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Introduction

In these lectures we want to discuss the (Conformal) Field Theories

that appear on the worldvolumes of multiple M-branes.

We will mainly consider M2-branes since M5-branes remain very
mysterious. The worldvolume theories are certain highly
supersymmetric Chern-Simons-Matter Theories (BLG and ABJM).
Such theories play a similar role to Yang-Mills theories on D-branes

but there are curious differences such as:

e Matter fields are not in the adjoint representation, but yet a
related to the gauge fields by susy.
e Susy is determined by the gauge group and matter

representation.
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Much of the lectures follow the reviews:

e Bagger, Lambert, Mukhi and Papageorgakis [arxiv:1203.3546];
o Lambert [arxiv:1203.4244]

which (hopefully) contain detail references. | will therefore not give

references in these slides and hope that no one takes offence.

Furthermore the lectures are aimed at being pedagogical rather

than historical.



PLAN

Roughly 3 lectures of 60 mins.

1 M2-branes and Chern-Simons-Matter Theories.
e BLG and ABJM
o 3-algebras
2 Physical Analysis
e Vacuum Moduli Space
e AdS, x CP3
e Novel Higgs reduction to D2-branes
e Monopole ('t Hooft) operators and hidden symmetries
3 Mb-branes and the (2,0) CFT
e A (2,0) system
e 5D SYM
e DLCQ



Conventions

Indices: m,n...=0,1,2,...10 Wy V... =0,1,2
I1,J...=3,4,...,10 A,B=1,2,3,4.

Metric: n = diag(—1,1,...,1)

Spinors:

T, 32x32real, C=Ty; U real, ¥ =0TC, TV =-T

Yu 2x2 real, C'=r9; 14 complex, zEA = wLC’



M2-branes and Chern-Simons-Matter Theories

Consider an M2-brane along 1, z!, 2%

S0(1,10) — SO(1,2) x SO(8) and 32 — 16 susys

Susys that are preserved by the M2-branes: I'gj2e = €.
Worldvolume fermions are Goldstino modes I'g1oW = —W.
World volume scalars are Goldstone modes X 7.

Free theory Supersymmetry:
X! = v
oW O X'TrT e .



To describe multiple M2-branes we let the fields take values in a

vector space with basis T
x' = Xxl're v-v,1°
A natural guess for susy is:

oxI = qerlw,
1
U,y = 8uX§F“FIe—iX({XI;]XffabchUKe.

fabe; are just some sort of 'structure’ constants.



Next we must check that this supersymmetry algebra closes:
[01,09) X)) = —2i&aT €10, X — (2i60 7K ey X X[ fobe ) X1 .
The first term is simply a translation by v* = —24ea ey .
The second term must be interpreted as a new gauge symmetry
SXI=AcuxT | Ay = —2ieD"Ke X X[ fabe,

So we have a gauge theory!



Next we must introduce a gauge field for this gauge symmetry.

Following the standard procedure we define
D“Xé - auXé - A#CchI >
and similarly for W4. This is gauge covariant provided that
0A, =0, + A, Ay — A A%,

under a gauge transformation. We can also compute the field

strength from [D,,, D, ] Xbl = Fw,“bX({ and find

F,uz/ab = 8l/A,uab - 8MAzlab - AuacAucb + Al/acAucb .



In summary we find

6X! = qer'lw,
o, = DMXiF“FIe—%X{XngbedaFUKe
6A, . = del, T XIw e,

Lagrangian

X - -
£=-7 DuXafDHXng%qfawDuq/ﬁiprFUXg XJW fb Vi Lo,

Potential
1

“twisted” Chern-Simons term

1 2
Lo = 55“1/)\ (f“deAWb&,A,\cd + 3f0dagfefgbAMabAych/\ef)

0O/AR



The 'structure constants’ must satisfy the Fundamental identity:

fabcgfefgd — fefagfgbcd +fagcdfefbg +fabgdfefcg

and we required an inner-product on the vector space with

hde]cabce _ fabcd _ f[abcd]

Thus we have constructed the BLG theory with 16

supersymmetries, an SO(8) R-symmetry and conformal invariance.

10 / AR



But for a positive definite choice of A% there is just one

finite-dimensional solution:

2
fotel = Zoettda e d=1,2,3,4

Gauge algebra generated by A®; = A g f%  is
so(4) = su(2) & su(2)

Fields X!, ¥, are in the 4 = 2 + 2 = bifundamental.
Los = —ewhiy (310,41 + A AL AL — A0,45 — 247 A; A;
where Af‘lb are the (anti)-self-dual parts of A,%.

A standard result tells us that £ € Z - no continuous parameter.

11 / AR



Thats great! Its the only example of a maximally supersymmetric

non-gravitational lagrangian that is not Yang-Mills.

But rather limited as it turns out to only describe 2 M2's (see

later). To do better we need to generalize:

e consider less supersymmetry: 12 supercharges

e SO(8) is reduced to SU(4) x U(1)

Play a similar game

12 / AR



X[ written as 4 complex scalar fields Z2 in 4 of SU(4) with U(1)
charge 1

o (ZMT = Z%in 4 of SU(4) with U(1) charge -1
U, written as 4 complex fermions v 4, in 4 with U(1) charge 1
o (Y4q)1 =14 in 4 of SU(4) with U(1) charge -1

The 16 components of € are reduced to €48 = —eP4 in 6 of
SU(4) with U(1) charge 0.

AB 1 D
o (e"P) =eap = feapcpe”

12 /AQ



Supersymmetry:

6z) = iePpy

SYpa = V'DuZieap+ Pl Z{ Zean + [ a2l 7 Zecn
04, q = —i€apyuZi0Pfa + i€ Py, Z5b paf b
Lagrangian
L = —DMZID,ZI — i Dypas — V + Lo

_'L'fabcd &Adwz‘la ZZ?ZE + 2ifabcd IZ)Ad¢Ba ZZ)BZIZ
)

2

1

* 2

b TAd,Bc C oD ABCD ped 7 ~a b
eABoDf ™ ca W T Zy Zy — e [ Vacpa Z&Z) -
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The potential is

9 _
Vo= ngf Teh

= 1 - 1 _
YR = 0 2020 Ty~ 285 2P TP + 0B 2P 2

The ‘twisted’ Chern-Simons term L¢g is given by

1 2
Lcs = §€W’\ (fabcd Ay 0y AN e + 3/l Ao A AAfe)

And the ‘structure constants’ satisfy

FL ot P aa+ Fanf P ga + £ F0a + iy foa = 0
(fabcd)* = deab

fabcd = _fbacd

15 / AR



The structure constants define a triple product:

[T, T T = [ T¢

An finite class of solutions are given by m x n complex matrices:

2
[A,B; C] = %(ACTB — BCTA)
Gauge group generated by 674 = A¢,f% 474 is
624 = Mz* — ZAN

where M, N are m x m and n X n matrices respectively.

There are other examples which have gauge group Sp(n) x O(2).

And also examples with less susy (10,8,...) with other choices of

gauge groups and matter representations.

16 / AR



Gauge group is U(m) x U(n) with matter in the bi-fundamental.

e m = n gives SU(n) x SU(n) theories
e Add by hand U(1) gauge fields to get U(n) x U(n) ABJM

e m # n gives the ABJ theories

In the special case of SU(2) x SU(2) we recover the BLG theory

in complex notation.

In these lectures we will restrict attention to these BLG, ABJM
and ABJ theories.

17 / AR



Let us look more closely at this triple product: vector space V

generated by T'* admits a triple product - a 3-algebra:
[,5]:VeVey =V
Key idea is that the analog of adjoint map

pu X)) =X, U; V] oy p(X)=—[X,V; U]

is a derivation

oy v([X,Y;2) = oy v(X), V; Z1+[X, 0y 5(Y); 214X, Yoy v(2)

And this is the fundamental identity that we encountered.

12 / AR



The fundamental identity tells us that the action of ¢ on V is that
of a lie-algebra G generated by ¢, i, forall U, V €V

e i.e. Vis representation of G.

e thus a 3-algebra defines a lie-algebra (e.g. u(m) @ u(n)) along

with a preferred representation (e.g. the bi-fundamental)

In fact the reverse is also true: Given a Lie-algebra and a
representation (along with invariant inner-products) one can always
construct a triple product satisfying the fundamental identity (via

the so-called Faulkner map).



Thus one need not think of a 3-algebra and just think of the gauge
group and matter representation. However susy fixes the symmetry

properties of the triple product

e and so which gauge algebras and representations arise
e leads to these rather esoteric choices (and indefinite

inner-products on the lie-algebra)

Thus the amount of susy is determined by the gauge algebra and

matter representations

e Whereas in super-Yang-Mills the gauge algebra is arbitrary
and all fields are in the adjoint (for more than 8 susys)
e possible because in Chern-Simons theories there are no

propagating gauge fields

27N / AR



Physical Analysis

The first thing to look at is the vacuum moduli space. This tells us

the space of all the zero-energy configurations of the M2-branes.

Consider ABJM:
(24,75 Zc) = 0 «— 24 Zc 2P = 2B 7224
Generically this implies that all the Z4 commute (c.f. D-branes):

dlag(zl )y 7?)

To see that this is all requires one to evaluate the mass formula for
small fluctuations which one finds is non-zero (generically: there
are special points where extra massless modes arise but are

expected to be lifted by non-perturbative effects).

21 / AR



We could set g;, = gr so that this is an adjoint action, as with
D-branes. Thus allows us to put Z4 in diagonal form (as we have

already done) and in addition acts as
A . .
zi % for any 7 # j

e.g. for 4,7 = 1,2 these are generated by

9L = 9gr = 1

7/ aQ



These generate the action of the symmetric group S, on z{'.

Unlike D-branes we also have continuous gauge transformations:

ziA —s 0 zfl

These arise from taking

-1 : 601 /2 i0,,/2
gL = g5 = diag(e/?, .., /%)
To see the effect of this on the vacuum moduli space we must
examine the Lagrangian for the moduli z{!

7, including the gauge
fields:

27 /AR



1 Ak k-
L= —5 Z D,z DHZAH‘EEM Z AﬁiauAfi—ng Z AgiaVAfi
i ¢ ¢

where Aﬁ = diag(Aﬁl, s A{;n) AR = diag(Aﬁl, s Affn) and
Dyzit = 0,28 — Z(AlL“ - Aﬁl)zzA

Note that 2/ only couples to B,; = A[ji - Aﬁi and not to
_ AL R.

1 _ k
L= = > D,z DMz + ESW/\ > B0y Qi
- i

with D28 = 0,2{* — iBi2f.

274 / AR



It's helpful to dualize @,;:

1 _ k 1
L - -3 > D,z DMZa; + gé"“”\ > BuiHyxi — 3
i i

?EMV)\JiatuM

1

1 _ k 1
—5 Z DuZZAD‘uZAZ‘ + 87€#V>\ Z BuiHu)\i + 877_‘_#“/)\8“0'1'1‘]”)\@'
) 7
where Hyx; = 0, Qxi — O\ Qi

Integrating out H,; tells us B,,; = —k‘lﬁuai and everything is
pure gauge:

1 _
L= -3 ;a,tw;‘aﬂwm
24 _ eiai/szl

where w is gauge invariant.

N /RO



But o; is periodic:
' 1
/E(O‘Z'+27T) f/ﬁ(ai) = 712 /8#11)\8/1,1{1/)\’[
1
= —fZ/dH
245
1 L R
- —§Z/dF +dF

€ 2nZ
because of the Dirac quantization rule
/dF € 2n7
and the fact that B; = —k~'do; implies dB; = F} — FF =0

2790 / AR



This means that (recall w# = ei@i/kz4)

w,LA ~ e2m/kw{4
Thus there is an extra orbifold action in spacetime
R® — C*/z;,
and the vacuum moduli space is

M = Sym" ((C4/Zk)

Corresponding to n M2-branes in an C*/Z;, transverse space.

And indeed this orbifold preserves 12 supersymmeties.



What about ABJ with gauge group U(n) x U(m), n # m?
Write m = n + 1

e Vacuum moduli space is still Sym™ (C*/Zy,)
o describes n M2's in C*/Z;,
e Party is broken.

Interpreted as [ 'fractional’ M2-branes stuck at the fixed point.

Corresponds to including [-units of discrete torsion in the
background four-form (H*(C*/Zy,Z) = Zy,).

requires that [ < k

Conjecture: U(n) x U(n+ 1) ABJ has no vacuum for [ > k
Conjecture: U(n) x U(n+ k) ABJ is dual to U(n) x U(n)

279 /AR



Let us look more closely. The orbifold acts as

($0,$1,I2) — (1,071:171;2) 7 ZA — e27ri/kZA

A

here 2z are complex coords for the R® spanned by 23, ...,z

Write R® in 'spherical’ coordinates
dss = dr? + r’ds%;
and then S7 as a Hopf fibration over CP3:
dsgr = (dip + w)? + dsi. ps
In these coordinates the orbifold simply acts on the fibre as

Y=+ 2mi/k

10

270 / AR



At large k, which is weak coupling, the orbifold shrinks the fibre
and we have the type lIA background.

Let use consider the large n limit. The supergravity solution

solution is (H = 1+ nr$/r%, ry o 1)

dsty = H*/3(—(da®)* + (da')? + (da®)?) + H'Pdsga sy,

r 042 142 212 n%rg 2 L 9,2
= n§r4(—(dm )* + (dx*)” + (dz*)°) + 2 dr® 4+ nsrs dsSUZk
0

_ nsr ( (dz%)? (dz1)2+(dx2)2+d22>

+ 3 2 452
4 22 3Ty aSg7 7,

Therefore we obtain, in the large & limit, an AdSy x CP? dual
Vg vnrg

4k k3 ds? Scp3
with €2? = /nrgk=3, ¢ = kuw

dsiy = dshas, +

20 / AR



Next we consider a bunch of M2-branes located at 2* = iv, far

from the origin.

74 w5A4+—XA+Z XA+

NCRRANG

This leads to a 'novel Higgs' effect since v # 0
breaks(U(n) x U(n) — U(n).

B, = Aﬁ — Aﬁ has no kinetic term and can integrated out yeilding

a kinetic term for A,,.

Furthermore A, = Aﬁ + Aff eats X® and becomes dynamical.

21 / AR



Resulting action has a dynamical vector and 7 scalars (plus

fermions) and must preserve 16susys

e Must be 3D MSYM at leading order (as a calculation shows)

1 .
L= —5—Lspsym +O(1/v)
Iym

where g%, = 87202 /k.

Corrections correspond to the fact that finite fluctuations sense

that spacetime is not R x S! but R8/Z; .

29 /A



Let us return to the moduli space. It follows that we can think of

74 =

2

as describing the positions of n M2-branes in C*/Z;. Furthermore

the natural circle for the M-theory direction is the over-all phase.

Suppose we wanted to describe n M2-branes moving along the
M-theory circle with different speeds. One might expect that this
corresponds to
ZlA eiwlt
74 =

A Jiwnt
zern

22 /AQ



But this is pure gauge! We can un-do it by taking

6—iw1t/2

nggﬁl =

efiwnt/2

(Note that this gauge transformation is not allowed for D-branes
where the scalars are in the adjoint.) So how do the M2-branes
'explore’ the full transverse space? Let us set the fermions to zero

and construct the hamiltonian
H = tr/d% Myally, + DiZ D' Zy + V
— k
.7 A .
+ (zz Mya —illy, Za — %F@ Af

. k
+ (iZAHZA — iy 2 + %ng) Al

24/ AQ



As usual the time-components of the gauge field give constraints:

k

L .7 A . =
%F&Q = 7 HzA —’LHZAZA
k . A .5
%FlRQ = anAZ — ZZAHZA

Consider the vacuum moduli again:

1 Rfie
74 =
A
1R
The constraint is
) . > a(R{)28064

S A(R2)20,0

2 /AQ



In other words the momentum around the M-theory circle is given

by the magnetic flux.

This is, in spirit, the same as dualization:

1
GMXlo = §6HV)\FV)\ — 80X10 = F12

This raises the next question: how do we compute quantities with
11D momentum. In particular the gauge invariant observables
(appear to) only carry vanishing U(1) charges:

O = tr(Z2%Z3z°.) OK

O = tr(24282°.)  not OK

and hence don't really explore all 11 dimensions.

26/ AQ



This brings us to monopole or 't Hooft operators: We want to

create states that carry magnetic charge.

These operators are defined as a prescription for computing
correlators in the path-integral. They are not constructed as a

local expression of the fields.
< M(y)O(2)... >:/ DZDyDAO(z)e™*
yF:27TQM
in other words we require the fields in the path integral to have a
specific singularity

1
F= *@d ( ) + nonsingular
2 \[z—yl

Qum € u(n) x u(n) is the magnetic flux and is subject to the

standard Dirac quantization condition

2™ — 1 |



There is a famous result of GNO that the set of @ys which satisfy
this, modulo gauge transformations, are in one-to-one
correspondence with highest weights of representations of the dual

gauge group (Langlands dual).

e the dual of U(n) is U(n).

We can therefore group together various choices of fluxes into

states associated with those of a representation of U(n).

Furthermore we will be interested in supersymmetric monopole
operators where the fields near the insertion point are those of a
supersymmetric Dirac monopole (so the scalars also have a

singlularity).



Next we note that due to the Chern-Simons term monopole
operators transform locally under a gauge transformation

6A£/R = Dywr g (with w — 0 at infinity) as

MQM(Q:) N 6(i/€/27r) trf(DwL/\FL—DwR/\FR)MQM (13)

ehtrlL@)-wr@) M, ()

Note that by construction we have broken the gauge group to
U(1)™ x U(1)™. This is enough to tell us that under full gauge
transformations the monopole operators transform in the

representation of U(n) x U(n) whose highest weight is
A = k(Qu,— Qu)

(actually because of the sign the second factor is the lowest weight)

20 / AQ



This is all very abstract (and tricky to calculate with). Consider the

abelian case (from the moduli space calculation and Wick rotated)
L= —% Z D,z D"Za; + %yw Z BuiH, i — %gﬂ”kaiaﬁtffyhi
The monopole operators are just
Mi(y) = e

Since
< M;(y)O(2)... > = /DzDBDQei‘”(y)O(z)effd%ﬁ(x)

_ /DzDBDQO<z>effd3x£(x)7iai(x)5(xfy)
which is the same as taking

1

1
gs’“”\@HuM — gs"”’\atu,\i + 8w (z — y)

i.e. inserting a magnetic charge at = = y.

A0 / AR



Thus our gauge invariant operator on the moduli space is just

. . l
wf = el = (M

and indeed M, has charge (k,—k) under U(1) x U(1).

Classically i has scaling dimension zero (because B; o< do; has
scaling dimension one). What about quantum mechanically? You
might think this was shifted because of normal ordering (c.f. e*X

on the string worldsheet).

However the momentum conjugate to B,; is A,; and thus B,; and
hence o; has vanishing OPE with itself. So no normal ordering

effects and €% is dimension zero in the quantum theory.

A1 / &Q



Let us now return to where we started: BLG. This is an
SU(2) x SU(2) Chern-Simons-Matter theory with maximal
supersymmetry and an SO(8) R-symmetry.

How does it fit in? To cut a long(ish) story short:

o BLG (SU(2) x SU(2))/Zs at k = 1 is dual to ABJM
U(2)x U(2)atk=1,ie 2M2sin RS

e BLG SU(2) x SU(2) at k=2 is dual to ABJM U(2) x U(2)
at k=2, ie 2M2'sinR8/Zy

o BLG (SU(2) x SU(2))/Z; at k = 4 is dual to ABJ
U(2) x U(3) at k=2, i.e. 2 M2's in R®/Zy with torsion

So it describes 2 M2-branes in R® or R®/Zy with all symmetries

manifest.

A9 / AQ



Let us return to the maximally supersymmetric cases k = 1,2

where the transverse space is
k=1: R%, k=2: R®/Z,
M2-branes in these backgrounds preserve 16 supersymmetries.

For two M2's we could use BLG but for more we need ABJM.

What happened to the extra two supersymmetries and SO(8)
R-symmetry? The claim is that they are there but not manifest

(this is okay since k = 1,2 is strongly coupled).

AR / AR



The extra supersymmetry comes from the supercurrent
Jy = MDD, Z2 0,
and extra R-symmetries from
J;le = Mab<Zz;4DuZIF - ZfDquA + igABCDQECa’Y;LibDb)

Recall that Z4 and 14 are both in the (n, 1) , so D, Z4% 4,
ZADMZB and ¥ c1)p are not gauge invariant. In particular they

are in the tensor product of two fundamental representations of the
U(n) x U(n) with U(1) charge 2.

So for these currents to exist we require that M® is in the tensor
product of two anti-bi-fundamental representations of
U(n) x U(n) with U(1) charge -2.

A4 / AR



When does such an M exist?

The (highest weight,lowest weight) for two-tensored

anti-bi-funamental representation is
A= (2)\n—la _2)‘n—1)

According to our discussion about monopole operators we must

have

for a monopole charge vector @M. Thus M only exists if

Precisely as required!

AE / AQ



Mb5-branes and the (2,0) CFT

Can we try our luck with Mb5-branes?

Low-energy Mb5-brane dynamics governed by a 6D theory with:

o (2,0) supersymmetry
& conformal invariance

o SO(5) R-symmetry

Multiplet contains 5 scalars and a selfdual antisymmetric 3-form

field strength + fermions

Very rich and novel 6D CFT dual to AdS; x S*

AR / AR



At linearized level the free susy variations are

X! = qer'v
60 = THTY9,X'e+
0Huy = 3iel|,, 0NV ,

1

1 vV
2 §rﬂ AHne

and the equations of motion are those of free fields with dH =0
(and hence dH = dx H = 0).

Reduction to the D4-brane theory sets 05 = 0 and

Fuu = H;UJS

A7 |/ AR



We wish to generalise this algebra to nonabelian fields with

Dy X} = 0,X}4 — A 4 X[,

Upon reduction we expect Yang-Mills susy:

X = ety

. .
ST = raFfDaXfe+§F“5r5Fage—%[XI,XJ]F“P%
§Aq = il T50,

Thus we need a term in 6V that is quadratic in X' and which has

a single I';:

< Invent a field Cfi

A9 / AQ



After starting with a suitably general anstaz we find closure of the

susy algebra implies

6Xh = dqerlwy

SW, = F“FID#Xfle—F%FWAHQ“’Ae—%F,\F”OJ’B\XéngCDBAe
SHuna = 3iel, DyUa + el Tyr CEX 5V pf PP 4

SAP, = i, CivpfPP,

sCh = 0

where fABC; are totally anti-symmetric structure constants of the
N = 8 3-algebra (possibly Lorentzian). Can also have C* and
fABCD N fABC-

Has (2,0) supersymmetry, SO(5) R-symmetry and scale symmetry

(C'} has dimensions of length)

A0 / AR



The algebra closes with the on-shell conditions

= DX} - Cj CziGXéXéXéfEFGDfCDBA + fermions
Dy Hyzp) 4+ 7 G CEXéDTlenyDBA + fermions
THD, W4 + XLCT, T pfOPB
FuBa— CoHu pfPP 4
D, Cy = C‘éCEfBCDA
= CLDXpPP A = CEDYRfPP 4 = CLDyHux af PP 4

o O O o o o

Thus C'} picks out a fixed direction in space and in the 3-algebra

and C% D, = 0. So apparently we are simply pushed back to 5D.

BN / AR



But no so quick, we can look at the Conserved currents, e.g.

1
T, = DMX/[;D,,X]A—QW,,D)\X/{D’\XM

. 1
+ o CEXA X Cra Xp Xpf “PPAFHCp + -

4

+fermions

And we also obtain six-dimensional expressions for the supercurrent

and central charges.

Here we see that the system is 6-dimensional
CHP, = / d°zC* Ty, ~ Tr/F/\ HeZ
but with a compact direction (i.e. R®> x S1).

M-theory momentum is "topological and quantized’ - just as with
ABJM.

Ap A
Hu)\p AH, r
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For C!y = g%,,03Y the previous system reduces to 5D SYM

Ps = —

d*zt (FiF,
SQYM/ X I" ij klgzjkl)

First recall some facts about 5D SYM:

o Power-counting non-renormalisable, g%/M ~ length

= naively new d.o.f. should appear at some scale

o M-theory says a UV (strong coupling) fixed point exists and is
6-dimensional: the M5-brane CFT

o Agrees with Nahm's classification of SCFT's: indeed UV-fixed
point theory cannot be 5D

R? /AR



From String Theory the relation between D4- and M5-brane

theories given by compactification on S*.

5D SYM also has particle states that carry instanton charge k with

mass

Simplest such states just DO's in D4 worldvolume.

Interpretation as momentum on S of compactified 6D theory.
p p y

[Rozali, Berkooz-Rozali-Seiberg]

=- Even in Yang-Mills limit this tower of states knows something

about M-theory direction.

£E2 /AQ



We argued that, at least for < X% >= ¢ 5D SYM contains a

complete spectrum of KK modes in the soliton spectrum

e KK tower of W-Bosons given by Dyonic instantons [NL, Tong]
e KK tower of strings given by Monopole strings

e KK tower of photons given by quantum-sized instantons

< p >~ g/

All smooth finite energy states in the correct representation of

(2,0) supersymmetry.

A/ RQ



So:

¢ No more room for any additional UV states.

o Natural conclusion: 5D SYM is the (2,0) CFT compactified
on St (see also [Douglas])

o ... and hence well-defined non-perturbatively (some how).
(see also [Douglas])

o Details of how this works out not clear since 6D CFT contains
momentum states which are non-perturbative from the point

of view of 5D theory
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You might hope that 5DSYM is finite (but apparently it's not at 6
loops [Bern,Douglas,..] to appear)

But this is also naive since one normally says that solitons are

suppressed by factors of

e_l/gng
But ¢2.,, has dimensions of length so we in fact must have
9ym g

2
e_d/gYM

where d is a length-scale (e.g. instanton size,

instanton/anti-instanton separation)

So no decoupling from perturbative physics if d < O(g3%,,) (e.g.
photon KK tower).
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We could also consider a null reduction, z# = (z7, 27, 2%):

CZ = g%/M5i591

0 = D2x! - %@Cmrf\pdfcda

0 = "DV, + g%/ﬂgxcfmrf\pdfcda

0 = DypHya— g%ew,\pTJrXCIDTXédea + fermions
0

b 2 db
= F;u/ a_gYMH,u,z/+df a

where £, = f09  Curious system with 16 supersymmetries and
an SO(5) R-symmetry but Dy =0
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We wish to view z~ as time, solve the non-dynamical equations,

and then quantizing using the hamiltonian

H=P_ = /d4l'T,,

Setting the fermions to zero the non-trivial equations are:

0 = D;D'X!
0 = D'F;_
0 = D_Fi_ — DGy —ig*[X', D;X]

with F,', = —gQHi,Jr, F’L’j = _QQHijJrv Gz’j = —ggHijf and hence
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It follows that A; is determined by the AHDM construction

e introduces moduli A; = A;(m®)

e Natural moduli space metric

gop = Tr / 06, 4305 A;

Furthermore X' can also be solved for explicitly in terms of m®

= o)

72

and their vev's:
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Next we note that

04;

_A; =
g ome

O_m~ + D;w

where w is a gauge transformation that we choose to ensure that
D'9_A; = 0.

o = D;D'IA_=0 = /sz—k(’)(%)

1

All fields are reduced to functions of the vev's v*, w and instanton

moduli m®

‘Time' dependence arises by letting these be functions of z~

AN/ AR



Now )
2 4
Py :/d4xT_+ - ——zTr/F/\Fe =z
g g
gives the instanton number and
P = / d*zT_; = Tr/FijF,j x total instanton momentum
The hamiltonian P_ is:
1
P_ = ngaﬁ(a,ma —L*0-mf — 1P+ V

where

2
Lod_m® = Tr]fa,ATA, V= %TY?{X[D,XI .
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The Superalgebra for this theory is

{0, 0 }y=—2P_ (T ChH+z{(r e+ r TV Cc)
{Q4, Q1) =—2P.(I"C7)
{Q-. Qi) =—2P('C™) + Z/(T'TC7Y),

where the central charges are
2l =— 2Tr/ d*z F_;D'X!
2l — Ty / 'z Gy X!

Zl =— ¢°Tr / d*z D X'Dy X7 .
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Thus we obtained the [Aharony, Berkooz, Kachru, Seiberg,
Silverstein] proposal of (2,0) theory along with explicit expressions

for Z, P, and generalized to include L%, V.

Arises naturally from an infinite boost of 5D SYM or D4-branes

using the (2,0) theory we constructed above.

So it follows from the conjecture that (2,0) on S* is 5D SYM in a
[Seiberg]| limit that C* becomes null:

Fu — F,, @ F,jy

and Ff, decouples as C*C,, — 0.
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To summarize, the (2,0) system that we constructed leads to the

following;:

o Proposal (2,0) theory on S! is exactly 5D SYM for any value
of the coupling (see also [Douglas])

o Rederived and generalized the (2,0) DLCQ theory as the
quantum mechanics of instantons [Aharony, Berkooz, Kachru,

Seiberg, Silverstein].

In some sense, since quantum 5D SYM isn't defined (unless one
can make non-perturbative sense of the Lagrangian), the

conjecture that it is (2,0) on S! is just a definition.
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Can we define 5D SYM another way? Deconstruction comes to
mind [NL,CP,MSS] in progress:

Quiver

Start with V' = 2, Ny = 2K SU(K) SCFT with < & >= v
breaking SU(K)Y — SU(K).
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This theory deconstructs 5D SYM on S* with when N — oo:

N
2T Ry = —
gav

But actually, as noted in [Arkani-Hamed,Cohen,Karch,Motl],
because of SL(2,7) this deconstructs a 6D theory on S* x S1

Extra circle (KK modes come from monopoles = wrapped versions
of the states in 5D SYM above)

2
27TR6 = % = 792YM
T

So the conjecture that (2,0) on S! is 5DSYM comes out as limit of

deconstruction conjecture.

AR / AR



Thus various proposals on the (2,0)

e DLCQ of QM on instanton moduli space [Aharony, Berkooz,
Kachru, Seiberg, Silverstein]

e Deconstruction from D=4 SCFT
[Arkani-Hamed,Cohen,Karch,Motl]

e Strong coupling limit of 5D SYM [Douglas|,[NL,CP,MSS]

all based on lower dimensional theories are interconnected. (See

also recent six-dimensional proposals [Chu],[Ho, Huang, Matsuo].)

Altogether these paint a consistent, interconnected picture of the

Mb5-brane in terms of lower dimensional theories

e Alternatively, what exactly is the difference between the (2,0)

A7 / A



Subsequent work has greatly added to and enhanced this picture:

S-duality for 5D SYM on S* [Tachikawa]

Bound states in instanton QM [Kim,Kim,Koh,Lee,Lee],
String Junctions in 5D SYM [Bolognesi, Lee|

N3 scaling of 5D SYM partition function
[Kim,Kim],[Kallen,Minahan,Nedelin,Zabzine]

Some important technical points remain

e Is 5D SYM well-defined non-perturbatively

e In DLCQ picture instanton moduli space has singularities (but
these are mild orbifold singularities)

e How much does deconstruction tell us about the full higher

dimenc<ional theorv o /ea



