U (n + k) ABJ is dual to U (n)×U (n)
ABJM
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Let us look more closely. The orbifold acts as

(x0, x1, x2)→ (x0, x1, x2) , zA → e2πi/kzA

here zA are complex coords for the R8 spanned by x3, ..., x10.

Write R8 in ’spherical’ coordinates

ds2
R8 = dr2 + r2ds2

S7

and then S7 as a Hopf fibration over CP3:

ds2
S7 = (dψ + ω)2 + ds2

CP3

In these coordinates the orbifold simply acts on the fibre as

ψ → ψ + 2πi/k
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At large k, which is weak coupling, the orbifold shrinks the fibre
and we have the type IIA background.

Let use consider the large n limit. The supergravity solution
solution is (H = 1 + nr6

0/r6, r0 ∝ lp)

ds2
11 = H−2/3(−(dx0)2 + (dx1)2 + (dx2)2) + H 1/3ds2

C4/Zk

= r4

n
2
3 r4

0
(−(dx0)2 + (dx1)2 + (dx2)2) + n

1
3 r2

0
r2 dr2 + n

1
3 r2

0 ds2
S7/Zk

= n
1
3 r2

0
4

(
−(dx0)2 + (dx1)2 + (dx2)2 + dz2

z2

)
+ n

1
3 r2

0 ds2
S7/Zk

Therefore we obtain, in the large k limit, an AdS4 × CP3 dual

ds2
10 =

√
nr3

0
4k ds2

AdS4 +
√

nr3
0

k3 ds2
CP3

with e2φ =
√

nr3
0 k−3, C (1) = kω
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Next we consider a bunch of M2-branes located at z4 = iv, far
from the origin.

ZA = ivδA4 + 1√
2

XA + i 1√
2

XA+4 .

This leads to a ’novel Higgs’ effect since v 6= 0
breaks(U (n)×U (n)→ U (n).

Bµ = AL
µ −AR

µ has no kinetic term and can integrated out yeilding
a kinetic term for Aµ.

Furthermore Aµ = AL
µ + AR

µ eats X8 and becomes dynamical.
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Resulting action has a dynamical vector and 7 scalars (plus
fermions) and must preserve 16susys

• Must be 3D MSYM at leading order (as a calculation shows)

L = 1
g2

YM
L3DSYM +O(1/v3)

where g2
YM = 8π2v2/k.

Corrections correspond to the fact that finite fluctuations sense
that spacetime is not R7 × S1 but R8/Zk .
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Let us return to the moduli space. It follows that we can think of

ZA =


zA
i

. . .
zA
n


as describing the positions of n M2-branes in C4/Zk . Furthermore
the natural circle for the M-theory direction is the over-all phase.

Suppose we wanted to describe n M2-branes moving along the
M-theory circle with different speeds. One might expect that this
corresponds to

ZA =


zA
i eiω1t

. . .
zA
n eiωnt


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But this is pure gauge! We can un-do it by taking

gL = g−1
R =


e−iω1t/2

. . .
e−iωnt/2


(Note that this gauge transformation is not allowed for D-branes
where the scalars are in the adjoint.) So how do the M2-branes
’explore’ the full transverse space? Let us set the fermions to zero
and construct the hamiltonian

H = tr
∫

d2x ΠZAΠZ̄A
+ DiZADi Z̄A + V

+
(

iZAΠZA − iΠZ̄A
Z̄A −

k
2πFL

12

)
AL

0

+
(

iZ̄AΠZ̄A
− iΠZAZA + k

2πFR
12

)
AR

0
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As usual the time-components of the gauge field give constraints:
k

2πFL
12 = iZAΠZA − iΠZ̄A

Z̄A

k
2πFR

12 = iΠZAZA − iZ̄AΠZ̄A

Consider the vacuum moduli again:

ZA =


1√
2RA

1 eiθA
1

. . .
1√
2RA

n eiθA
n


The constraint is

k
2πFL

12 = k
2πFR

12 =


∑

A(RA
1 )2∂0θ

A
0

. . . ∑
A(RA

n )2∂0θ
A
n


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In other words the momentum around the M-theory circle is given
by the magnetic flux.

This is, in spirit, the same as dualization:

∂µX10 = 1
2εµνλFνλ ←→ ∂0X10 = F12

This raises the next question: how do we compute quantities with
11D momentum. In particular the gauge invariant observables
(appear to) only carry vanishing U (1) charges:

O = tr(ZAZ̄BZC ...) OK

O = tr(ZAZBZC ...) not OK

and hence don’t really explore all 11 dimensions.
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This brings us to monopole or ’t Hooft operators: We want to
create states that carry magnetic charge.

These operators are defined as a prescription for computing
correlators in the path-integral. They are not constructed as a
local expression of the fields.

<M(y)O(z)... >=
∫∮

y F=2πQM
DZDψDAO(z)e−S

in other words we require the fields in the path integral to have a
specific singularity

F = ?
QM
2 d

( 1
|x − y|

)
+ nonsingular

QM ∈ u(n)× u(n) is the magnetic flux and is subject to the
standard Dirac quantization condition

e2πiQM = 1 . 37 / 68



There is a famous result of GNO that the set of QM which satisfy
this, modulo gauge transformations, are in one-to-one
correspondence with highest weights of representations of the dual
gauge group (Langlands dual).

• the dual of U (n) is U (n).

We can therefore group together various choices of fluxes into
states associated with those of a representation of U (n).

Furthermore we will be interested in supersymmetric monopole
operators where the fields near the insertion point are those of a
supersymmetric Dirac monopole (so the scalars also have a
singlularity).

38 / 68



Next we note that due to the Chern-Simons term monopole
operators transform locally under a gauge transformation
δAL/R

µ = DµωL/R (with ω → 0 at infinity) as

MQM (x) → e(ik/2π) tr
∫

(DωL∧FL−DωR∧FR)MQM (x)

= eik tr((ωL(x)−ωR(x))QM )MQM (x)

Note that by construction we have broken the gauge group to
U (1)n ×U (1)n . This is enough to tell us that under full gauge
transformations the monopole operators transform in the
representation of U (n)×U (n) whose highest weight is

~Λ = k(~QM ,−~QM )

(actually because of the sign the second factor is the lowest weight)
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This is all very abstract (and tricky to calculate with). Consider the
abelian case (from the moduli space calculation and Wick rotated)

L = −1
2
∑

i
DµzA

i Dµz̄Ai + k
8πε

µνλ
∑

i
BµiHνλi −

i
8πε

µνλσi∂µHνλi

The monopole operators are just

Mi(y) = eiσi(y)

Since

<Mi(y)O(z)... > =
∫

DzDBDQeiσi(y)O(z)e−
∫

d3xL(x)

=
∫

DzDBDQO(z)e−
∫

d3xL(x)−iσi(x)δ(x−y)

which is the same as taking
1

8πε
µνλ∂µHνλi →

1
8πε

µνλ∂µHνλi + 8πδ(x − y)

i.e. inserting a magnetic charge at x = y.
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Thus our gauge invariant operator on the moduli space is just

wA
i = eiσi/kzA

i = (Mi)
1
k zA

i

and indeedMi has charge (k,−k) under U (1)×U (1).

Classically eiσi has scaling dimension zero (because Bi ∝ dσi has
scaling dimension one). What about quantum mechanically? You
might think this was shifted because of normal ordering (c.f. eikX

on the string worldsheet).

However the momentum conjugate to Bµi is Aµi and thus Bµi and
hence σi has vanishing OPE with itself. So no normal ordering
effects and eiσi is dimension zero in the quantum theory.
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Let us now return to where we started: BLG. This is an
SU (2)× SU (2) Chern-Simons-Matter theory with maximal
supersymmetry and an SO(8) R-symmetry.

How does it fit in? To cut a long(ish) story short:

• BLG (SU (2)× SU (2))/Z2 at k = 1 is dual to ABJM
U (2)×U (2) at k = 1, i.e. 2 M2’s in R8

• BLG SU (2)× SU (2) at k = 2 is dual to ABJM U (2)×U (2)
at k = 2, i.e. 2 M2’s in R8/Z2

• BLG (SU (2)× SU (2))/Z2 at k = 4 is dual to ABJ
U (2)×U (3) at k = 2, i.e. 2 M2’s in R8/Z2 with torsion

So it describes 2 M2-branes in R8 or R8/Z2 with all symmetries
manifest.
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Let us return to the maximally supersymmetric cases k = 1, 2
where the transverse space is

k = 1 : R8 , k = 2 : R8/Z2

M2-branes in these backgrounds preserve 16 supersymmetries.

For two M2’s we could use BLG but for more we need ABJM.

What happened to the extra two supersymmetries and SO(8)
R-symmetry? The claim is that they are there but not manifest
(this is okay since k = 1, 2 is strongly coupled).
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The extra supersymmetry comes from the supercurrent

Jµ =MabDµZA
a ψAb

and extra R-symmetries from

J AB
µ =Mab(ZA

a DµZB
b − ZB

a DµZA
b + iεABCDψ̄CaγµψDb)

Recall that ZA and ψA are both in the (n,n) , so DµZAψA,
ZADµZB and ψ̄CψD are not gauge invariant. In particular they
are in the tensor product of two fundamental representations of the
U (n)×U (n) with U (1) charge 2.

So for these currents to exist we require thatMab is in the tensor
product of two anti-bi-fundamental representations of
U (n)×U (n) with U (1) charge -2.
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When does such anM exist?

The (highest weight,lowest weight) for two-tensored
anti-bi-funamental representation is

~Λ = (2~λn−1,−2~λn−1)

According to our discussion about monopole operators we must
have

~Λ = k(~QM ,−~QM )

for a monopole charge vector ~QM . ThusM only exists if

• k = 1, ~QM = 2~λn−1

• k = 2, ~QM = ~λn−1

Precisely as required!
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M5-branes and the (2,0) CFT

Can we try our luck with M5-branes?

Low-energy M5-brane dynamics governed by a 6D theory with:

� (2, 0) supersymmetry

� conformal invariance

� SO(5) R-symmetry

Multiplet contains 5 scalars and a selfdual antisymmetric 3-form
field strength + fermions

Very rich and novel 6D CFT dual to AdS7 × S4
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At linearized level the free susy variations are

δX I = i ε̄ΓI Ψ
δΨ = ΓµΓI∂µX I ε+ 1

3!
1
2ΓµνλHµνλε

δHµνλ = 3i ε̄Γ[µν∂λ]Ψ ,

and the equations of motion are those of free fields with dH = 0
(and hence dH = d ?H = 0).

Reduction to the D4-brane theory sets ∂5 = 0 and

Fµν = Hµν5
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We wish to generalise this algebra to nonabelian fields with

DµX I
A = ∂µX I

A − ÃB
µAX I

B

Upon reduction we expect Yang-Mills susy:

δX I = i ε̄ΓI Ψ

δΨ = ΓαΓI DαX I ε+ 1
2ΓαβΓ5Fαβε−

i
2[X I ,XJ ]ΓIJ Γ5ε

δAα = i ε̄ΓαΓ5Ψ ,

Thus we need a term in δΨ that is quadratic in X I and which has
a single Γµ:

� Invent a field Cµ
A
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After starting with a suitably general anstaz we find closure of the
susy algebra implies

δX I
A = i ε̄ΓI ΨA

δΨA = ΓµΓI DµX I
Aε+ 1

12ΓµνλHµνλ
A ε− 1

2ΓλΓIJ Cλ
BX I

C XJ
Df CDB

Aε

δHµνλ A = 3i ε̄Γ[µνDλ]ΨA + i ε̄ΓI ΓµνλκCκ
BX I

C ΨDf CDB
A

δÃ B
µ A = i ε̄ΓµλCλ

C ΨDf CDB
A

δCµ
A = 0

where f ABC
D are totally anti-symmetric structure constants of the

N = 8 3-algebra (possibly Lorentzian). Can also have Cµ and
f ABC

D → f AB
C .

Has (2, 0) supersymmetry, SO(5) R-symmetry and scale symmetry
(Cµ

A has dimensions of length)
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The algebra closes with the on-shell conditions

0 = D2X I
A − C ν

BCνGXJ
C XJ

EX I
F f EFG

Df CDB
A + fermions

0 = D[µHνλρ] A + 1
4εµνλρστC

σ
BX I

C DτX I
Df CDB

A + fermions
0 = ΓµDµΨA + X I

C C ν
BΓνΓI ΨDf CDB

A

0 = F̃µνB
A − Cλ

C Hµνλ Df CDB
A

0 = DµC ν
A = Cµ

C C ν
Df BCD

A

0 = C ρ
C DρX I

Df CDB
A = C ρ

C DρΨDf CDB
A = C ρ

C DρHµνλ Af CDB
A

Thus Cµ
A picks out a fixed direction in space and in the 3-algebra

and Cµ
ADµ = 0. So apparently we are simply pushed back to 5D.
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But no so quick, we can look at the Conserved currents, e.g.

Tµν = DµX I
ADνX IA − 1

2ηµνDλX I
ADλX IA

+1
4ηµνC

λ
BX I

AXJ
C CλGX I

FXJ
E f CDBAf EFG

D + 1
4Hµλρ AHν

λρ A

+fermions

And we also obtain six-dimensional expressions for the supercurrent
and central charges.

Here we see that the system is 6-dimensional

CµPµ =
∫

d5xCµT0µ ∼ Tr
∫

F ∧H ∈ Z

but with a compact direction (i.e. R5 × S1).

M-theory momentum is ’topological and quantized’ - just as with
ABJM.
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For Cµ
A = g2

YMδ
µ
5 δ

0
A the previous system reduces to 5D SYM

P5 = − 1
8g2

YM

∫
d4x tr(FijFklεijkl) = k

R5

First recall some facts about 5D SYM:

� Power-counting non-renormalisable, g2
YM ∼ length

⇒ naively new d.o.f. should appear at some scale

� M-theory says a UV (strong coupling) fixed point exists and is
6-dimensional: the M5-brane CFT

� Agrees with Nahm’s classification of SCFT’s: indeed UV-fixed
point theory cannot be 5D
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From String Theory the relation between D4- and M5-brane
theories given by compactification on S1.

5D SYM also has particle states that carry instanton charge k with
mass

M ∝ k
g2

YM
∝ k

R5

Simplest such states just D0’s in D4 worldvolume.

Interpretation as momentum on S1 of compactified 6D theory.
[Rozali, Berkooz-Rozali-Seiberg]

⇒ Even in Yang-Mills limit this tower of states knows something
about M-theory direction.
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We argued that, at least for < X6 >= v 5D SYM contains a
complete spectrum of KK modes in the soliton spectrum

• KK tower of W-Bosons given by Dyonic instantons [NL,Tong]

• KK tower of strings given by Monopole strings

• KK tower of photons given by quantum-sized instantons
< ρ >∼ g2

YM/v

All smooth finite energy states in the correct representation of
(2,0) supersymmetry.
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So:

� No more room for any additional UV states.

� Natural conclusion: 5D SYM is the (2,0) CFT compactified
on S1 (see also [Douglas])

� ... and hence well-defined non-perturbatively (some how).
(see also [Douglas])

• Details of how this works out not clear since 6D CFT contains
momentum states which are non-perturbative from the point
of view of 5D theory
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You might hope that 5DSYM is finite (but apparently it’s not at 6
loops [Bern,Douglas,..] to appear)

But this is also naive since one normally says that solitons are
suppressed by factors of

e−1/g2
YM

But g2
YM has dimensions of length so we in fact must have

e−d/g2
YM

where d is a length-scale (e.g. instanton size,
instanton/anti-instanton separation)

So no decoupling from perturbative physics if d ≤ O(g2
YM ) (e.g.

photon KK tower).
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We could also consider a null reduction, xµ = (x+, x−, x i):

Cµ
A = g2

YMδ
µ
+δ

0
A

0 = D2X I
a −

ig
2 Ψ̄cΓ+ΓI Ψd f cd

a

0 = ΓµDµΨa + g2
YM X I

c Γ+ΓI Ψd f cd
a

0 = D[µHνλρ] a −
g2

YM
4 εµνλρτ+X I

c DτX I
d f cd

a + fermions
0 = F̃µνb

a − g2
YM Hµν+ d f db

a

where f ab
c = f 0ab

c. Curious system with 16 supersymmetries and
an SO(5) R-symmetry but D+ = 0
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We wish to view x− as time, solve the non-dynamical equations,
and then quantizing using the hamiltonian

H = P− =
∫

d4xT−−

Setting the fermions to zero the non-trivial equations are:

0 = DiDiX I

0 = DiFi−

0 = D−Fi− −DjGij − ig4[X I ,DiX I ]

with Fi− = −g2Hi−+, Fij = −g2Hij+, Gij = −g2Hij− and hence

F = − ? F G = ?G
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It follows that Ai is determined by the AHDM construction

• introduces moduli Ai = Ai(mα)

• Natural moduli space metric

gαβ = Tr
∫

d4xδαAiδβAi

Furthermore X I can also be solved for explicitly in terms of mα

and their vev’s:
X I = vI +O

( 1
x2

)
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Next we note that

∂−Ai = ∂Ai
∂mα

∂−mα + Diω

where ω is a gauge transformation that we choose to ensure that
Di∂−Ai = 0.

• ⇒ DiDiA− = 0 ⇒ A− = w +O
(

1
x2

)

All fields are reduced to functions of the vev’s vI ,w and instanton
moduli mα

‘Time’ dependence arises by letting these be functions of x−.
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Now
P+ =

∫
d4xT−+ = − 2

g2 Tr
∫

F ∧ F ∈ 4π2

g2 Z

gives the instanton number and

Pi =
∫

d4xT−i = Tr
∫

FijF−j ∝ total instanton momentum

The hamiltonian P− is:

P− = 1
2g2 gαβ(∂−mα − Lα)(∂−mβ − Lβ) + V

where

Lα∂−mα = Tr
∮
∂−ArA− V = g2

2 Tr
∮

X I DrX I .
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The Superalgebra for this theory is

{Q−,Q−} =− 2P−(Γ−C−1) + ZI
+(Γ−ΓI C−1) + ZIJ

ij+(ΓijΓ−ΓIJ C−1)

{Q+,Q+} =− 2P+(Γ+C−1)

{Q−,Q+} =− 2Pi(ΓiC−1) + ZI
i (ΓiΓI C−1) ,

where the central charges are

ZI
+ =− 2Tr

∫
d4x F−iDiX I

ZI
i =− Tr

∫
d4x GijDjX I

ZIJ
ij+ =− g2Tr

∫
d4x D[iX I Dj]XJ .
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Thus we obtained the [Aharony, Berkooz, Kachru, Seiberg,
Silverstein] proposal of (2, 0) theory along with explicit expressions
for Z, Pµ and generalized to include Lα, V .

Arises naturally from an infinite boost of 5D SYM or D4-branes
using the (2,0) theory we constructed above.

So it follows from the conjecture that (2,0) on S1 is 5D SYM in a
[Seiberg] limit that Cµ becomes null:

Fµν → F−µν ⊕ F+
µν

and F+
µν decouples as CµCµ → 0.
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To summarize, the (2, 0) system that we constructed leads to the
following:

� Proposal (2,0) theory on S1 is exactly 5D SYM for any value
of the coupling (see also [Douglas])

� Rederived and generalized the (2, 0) DLCQ theory as the
quantum mechanics of instantons [Aharony, Berkooz, Kachru,
Seiberg, Silverstein].

In some sense, since quantum 5D SYM isn’t defined (unless one
can make non-perturbative sense of the Lagrangian), the
conjecture that it is (2, 0) on S1 is just a definition.
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Can we define 5D SYM another way? Deconstruction comes to
mind [NL,CP,MSS] in progress:

Quiver

Start with N = 2, Nf = 2K SU (K ) SCFT with < Φ >= v
breaking SU (K )N → SU (K ).
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This theory deconstructs 5D SYM on S1 with when N →∞:

2πR5 = N
g4v

But actually, as noted in [Arkani-Hamed,Cohen,Karch,Motl],
because of SL(2,Z) this deconstructs a 6D theory on S1 × S1

Extra circle (KK modes come from monopoles = wrapped versions
of the states in 5D SYM above)

2πR6 = g4
v = g2

YM
2π

So the conjecture that (2,0) on S1 is 5DSYM comes out as limit of
deconstruction conjecture.
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Thus various proposals on the (2, 0)

• DLCQ of QM on instanton moduli space [Aharony, Berkooz,
Kachru, Seiberg, Silverstein]

• Deconstruction from D=4 SCFT
[Arkani-Hamed,Cohen,Karch,Motl]

• Strong coupling limit of 5D SYM [Douglas],[NL,CP,MSS]

all based on lower dimensional theories are interconnected. (See
also recent six-dimensional proposals [Chu],[Ho, Huang, Matsuo].)

Altogether these paint a consistent, interconnected picture of the
M5-brane in terms of lower dimensional theories

• Alternatively, what exactly is the difference between the (2, 0)
CFT on S1 and 5D SYM?
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Subsequent work has greatly added to and enhanced this picture:

• S-duality for 5D SYM on S1 [Tachikawa]
• Bound states in instanton QM [Kim,Kim,Koh,Lee,Lee],
• String Junctions in 5D SYM [Bolognesi, Lee]
• N 3 scaling of 5D SYM partition function
[Kim,Kim],[Kallen,Minahan,Nedelin,Zabzine]

Some important technical points remain

• Is 5D SYM well-defined non-perturbatively
• In DLCQ picture instanton moduli space has singularities (but
these are mild orbifold singularities)

• How much does deconstruction tell us about the full higher
dimensional theory 68 / 68


